Acessibilidade / Reportar erro

Characteristics and utilization prospects of red ceramic waste in lightweight aggregates: a systematic review

Abstract

Red ceramic waste (RCW) is one of the main by-products generated by the production of ceramic materials. Its application in lightweight aggregates (LWAs) has not yet been tested. Thus, this review intends to evaluate the perspectives of using RCW in the manufacture of LWAs. The search was carried out in the ScienceDirect database. 47 articles were selected. A significant amount of data on the chemical, physical, mineralogical, and morphological properties of RCW are discussed. In most studies, the chemical constituents of RCW complied with the swelling parameters. The mineralogy of the residue usually has constituents capable of controlling the viscosity and aiding gas formation. The data of granulometry, microstructure, and loss of mass denote the need for special care with the methodology adopted for grinding and sintering of the residue. This review indicates that there is a high potential for the use of RCW in the manufacture of LWAs.

Keywords:
red ceramic waste; lightweight aggregate; systematic review; physicochemical properties; sustainability

INTRODUCTION

The use of ceramic materials is a common practice in engineering. The abundance of raw materials in the earth’s crust favors their application. However, failures in the supply chain of these materials, whether in manufacturing, use, or disposal, usually result in severe environmental impacts. Urbanization and industrialization processes have been increasing the depletion of natural resources 11 M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473. and waste generation 22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.. In this context, several researchers have been working on the subject in search of solutions that can enhance the preservation of natural resources and reduce environmental impacts 11 M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473.)-(2828 R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163.. A large portion of ceramic waste is generated from construction and demolition or pieces manufactured with defects 22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.. Moreover, ceramic materials fracture with virtually no plastic deformation. This fragility contributes to the generation of this waste 2929 S. Ray, M. Haque, S.A. Soumic, A.F. Mita, M.M. Rahman, B.B. Tanmoy, J. Build. Eng. 43 (2021) 102567.. According to Ray et al. 2929 S. Ray, M. Haque, S.A. Soumic, A.F. Mita, M.M. Rahman, B.B. Tanmoy, J. Build. Eng. 43 (2021) 102567., red ceramic waste is one of the main by-products generated by ceramic materials. This waste is usually obtained from blocks, bricks, and tiles made exclusively from red clay pastes 2929 S. Ray, M. Haque, S.A. Soumic, A.F. Mita, M.M. Rahman, B.B. Tanmoy, J. Build. Eng. 43 (2021) 102567.. It is estimated that a significant portion of the world’s production of ceramics is wasted daily due to the production of defective pieces 1313 C.L. Hwang, M. Damtie Yehualaw, D.H. Vo, T.P. Huynh, Constr. Build. Mater . 218 (2019) 519.), (2929 S. Ray, M. Haque, S.A. Soumic, A.F. Mita, M.M. Rahman, B.B. Tanmoy, J. Build. Eng. 43 (2021) 102567.. This reinforces the need for study on possible methods of reuse of this waste.

From the published literature, it can be seen that many studies have been conducted in order to find a sustainable solution to the issue of red ceramic waste (RCW). Successful studies report the use of this by-product: a) in geopolymers 11 M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473.), (1010 R. Carrillo-Beltran, F.A. Corpas-Iglesias, J.M. Terrones-Saeta, M. Bertoya-Sol, Constr. Build. Mater . 272 (2021) 121924.), (2121 C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 (2020) 101655.; b) as a pozzolanic material 22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.), (44 R.M. Tremiño, T. Real-Herraiz, V. Letelier, J.M. Ortega, Constr. Build. Mater. 306 (2021) 124839.), (1919 S. Li, J. Gao , Q. Li, X. Zhao, Constr. Build. Mater . 267 (2021) 120976.), (2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.), (2323 Z. Ma, Q. Tang, H. Wu, J. Xu, C. Liang, Cem. Concr. Compos. 114 (2020) 103758.; c) as a cement substitute 55 E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228.), (88 J. Shao, J. Gao, Y. Zhao, X. Chen, Constr. Build. Mater . 213 (2019) 209.), (1212 T. Zhang, Z. Sun, H. Yang, Y. Ji, Z. Yan, Constr. Build. Mater . 302 (2021) 124052.), (2828 R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163.; d) as a filler in acoustic blocks 66 L. Fiala, P. Konrád, J. Fořt, M. Keppert, R. Černý, J. Clean. Prod. 261 (2020) 121185.; e) in pastes, mortars and/or concretes 99 V.L. Jerônimo, G.R. Meira, L.C.P. da Silva Filho, Constr. Build. Mater . 169 (2018) 900.), (1111 F. Ameri, P. Shoaei, S.A. Zareei, B. Behforouz, Constr. Build. Mater . 222 (2019) 49.), (1313 C.L. Hwang, M. Damtie Yehualaw, D.H. Vo, T.P. Huynh, Constr. Build. Mater . 218 (2019) 519.), (1414 F. Ameri , S.A. Zareei , B. Behforouz , J. Build. Eng. 32 (2020) 101620.), (1818 C.L. Hwang , M.D. Yehualaw, D.H. Vo , T.P. Huynh , A. Largo, Constr. Build. Mater . 223 (2019) 657.; f) as recycled aggregate 1515 J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898.), (2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.), (2525 P.O. Awoyera, J.O. Akinmusuru, A.R. Dawson, J.M. Ndambuki, N.H. Thom, Cem. Concr. Compos. 86 (2018) 224.; and g) as adsorbent material 2727 F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41.. However, no tests on the application of RCW in expandable lightweight aggregates were found. In recent years, several by-products have been tested in the manufacture of lightweight aggregates (LWAs) 3030 M.M. Souza, M.A.S. Anjos, M.V.V.A. Sá, Constr. Build. Mater . 270 (2021) 121845.), (3131 M.M. Souza , M.A.S. Anjos , M.V.V.A. Sá , N.S.L. Souza, Case Stud. Constr. Mater. 12 (2020) e00340.)-(3434 A.M.M. Soltan, W.A. Kahl, F.A. El-Raoof, B.A.H. El-Kaliouby, M.A.K. Serry, N.A. Abdel-Kader, J. Clean. Prod. 117 (2016) 139.. Successful studies point out that this technique shows a high potential for waste incorporation 3030 M.M. Souza, M.A.S. Anjos, M.V.V.A. Sá, Constr. Build. Mater . 270 (2021) 121845.), (3535 L. Świerczek, B.M. Cieślik, P. Konieczka, J. Clean. Prod. 200 (2018) 342.. The use of LWAs in engineering works and services is becoming more common every day. Properties of density, water absorption, and mechanical resistance favor their use in a vast field of applications. However, the manufacture of LWAs also results in the consumption of natural resources 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).. Thus, a strong synergy is perceived between the issues of RCW and LWAs. This comprehensive literature review intends to evaluate the perspectives of using RCW in the manufacture of lightweight aggregates, from a comparative analysis with the characteristics required from the expandable clay. If RCW can be transformed into a commercial product, such a solution can benefit the environment, preserving natural resources and reducing waste disposal in landfills, besides promoting technological advances.

METHODOLOGY

The research strategy adopted was the systematic literature review. The method in question has a high scientific rigor, as it results in the preparation of impartial, replicable, and consequently auditable studies. The correct conduct of a systematic review allows, among other things: a) answer to research questions, pending in primary studies; b) assessing the compatibility between scientific findings; and c) analyzing hypotheses that have not yet been tested 3737 E.Y. Nakagawa, K.R.F. Scannavino, S.C.P.F. Fabbri, F.C. Ferrari, Revisão sistemática da literatura em engenharia de software: teoria e prática, Elsevier, Rio Janeiro (2017).. In general, the process of conducting this systematic review followed the guidelines presented by Nakagawa et al. 3737 E.Y. Nakagawa, K.R.F. Scannavino, S.C.P.F. Fabbri, F.C. Ferrari, Revisão sistemática da literatura em engenharia de software: teoria e prática, Elsevier, Rio Janeiro (2017).. From the adopted methodology, a research question was developed based on the population, intervention, comparison, and outcome (PICO) criteria 3838 M. McCulloch, Natl. Med. J. India 17, 2 (2004).. The applied strategy sought to evaluate the prospects of using RCW in the manufacture of lightweight aggregates, from a comparative analysis with the characteristics required of the expandable clay 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.), (4040 G. Cougny, Bull. Int. Assoc. Eng. Geol. 41, 1 (1990) 47.. The hypothesis in question has not yet been tested, but the large number of studies conducted on RCW favored the elaboration of this analysis, through the systematic review of the literature. The research strategy is presented in Table I.

Table I
Research questions according to the PICO criteria.

Based on the questions, a comprehensive bibliographic search was conducted in the electronic database ScienceDirect. The inclusion criteria adopted for the selection of articles, elected full papers published in English and in peer-reviewed journals. Five keywords were associated with the theme: a) brick powder; b) ceramic waste; c) crushed brick; d) crushed ceramic; and e) chamotte. Using the Boolean operator OR the following search string was elaborated: (“brick powder” OR “ceramic waste” OR “crushed brick” OR “crushed ceramic” OR “chamotte”). The search string developed was applied to the advanced search topic: author’s title, abstract, and keywords. In addition, only papers published between January 2016 and August 2021 were filtered. Then, the exclusion criteria were applied: 1) literature review papers; 2) papers that did not report the mineralogy of the residue, through X-ray diffraction (XRD) data; 3) papers that did not report the chemical composition of the residue, through X-ray fluorescence (XRF) spectroscopy data; and 4) papers that did not use RCW. Exclusion criteria 2 and 3 were adopted aiming to assess whether RCW had a chemical and mineralogical composition capable of producing a mass with adequate viscosity on swelling and forming gases when the clay mass melts to a viscous melt, according to the conditions required by the theorem of expandable clays proposed by Riley [39]. Finally, additional literature was used to substantiate some specific discussions. Fig. 1 presents the flowchart of the article screening process.

Figure 1:
Flowchart of the article selection process.

RESULTS AND DISCUSSION

Publication metrics: the annual percentage of relevant publications is illustrated in Fig. 2. One can notice a significant growth in the number of studies related to the topic of this research. In 2016 only 2 articles were published. In 2018 this number jumped to 6 publications. Meanwhile, the publication rate of 2021, between January and August, was the highest recorded (8 publications). This allowed us to assume that the theme is considered relevant and that much content should still be published in the coming years.

Figure 2:
Percentage of annual publications relevant to this study.

Sources, processing, and granulometry: in general, the ceramic waste tested was obtained from two main sources: a) the ceramic industry, coming from materials outside technical specifications; and b) construction and demolition waste (CDW). Ceramic brick was the most commonly used element in the research 22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.)-(44 R.M. Tremiño, T. Real-Herraiz, V. Letelier, J.M. Ortega, Constr. Build. Mater. 306 (2021) 124839.), (66 L. Fiala, P. Konrád, J. Fořt, M. Keppert, R. Černý, J. Clean. Prod. 261 (2020) 121185.)-(99 V.L. Jerônimo, G.R. Meira, L.C.P. da Silva Filho, Constr. Build. Mater . 169 (2018) 900.), (1111 F. Ameri, P. Shoaei, S.A. Zareei, B. Behforouz, Constr. Build. Mater . 222 (2019) 49.)- (1919 S. Li, J. Gao , Q. Li, X. Zhao, Constr. Build. Mater . 267 (2021) 120976.), (2121 C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 (2020) 101655.), (2323 Z. Ma, Q. Tang, H. Wu, J. Xu, C. Liang, Cem. Concr. Compos. 114 (2020) 103758.), (2424 D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966.), (2626 L. Reig , L. Soriano, M.v . Borrachero, J . Monzó, J. Payá , Cem. Concr. Compos. 65 (2016) 177.), (2828 R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163., but some studies made use of tiles and other red ceramic-based artifacts 11 M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473.), (55 E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228.), (1010 R. Carrillo-Beltran, F.A. Corpas-Iglesias, J.M. Terrones-Saeta, M. Bertoya-Sol, Constr. Build. Mater . 272 (2021) 121924.), (2020 R.H. Geraldo, J.D. Souza, S.C. Campos, L.F.R. Fernandes, G. Camarini, Constr. Build. Mater . 191 (2018) 136.), (2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.), (2525 P.O. Awoyera, J.O. Akinmusuru, A.R. Dawson, J.M. Ndambuki, N.H. Thom, Cem. Concr. Compos. 86 (2018) 224.), (2727 F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41.. In most of the studies, the collected residue was submitted to crushing and/or grinding and then sieved, resulting in a fine-grained material 22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.), (44 R.M. Tremiño, T. Real-Herraiz, V. Letelier, J.M. Ortega, Constr. Build. Mater. 306 (2021) 124839.), (55 E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228.), (77 J.P. Mendes, F. Elyseu, L.J.J. Nieves, A. Zaccaron, A.M. Bernardin, E. Angioletto, Sustain. Mater. Technol. 28 (2021) e00264.)-(1919 S. Li, J. Gao , Q. Li, X. Zhao, Constr. Build. Mater . 267 (2021) 120976.), (2121 C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 (2020) 101655.)-(2424 D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966.), (2626 L. Reig , L. Soriano, M.v . Borrachero, J . Monzó, J. Payá , Cem. Concr. Compos. 65 (2016) 177.), (2828 R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163.. This suggested a need for beneficiation of the residue for suitability in the production of LWAs. The maximum particle size and/or the specific surface area of some of the tested wastes are presented in Fig. 3. The particle size and the specific surface of the samples have a fundamental role in obtaining expandable LWAs, interfering in the sintering kinetics and in gas trapping [40]. In many studies, the samples used presented high surface area and particles smaller than 150 mm. This favors the swelling phenomenon in sintered LWAs 4040 G. Cougny, Bull. Int. Assoc. Eng. Geol. 41, 1 (1990) 47.. The residue tested by Tremiño et al. 44 R.M. Tremiño, T. Real-Herraiz, V. Letelier, J.M. Ortega, Constr. Build. Mater. 306 (2021) 124839. presented diameters less than 75 mm and a surface area of approximately 6.49 m2/g. In this study, the particle size distribution shows a strong correlation with the parameters delimited by Cougny 4040 G. Cougny, Bull. Int. Assoc. Eng. Geol. 41, 1 (1990) 47.. The application of a material with such characteristics can potentiate the strength gains and the reduction of water absorption of sintered LWAs. Some studies used RCW with fine aggregate particle size fractions. The material tested by Fiala et al. 66 L. Fiala, P. Konrád, J. Fořt, M. Keppert, R. Černý, J. Clean. Prod. 261 (2020) 121185. presented particles of varied sizes (0.25 to 2.0 mm). Dang et al. 1515 J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898. selected a sample with particle sizes from 0.15 to 5.0 mm. However, data from several studies showed some difficulty in applying this material as non-sintered LWA, since the specific mass found was always greater than 2000 kg/m3 (1515 J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898.), (2020 R.H. Geraldo, J.D. Souza, S.C. Campos, L.F.R. Fernandes, G. Camarini, Constr. Build. Mater . 191 (2018) 136.), (2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.), (2323 Z. Ma, Q. Tang, H. Wu, J. Xu, C. Liang, Cem. Concr. Compos. 114 (2020) 103758.), (2525 P.O. Awoyera, J.O. Akinmusuru, A.R. Dawson, J.M. Ndambuki, N.H. Thom, Cem. Concr. Compos. 86 (2018) 224..

Figure 3:
Maximum particle size and specific surface area of RCWs.

Chemical composition: the chemical composition of the raw material is a parameter commonly used in predicting the swelling of lightweight aggregates. Regardless of the material used, it is common to develop mixtures with similar characteristics to the expansive clay 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).), (3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. In many cases, the fusion of clay materials results in the simultaneous formation of liquid phase and gas bubbles. When the liquid phase formed has a viscosity appropriate for the trapping of these gases, the expansion of the sample occurs. All these factors are strongly influenced by the concentration of the inorganic oxides SiO2 and Al2O3 and the melting oxides (Fe2O3, Na2O, K2O, CaO, and MgO) present in the sample 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.), (4141 B. González-Corrochano, J. Alonso-Azcárate, M. Rodas, J.F. Barrenechea, F.J. Luque, Constr. Build. Mater . 25, 8 (2011) 3591.. Dondi et al. 4242 M. Dondi, P. Cappelletti, M. D’Amore, R. de Gennaro, S.F. Graziano, A. Langella, M. Raimondo, C. Zanelli, Constr. Build. Mater . 127 (2016) 394. point out that many studies have used Riley’s parameters 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121. during the swelling prediction of fabricated LWAs. This scheme seeks to formulate samples with a chemical composition that favors obtaining a mass of viscosity suitable for gas capture. This is usually possible in formulations containing the following chemical constituents: a) 48% to 70% SiO2; b) 8% to 25% Al2O3; and c) 4.5% to 31% ΣFlux (Fe2O3+Na2O+K2O+CaO+MgO) 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. Souza 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019). reinforces the relevance of this scheme by demonstrating that the only expanded clay produced in Brazil has a bulk chemical composition within the Riley swelling area 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121..

The chemical composition data of RCW, extracted from 27 different studies, are presented in Fig. 4. In all samples the main constituent was always SiO2, with concentration rates ranging from 41.5% to 72.8%. According to Lau et al. 4343 P.C. Lau, D.C.L. Teo, M.A. Mannan, Constr. Build. Mater . 176 (2018) 24., a high silica content favors the formation of a liquid phase with high viscosity, which enhances the development of gas bubbles inside the sample. The Al2O3 and ΣFlux contents ranged from 10.6% to 39.1% and from 6.3% to 40.2%, respectively. Ayati et al. 4444 B. Ayati, V. Ferrándiz-Mas, D. Newport, C. Cheeseman, Constr. Build. Mater . 162 (2018) 124. point out that the ΣFlux content exerts a strong influence on the melting temperature of the sample. According to Fig. 4, in 19 of the 27 articles analyzed (70.4%) 11 M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473.), (22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.), (77 J.P. Mendes, F. Elyseu, L.J.J. Nieves, A. Zaccaron, A.M. Bernardin, E. Angioletto, Sustain. Mater. Technol. 28 (2021) e00264.)-(1010 R. Carrillo-Beltran, F.A. Corpas-Iglesias, J.M. Terrones-Saeta, M. Bertoya-Sol, Constr. Build. Mater . 272 (2021) 121924.), (1212 T. Zhang, Z. Sun, H. Yang, Y. Ji, Z. Yan, Constr. Build. Mater . 302 (2021) 124052.)-(1515 J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898.), (1818 C.L. Hwang , M.D. Yehualaw, D.H. Vo , T.P. Huynh , A. Largo, Constr. Build. Mater . 223 (2019) 657.)-(2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.), (2525 P.O. Awoyera, J.O. Akinmusuru, A.R. Dawson, J.M. Ndambuki, N.H. Thom, Cem. Concr. Compos. 86 (2018) 224.), (2626 L. Reig , L. Soriano, M.v . Borrachero, J . Monzó, J. Payá , Cem. Concr. Compos. 65 (2016) 177.), (2828 R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163., the red ceramic waste fully met the chemical composition parameters proposed by Riley 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. The clay brick dust tested as a partial substitute for cement 88 J. Shao, J. Gao, Y. Zhao, X. Chen, Constr. Build. Mater . 213 (2019) 209. and the ceramic residue used as a filler in acoustic blocks 66 L. Fiala, P. Konrád, J. Fořt, M. Keppert, R. Černý, J. Clean. Prod. 261 (2020) 121185. presented a chemical composition very similar to that of the commercial aggregate reported by Souza 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).. Thus, a strong similarity of RCW with expansive clay is perceived. This denotes a high potential for the production of LWAs based on this residue. In addition, in the other 6 studies (22.2%), the chemical constituents of the tested materials complied with 2 of the 3 requirements of expansive clay 33 D. Martín, P. Aparicio, E. Galán, Appl. Clay Sci. 161 (2018) 119.), (55 E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228.), (1616 T. Meesak, S. Sujjavanich, Mater. Today Proc. 17 (2019) 1652.), (1717 D. Martín , P. Aparicio , E. Galán , Constr. Build. Mater . 181 (2018) 598.), (2424 D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966.), (2727 F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41.. Of these, the waste bricks used in carbonation tests 33 D. Martín, P. Aparicio, E. Galán, Appl. Clay Sci. 161 (2018) 119., the ceramic powder used as a cement replacement 55 E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228., and the waste brick powder tested as a supplementary cementitious material 2424 D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966. presented, respectively, contents of SiO2, Al2O3, and ΣFlux very close to the maximum limits stipulated 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121..

Figure 4:
Chemical composition of RCWs.

Mineralogy: the mineralogy of the sample also exerts a strong influence on the expansion process of LWAs. The decomposition of some minerals results in the formation of gases, which when released during viscous melting, can be trapped by the liquid phase 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. Riley 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121. states that even clays with suitable chemical constituents only result in swelling if they contain minerals capable of producing gas during pyroplastic deformation. Therefore, the evaluation of the mineralogy of the sample is seen as a basic condition for the production of expandable LWAs 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. Fig. 5 presents a summary of the mineralogical composition of the red ceramic residue investigated by 25 different studies. The quartz phase, found in all samples, is the main component of the ceramic residue. Quartz can enhance gas trapping because it interferes with the viscosity of the sample. However, this mineral apparently does not have the potential to release gases in the temperature range where the viscous melting of LWAs normally occurs 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).. Besides quartz, other mineralogical phases were identified. Hematite was found in 12 of the 25 tested materials (48%). According to Riley 3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121., the dissociation of hematite into magnetite can cause swelling because it releases oxygen. In 36% of the studies, the ceramic residue presented albite phases. The production of gases, arising from the decomposition of albite, has not yet been reported in studies linked to the manufacture of LWAs. However, the presence of this mineral can favor the gain of resistance of the sample when it is decomposed into cyanite or mullite 4545 M. Liu, C. Wang, Y. Bai, G. Xu, J. Alloys Compd. 748 (2018) 522.. The anorthite phase was identified in 28% of the articles. According to Ayati et al. 4444 B. Ayati, V. Ferrándiz-Mas, D. Newport, C. Cheeseman, Constr. Build. Mater . 162 (2018) 124., anorthite can assist in the formation of a sufficiently viscous aluminosilicate matrix. Muscovite and illite were found in 20% and 16% of the studies, respectively. The dissociation of the crystalline structure of these clay minerals results in gas production and usually coincides with the viscous melting of the samples 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).), (3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121..

Figure 5:
Mineralogical phases in RCWs.

In most studies, the ceramic residue used presented at least one mineral with potential for gas production 11 M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473.), (44 R.M. Tremiño, T. Real-Herraiz, V. Letelier, J.M. Ortega, Constr. Build. Mater. 306 (2021) 124839.)-(66 L. Fiala, P. Konrád, J. Fořt, M. Keppert, R. Černý, J. Clean. Prod. 261 (2020) 121185.), (88 J. Shao, J. Gao, Y. Zhao, X. Chen, Constr. Build. Mater . 213 (2019) 209.), (1010 R. Carrillo-Beltran, F.A. Corpas-Iglesias, J.M. Terrones-Saeta, M. Bertoya-Sol, Constr. Build. Mater . 272 (2021) 121924.), (1212 T. Zhang, Z. Sun, H. Yang, Y. Ji, Z. Yan, Constr. Build. Mater . 302 (2021) 124052.), (1313 C.L. Hwang, M. Damtie Yehualaw, D.H. Vo, T.P. Huynh, Constr. Build. Mater . 218 (2019) 519.), (1515 J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898.), (1818 C.L. Hwang , M.D. Yehualaw, D.H. Vo , T.P. Huynh , A. Largo, Constr. Build. Mater . 223 (2019) 657.), (1919 S. Li, J. Gao , Q. Li, X. Zhao, Constr. Build. Mater . 267 (2021) 120976.), (2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.), (2424 D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966.), (2525 P.O. Awoyera, J.O. Akinmusuru, A.R. Dawson, J.M. Ndambuki, N.H. Thom, Cem. Concr. Compos. 86 (2018) 224.), (2727 F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41.), (2828 R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163.. Juan-Valdes et al. 2222 A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455. reused ceramic brick dust as a pozzolanic material added to the cement. In this waste, 4 minerals with gas-forming capacity were identified: illite, calcite, dolomite, and hematite 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).), (3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. Santos et al. 2727 F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41. used chamotte clay as a glycerol adsorbent for biodiesel purification. The results of XRD analyses show that the tested material has 3 minerals with constituents suitable for gas formation during viscous melting: kaolinite, hematite, and muscovite 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).), (3939 C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.. The systematization of the mineralogical data of RCWs allowed us to assume that such waste has a high potential for the preparation of expandable lightweight aggregates. In many cases, the residue tested presented a set of minerals with constituents capable of controlling the viscosity of the liquid phase and, at the same time, assisting in gas formation.

Mass loss: mass loss during the sample sintering process (LOI) is an important factor in obtaining aggregates with low density. Besides the decrease in mass, the decomposition of sample constituents often results in the formation of gases. Souza 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019). lists a series of reactions capable of promoting mass loss and gas release simultaneously, highlighting, for example, the decarbonation of calcium carbonate, the decomposition of dolomite, the dissociation of clay minerals, and the reactions of ferric oxide. The mass loss data found for the RCW are shown in Fig. 6. In general, the LOI found was relatively low, ranging from 0.2% to 3.7% 55 E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228.), (1717 D. Martín , P. Aparicio , E. Galán , Constr. Build. Mater . 181 (2018) 598.. This occurred due to the small difference between the temperatures adopted during the manufacturing process of the ceramic components and the mass loss tests. Some studies report that the components that originated the tested ceramic residue were fired in the range of 800 to 900 °C 33 D. Martín, P. Aparicio, E. Galán, Appl. Clay Sci. 161 (2018) 119.), (1717 D. Martín , P. Aparicio , E. Galán , Constr. Build. Mater . 181 (2018) 598.. Carrillo-Beltran et al. 1010 R. Carrillo-Beltran, F.A. Corpas-Iglesias, J.M. Terrones-Saeta, M. Bertoya-Sol, Constr. Build. Mater . 272 (2021) 121924. expose that the making of ceramic bricks usually occurs by firing at temperatures above 850 °C and below 950 °C. In contrast, mass loss tests commonly used a temperature plateau of approximately 1000 °C 22 A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.), (1717 D. Martín , P. Aparicio , E. Galán , Constr. Build. Mater . 181 (2018) 598.), (1919 S. Li, J. Gao , Q. Li, X. Zhao, Constr. Build. Mater . 267 (2021) 120976.. Ameri et al. 1111 F. Ameri, P. Shoaei, S.A. Zareei, B. Behforouz, Constr. Build. Mater . 222 (2019) 49. state that the manufacture of a commercial lightweight aggregate (Leca) occurs in rotary kilns at approximately 1200 °C. Sustainable LWAs elaborated by Souza 3636 M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019). demonstrated significant swelling when sintered at temperatures up to 1250 °C. The decomposition of some minerals, the reactions of sulfide impurities, and the dissociation of illite are some of the reactions pointed out as responsible for the expansion of the sample, due to the release of gases. Thus, it is possible to assume that the sintering of RCW-based samples at temperatures above 1000 °C tends to promote an increase in mass loss rates and consequently a greater formation of gases inside the sample.

Figure 6:
Mass loss of RCWs.

Microstructure: microstructural characteristics of the raw materials, such as surface texture, shape, particle size, and porosity, can significantly interfere with the performance of the manufactured LWAs 4040 G. Cougny, Bull. Int. Assoc. Eng. Geol. 41, 1 (1990) 47.), (4242 M. Dondi, P. Cappelletti, M. D’Amore, R. de Gennaro, S.F. Graziano, A. Langella, M. Raimondo, C. Zanelli, Constr. Build. Mater . 127 (2016) 394.), (4646 I.J. Chiou, K.S. Wang, C.H. Chen, Y.T. Lin, Waste Manage. 26, 12 (2006) 1453.. In general, the scanning electron microscopy (SEM) images of RCWs reveal a porous material irregularly shaped with varied dimensions and rough and angular surfaces 99 V.L. Jerônimo, G.R. Meira, L.C.P. da Silva Filho, Constr. Build. Mater . 169 (2018) 900.), (1212 T. Zhang, Z. Sun, H. Yang, Y. Ji, Z. Yan, Constr. Build. Mater . 302 (2021) 124052.), (1313 C.L. Hwang, M. Damtie Yehualaw, D.H. Vo, T.P. Huynh, Constr. Build. Mater . 218 (2019) 519.), (1515 J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898.), (1818 C.L. Hwang , M.D. Yehualaw, D.H. Vo , T.P. Huynh , A. Largo, Constr. Build. Mater . 223 (2019) 657.), (2121 C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 (2020) 101655.), (2424 D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966.), (2626 L. Reig , L. Soriano, M.v . Borrachero, J . Monzó, J. Payá , Cem. Concr. Compos. 65 (2016) 177.), (2727 F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41.. Table II presents a summary of the microscopic morphology of RCWs identified in 14 different papers. Hwang et al. 1313 C.L. Hwang, M. Damtie Yehualaw, D.H. Vo, T.P. Huynh, Constr. Build. Mater . 218 (2019) 519. analyzed the microstructure of red clay brick powder through SEM images and reported that the material had an irregular shape and angular porous surface. Similarly, Wong et al. 2121 C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 (2020) 101655. reported that the particles of the brick powder analyzed had an irregular angular shape and rough surface. These characteristics tend to cause reduced workability of the mixtures since they hinder the lubrication of the paste 4747 C.J. Lynn, R.K. Dhir, G.S. Ghataora, R.P. West, Constr. Build. Mater . 98 (2015) 767.. However, it can be seen that the morphology of the waste is strongly influenced by the grinding method adopted 1414 F. Ameri , S.A. Zareei , B. Behforouz , J. Build. Eng. 32 (2020) 101620..

Table II
Microstructural characteristics of RCWs.

CONCLUSIONS

The present review highlights the characteristics of red ceramic waste (RCW) and its prospects of use in the manufacture of lightweight aggregates. In general, the data of granulometry, chemical composition, mineralogy, and loss of mass allow presupposing a high potential for use of the residue in the manufacture of lightweight aggregates (LWAs). Specifically it is possible to conclude that: i) the RCW is normally obtained in its raw state; therefore, its application in expansive LWAs is conditioned to a previous beneficiation process by grinding and sieving; ii) the chemical composition of the RCWs is normally similar to the expansive clay; the material presents adequate concentrations of inorganic oxides and fluxes; thus, the exclusive use of the residue (without the addition of other materials in the sample) can favor the obtaining of a mass with adequate viscosity for gas capture; iii) it is common to identify minerals with potential for gas production in the RCW mineralogy; thus, such residue can exert a strong influence on the swelling behavior, when applied to expandable lightweight aggregates; iv) the mass loss of RCW, at temperatures of approximately 1000 °C, is relatively low; this can make it difficult to obtain samples with low density; however, the mineralogy data allow to suppose that the sintering of the waste at temperatures higher than 1000 °C results in the decomposition of some minerals, exerting a strong influence on the expansion of the samples; v) RCW is a porous material of irregular shape with varied dimensions and rough and angular surface; this morphology can exert a negative influence on the workability of the samples in the fresh state, as it hinders the lubrication of the paste; and vi) the use of RCW in LWAs can result in an environmentally friendly construction material with properties suitable for engineering works and services; this tends to reduce environmental impacts and preserve natural resources.

REFERENCES

  • 1
    M. Sarkar, K. Dana, Ceram. Int. 47, 3 (2021) 3473.
  • 2
    A.M. Pitarch, L. Reig, A.E. Tomás, G. Forcada, L. Soriano, M.v. Borrachero, J. Payá, J.M. Monzó, J. Clean. Prod. 279 (2021) 123713.
  • 3
    D. Martín, P. Aparicio, E. Galán, Appl. Clay Sci. 161 (2018) 119.
  • 4
    R.M. Tremiño, T. Real-Herraiz, V. Letelier, J.M. Ortega, Constr. Build. Mater. 306 (2021) 124839.
  • 5
    E. Lasseuguette, S. Burns, D. Simmons, E. Francis, H.K. Chai, V. Koutsos, Y. Huang, J. Clean. Prod. 211 (2019) 1228.
  • 6
    L. Fiala, P. Konrád, J. Fořt, M. Keppert, R. Černý, J. Clean. Prod. 261 (2020) 121185.
  • 7
    J.P. Mendes, F. Elyseu, L.J.J. Nieves, A. Zaccaron, A.M. Bernardin, E. Angioletto, Sustain. Mater. Technol. 28 (2021) e00264.
  • 8
    J. Shao, J. Gao, Y. Zhao, X. Chen, Constr. Build. Mater . 213 (2019) 209.
  • 9
    V.L. Jerônimo, G.R. Meira, L.C.P. da Silva Filho, Constr. Build. Mater . 169 (2018) 900.
  • 10
    R. Carrillo-Beltran, F.A. Corpas-Iglesias, J.M. Terrones-Saeta, M. Bertoya-Sol, Constr. Build. Mater . 272 (2021) 121924.
  • 11
    F. Ameri, P. Shoaei, S.A. Zareei, B. Behforouz, Constr. Build. Mater . 222 (2019) 49.
  • 12
    T. Zhang, Z. Sun, H. Yang, Y. Ji, Z. Yan, Constr. Build. Mater . 302 (2021) 124052.
  • 13
    C.L. Hwang, M. Damtie Yehualaw, D.H. Vo, T.P. Huynh, Constr. Build. Mater . 218 (2019) 519.
  • 14
    F. Ameri , S.A. Zareei , B. Behforouz , J. Build. Eng. 32 (2020) 101620.
  • 15
    J. Dang, J. Zhao, W. Hu, Z. Du, D. Gao, Constr. Build. Mater . 166 (2018) 898.
  • 16
    T. Meesak, S. Sujjavanich, Mater. Today Proc. 17 (2019) 1652.
  • 17
    D. Martín , P. Aparicio , E. Galán , Constr. Build. Mater . 181 (2018) 598.
  • 18
    C.L. Hwang , M.D. Yehualaw, D.H. Vo , T.P. Huynh , A. Largo, Constr. Build. Mater . 223 (2019) 657.
  • 19
    S. Li, J. Gao , Q. Li, X. Zhao, Constr. Build. Mater . 267 (2021) 120976.
  • 20
    R.H. Geraldo, J.D. Souza, S.C. Campos, L.F.R. Fernandes, G. Camarini, Constr. Build. Mater . 191 (2018) 136.
  • 21
    C.L. Wong, K.H. Mo, U.J. Alengaram, S.P. Yap, J. Build. Eng. 32 (2020) 101655.
  • 22
    A. Juan-Valdés, D. Rodríguez-Robles, J. García-González, M.I.S. de Rojas Gómez, M.I. Guerra-Romero, N. de Belie, J.M. Morán-del Pozo, Constr. Build. Mater . 270 (2021) 121455.
  • 23
    Z. Ma, Q. Tang, H. Wu, J. Xu, C. Liang, Cem. Concr. Compos. 114 (2020) 103758.
  • 24
    D. Tang, X. Zhang, S. Hu, X. Liu, X. Ren, J. Hu, Y. Feng, J. Clean. Prod. 261 (2020) 120966.
  • 25
    P.O. Awoyera, J.O. Akinmusuru, A.R. Dawson, J.M. Ndambuki, N.H. Thom, Cem. Concr. Compos. 86 (2018) 224.
  • 26
    L. Reig , L. Soriano, M.v . Borrachero, J . Monzó, J. Payá , Cem. Concr. Compos. 65 (2016) 177.
  • 27
    F.D. Santos, L.R.v. da Conceição, A. Ceron, H.F. de Castro, Appl. Clay Sci. 149 (2017) 41.
  • 28
    R.A. Robayo, A. Mulford, J. Munera, R. Mejía de Gutiérrez, Constr. Build. Mater . 128 (2016) 163.
  • 29
    S. Ray, M. Haque, S.A. Soumic, A.F. Mita, M.M. Rahman, B.B. Tanmoy, J. Build. Eng. 43 (2021) 102567.
  • 30
    M.M. Souza, M.A.S. Anjos, M.V.V.A. Sá, Constr. Build. Mater . 270 (2021) 121845.
  • 31
    M.M. Souza , M.A.S. Anjos , M.V.V.A. Sá , N.S.L. Souza, Case Stud. Constr. Mater. 12 (2020) e00340.
  • 32
    N.S.L. Souza , M.A.S. Anjos , M.V.V.A. Sá , E.C. Farias, Matéria 25, 1 (2020) 12559.
  • 33
    G.P. Lyra, V. dos Santos, B.C. de Santis, R.R. Rivaben, C. Fischer, E.M.J.A. Pallone, J.A. Rossignolo, Constr. Build. Mater . 222 (2019) 222.
  • 34
    A.M.M. Soltan, W.A. Kahl, F.A. El-Raoof, B.A.H. El-Kaliouby, M.A.K. Serry, N.A. Abdel-Kader, J. Clean. Prod. 117 (2016) 139.
  • 35
    L. Świerczek, B.M. Cieślik, P. Konieczka, J. Clean. Prod. 200 (2018) 342.
  • 36
    M.M. Souza , “Desenvolvimento de agregados leves a partir de resíduo de scheelita, lodo de esgoto e cinza da casca do arroz”, MSc diss., UFRN, Natal (2019).
  • 37
    E.Y. Nakagawa, K.R.F. Scannavino, S.C.P.F. Fabbri, F.C. Ferrari, Revisão sistemática da literatura em engenharia de software: teoria e prática, Elsevier, Rio Janeiro (2017).
  • 38
    M. McCulloch, Natl. Med. J. India 17, 2 (2004).
  • 39
    C.M. Riley, J. Am. Ceram. Soc. 34, 4 (1951) 121.
  • 40
    G. Cougny, Bull. Int. Assoc. Eng. Geol. 41, 1 (1990) 47.
  • 41
    B. González-Corrochano, J. Alonso-Azcárate, M. Rodas, J.F. Barrenechea, F.J. Luque, Constr. Build. Mater . 25, 8 (2011) 3591.
  • 42
    M. Dondi, P. Cappelletti, M. D’Amore, R. de Gennaro, S.F. Graziano, A. Langella, M. Raimondo, C. Zanelli, Constr. Build. Mater . 127 (2016) 394.
  • 43
    P.C. Lau, D.C.L. Teo, M.A. Mannan, Constr. Build. Mater . 176 (2018) 24.
  • 44
    B. Ayati, V. Ferrándiz-Mas, D. Newport, C. Cheeseman, Constr. Build. Mater . 162 (2018) 124.
  • 45
    M. Liu, C. Wang, Y. Bai, G. Xu, J. Alloys Compd. 748 (2018) 522.
  • 46
    I.J. Chiou, K.S. Wang, C.H. Chen, Y.T. Lin, Waste Manage. 26, 12 (2006) 1453.
  • 47
    C.J. Lynn, R.K. Dhir, G.S. Ghataora, R.P. West, Constr. Build. Mater . 98 (2015) 767.

Publication Dates

  • Publication in this collection
    09 Dec 2022
  • Date of issue
    Oct-Dec 2022

History

  • Received
    29 Mar 2022
  • Reviewed
    14 June 2022
  • Accepted
    18 July 2022
Associação Brasileira de Cerâmica Av. Prof. Almeida Prado, 532 - IPT - Prédio 36 - 2º Andar - Sala 03 , Cidade Universitária - 05508-901 - São Paulo/SP -Brazil, Tel./Fax: +55 (11) 3768-7101 / +55 (11) 3768-4284 - São Paulo - SP - Brazil
E-mail: ceram.abc@gmail.com