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Abstract. In this paper, we present a method and associated theory for solving the multi-input

Sylvester-Observer equation arising in the construction of the Luenberger observer in control

theory. The proposed method is a particular generalization of the algorithm described by Datta

and Saad in 1991 to the multi-output. We give some theoretical results and present some numerical

experiments to show the accuracy of the proposed algorithm.
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1 Introduction

Consider the time-invariant linear control system
{

˙̂x(t) = AT x̂(t) + Bû(t), x̂(0) = x̂0,

ŷ(t) = CT x̂(t), t ≥ 0,
(1.1)

where A ∈ Rn×n is a large nonsymmetric matrix, B ∈ Rn×p, C ∈ Rn×q ,

x̂(t) ∈ Rn , and û(t) ∈ Rp. In many practical situations, the initial state x̂0 and

the states x̂(t) for t > 0 are not explicitly known.

To implement the state-feedback control law for basic control design and

analysis, such as state feedback stabilization, eigenvalue and eigenstructure as-

signment, the LQR, and the state-feedback H-infinity control, etc. (see [12] for
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details), one needs to explicitly know the state variables. Thus the unmeasured

state variables must be estimated. There are two closely related approaches for

state estimation: State-estimation via eigenvalue assignment and the Sylvester-

Observer equation approach (see Chapter 12 of [12]). This paper deals with nu-

merical solutions of large-scale Sylvester-Observer equation, suitable for large

and sparse problems.

The Sylvester-Observer equation is a variation of the classical Sylvester equa-

tion. It has the following form:

AX − X Ĥ = CG, (1.2)

where the state matrix A and the output matrix C are known. The matrices

X ∈ Rn×q Ĥ ∈ Rq×q and G ∈ Rq×q are to be found. Note that, the matrix Ĥ can

be chosen to be asymptotically stable (that is every eigenvalue of Ĥ has negative

real part) and in that case it can be shown that the vector e(t) = x(t) − X T x̂(t)

converges to zero as t increases, where x(t) is the solution of

ẋ(t) = Ĥ x(t) + GT ŷ(t) + X T Bû(t). (1.3)

A conventional way to solve (1.2) is to choose the matrices Ĥ and G in a suitable

manner. For example, Ĥ can be chosen as a real-Schur matrix and G can be

chosen to be equal to the identity matrix Iq . In this case, the Hessenberg-Schur

algorithm [15] is a natural choice for solving (1.2). Another widely used method

for solving this equation is due to Van Dooren [27, 28]. The method is based

on the reduction of the observable pair (A, C) to an observer-Hessenberg pair

(H, Ĉ). That is, an orthogonal matrix P is computed such that H = PT A P

is a block upper Hessenberg matrix and Ĉ = C P has the following form Ĉ =

(0, . . . , 0, C1).

Note that if the matrices A and Ĥ have disjoint spectra then the Sylvester

equation (1.2) has a unique solution X [12, 19]. Sylvester equations play an

important role in control and communication theory, model reduction, image

restoration and numerical methods for ordinary differential equations; see [4, 7,

12, 13, 20] and the references therein.

In the remainder of the paper, we choose G = Iq and suppose that the matrix

C has the following form: C = (0n×r , . . . , 0n×r , C̃) where the n × r matrix C̃ is
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of full rank, q = m r and with r � n. So, letting E T
m = (0n×r , . . . , 0n×r , Ir ) ∈

Rn×mr , the Sylvester-Observer equation (1.2) becomes

AX − X Ĥ = (0r , . . . , 0r , C̃) = C̃ E T
m . (1.4)

where A ∈ Rn×n , C̃ ∈ Rn×r are given and arbitrary, while Ĥ ∈ Rmr×mr and

X ∈ Rn×mr are to be determined such that

• Ĥ is stable, i.e., all its eigenvalues have negative real parts,

• the spectrum of the matrix Ĥ is disjoint from that of A,

• the pair (Ĥ T , GT ) is controllable, i.e., the matrix [GT , Ĥ T − λIq] is full

rank for every λ ∈ R.

We consider the case when A is large and sparse, so that the standard techniques

such as the Hessenberg-Schur method, for solving a Sylvester equation cannot

be applied. Based on the Arnoldi process, a solution method, suitable for large

and sparse computation, was proposed for the Sylvester-Observer equation (1.4)

by Datta and Saad [9]. The Datta-Saad method is, however, restricted to the

single-output case only ; that is when the right-hand side matrix C is of rank one,

i.e., r = 1. The matrix A is used only in matrix-vector product evaluations and

this makes the method well-suited for the solution of large and sparse Sylvester-

Observer equations.

In this paper, we propose a particular generalization of the Datta-Saad method

[9] to the multi-output with the right-hand side having the structure given by

(1.4) and where the matrix Ĥ is obtained as a Kronecker product. This spe-

cial generalization is based on the global Arnoldi method proposed in [21].

Other methods for solving small to medium Sylvester-Observer equations (with

special right-hand sides) were introduced in [1, 6, 10, 11]. The new proposed

method consists in choosing a starting n ×r block vector appropriately, and then

running m steps of the global Arnoldi process with this starting block vector.

The method, like the Datta-Saad method, requires the solution of a special type

of eigenvalue assignment problem which is solved with the simple recursive

method of Datta proposed in [7]. The new algorithm computes simultaneously
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an mr × mr block upper Hessenberg matrix Ĥ having a set of m eigenval-

ues with multiplicity r and an F-orthonormal matrix X solving the Sylvester-

Observer equation. When dealing with multiple eigenvalues then instead of

using the global Arnoldi process, it would be interesting to apply the block

Arnoldi algorithm for solving these Sylvester-Observer equations but this needs

new properties (to be done) of the algorithm. The numerical experiments show

that both the solution matrix X and the assigned eigenvalues are accurate up to

computational precisions. Furthermore, the matrix X has low condition number.

The accuracy in both cases were measured by the corresponding relative residual

norms.

The remainder of the paper is organized as follows. We review, in Section

2, some properties of the ⊗-product and the �-product introduced in [3]. In

Section 3, we show how to apply the global Arnoldi process for solving the multi-

output Sylvester-Observer equation. Section 4 is devoted to some numerical

experiments.

2 Background and notations

We use the following notations. For X and Y two matrices in Rn×r , we consider

the Frobenius inner product defined by 〈X, Y 〉F = tr(X T Y ), where tr(Z) denotes

the trace of a square matrix Z . The associated norm is the Frobenius norm

denoted by ‖.‖F . The notation X⊥F Y means that 〈X, Y 〉F = 0.

The Kronecker product of two matrices A and B is defined by A⊗B := [ai, j B]

and satisfy the following properties

(A ⊗ B)(C ⊗ D) = (AC ⊗ B D),

(A ⊗ B)T = AT ⊗ BT ,

(A ⊗ B)−1 = A−1 ⊗ B−1, if A and B are invertible.

In the following, we recall the �-product defined in [3] and list some properties

that will be useful later.

Definition 2.1 [3]. Let A = [A1, A2, . . . , Ap] and B = [B1, B2, . . . , Bl] be

matrices of dimension n × pr and n × lr , respectively, where the blocks Ai and

B j , (i = 1, . . . , p; j = 1, . . . , l) are n × r matrices. Then the p × l matrix

AT � B is defined by: AT � B =
[
〈Ai , B j 〉F

] j=1,...,l
i=1,...,p.
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We notice that

• If r = 1 then AT � B = AT B.

• The matrix A = [A1, A2, . . . , Ap] is F-orthonormal if and only if AT �

A = Ip, i.e.,

〈Ai , A j 〉F = δi, j =

{
0 if i 6= j

1 if i = j
for i, j = 1, . . . , m.

• If p = l = 1, then AT � B =< A, B >F , (note that if A = B then

AT � A = ‖A‖2
F ).

and that the following properties hold for the �-product.

Proposition 2.2 [3]. Let A, B, C ∈ Rn×pr , D ∈ Rn×n, L ∈ Rp×p and α ∈ R.

Then we have

1. (A + B)T � C = AT � C + BT � C.

2. AT � (B + C) = AT � B + AT � C.

3. (α A)T � C = α (AT � C) = AT � (α C).

4. (AT � B)T = BT � A.

5. (D A)T � B = AT � (DT B).

6. AT � [B (L ⊗ Ir )] = (AT � B) L.

3 The global Arnoldi process for the Sylvester-Observer equation

The global Arnoldi process [21], and other global processes such as the global

Lanczos [17] and the global Hessenberg process [16], were recently used in the

context of iterative methods for large sparse matrix equations. Combined with

a Galerkin orthogonality condition or with a minimizing norm condition, these

algorithms were applied for large sparse linear systems with multiple right-hand

sides and related problems [2, 17, 22, 23].

Before describing the global Arnoldi process, we first give some definitions

and remarks on matrix Krylov subspace methods [17, 21].
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Let A ∈ Rn×n , V ∈ Rn×r and m a fixed integer. The matrix Krylov subspace

Km(A, V ) = span{V, A V , . . . , Am−1 V } is the subspace spanned by the vec-

tors (matrices) V, A V , . . . , Am−1 V . Let Km be the n × mr block matrix whose

j-th block is A j−1 V , ( j = 0, . . . , m − 1), then

Z ∈ Km(A, V ) ⇔ Z =
m∑

i=1

αi Ai−1 V, αi ∈ R, i = 1, . . . m,

⇔ Z = Km (α ⊗ Ir ), α = (α1, . . . , αm)T ∈ Rm .

3.1 The global Arnoldi process

Given an n × n matrix A, an n × r starting block vector V and an integer

m ≤ n, the global Arnoldi process applied to the pair (A, V ) is described as

follows:

Algorithm 1. The modified global Arnoldi process.

• Inputs: A an n × n matrix, V an n × r matrix and m an integer.

• Step 0. V1 = V/‖V ‖F ;

• Step 1. For j = 1, . . . , m

Ṽ = A Vj ;

for i = 1, . . . , j

hi, j = 〈Vi , Ṽ 〉F ;

Ṽ = Ṽ − hi, j Vi ;

endfor

h j+1, j = ‖Ṽ ‖F ;

Vj+1 = Ṽ /h j+1, j ;

end For.

The above process computes simultaneously a set of F-orthonormal block

vectors V1, V2, . . . , Vm, Vm+1, i.e.,

V T
j �V j = I j , for j = 1, . . . , m + 1, (3.1)
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where V j is the n × jr matrix V j = [V1, . . . , Vj ] ( j = 1, . . . , m + 1) and an

(m + 1) × m upper Hessenberg matrix H̃m whose nonzero entries are the hi, j

defined in Algorithm 1. We also have the following relations

AVm = Vm+1 (H̃m ⊗ Ir ), (3.2)

= Vm (Hm ⊗ Ir ) + hm+1,m Vm+1 E T
m , (3.3)

where

Em = (em ⊗ Ir ) = [0r , . . . , 0r , Ir ]
T with em = (0, . . . , 0, 1)T ∈ Rm

and the matrix Hm is an upper Hessenberg matrix obtained from H̃m by remov-

ing its last row.

Notice that the global Arnoldi process breaks down at step j , i.e., Vj+1 = 0,

if and only if the degree of the minimal polynomial of V is exactly j . More-

over, it is easy to establish the following result.

Proposition 3.1. Apart from a multiplicative scalar, the polynomial pm such

that Vm+1 = pm(A)V1 is the characteristic polynomial of the Hessenberg matrix

Hm. Moreover, this polynomial minimizes the norm ‖q(A) V1‖F over all monic

polynomials of degree m.

Proof. The proof is similar to the one given in [26] for the case r = 1 with

the classical Arnoldi process. �

3.2 Application of the global Arnoldi process to Solution of the Sylvester-

Observer equation

We start by rewriting the equation (3.3) as

AVm −Vm (Hm ⊗ Ir ) = (0r , . . . , 0r , hm+1,m Vm+1), (3.4)

and let us observe the resemblance between this equation and the equation (1.4).

Hence, in order to solve the Sylvester-Observer equation (1.4), we first need

to find a block vector V1 such that the corresponding last block vector Vm+1

is equal to C̃ , apart from a multiplicative scalar, and then transform the upper
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Hessenberg matrix Hm to Ĥm such that the eigenvalues of Ĥm : Sp(Ĥm) =

{μ1, . . . , μm}, where μ1, . . . , μm are some given scalars. In particular, these

scalars can be chosen as numbers with negative real parts, if desired. We can

take in (1.4), Ĥ = Ĥm ⊗ Ir , and observe that Sp(Ĥ) = {μ j }m
j=1 where each

eigenvalue of Ĥ is of multiplicity r .

To find the block vector V1, we will use the result of Proposition 3.1. In fact,

since the matrix Hm given by the global Arnoldi process must be transformed

by an eigenvalue assignment algorithm [8] to Ĥm to have the pre-assigned spec-

trum {μ1, . . . , μm}, we obtain V1 = Y
‖Y‖F

where Y is the solution of the block

linear system

qm(A) Y = C̃, (3.5)

and

qm(t) =
m∏

j=1

(t − μ j ), (3.6)

is the characteristic polynomial of Ĥm . Note that, the partial approach suggested

in [9] can be used to solve (3.5). It consists in decomposing the above block

system into m linearly independent systems

(A − μi In) Yi = C̃, i = 1, . . . , m. (3.7)

The solution Y is then obtained as the following linear combination; (see [9])

Y =
m∑

i=1

λi Yi , (3.8)

where

λi =
1

q ′
m(μi )

and q
′

m(μi ) =
m∏

j=1, j 6=k

(μi − μ j ).

For more details about obtaining (3.7) and (3.8), we refer to [9].

In order to solve the m multiple linear systems (3.7), we can apply l steps

of the global GMRES algorithm [21]. In this case, we construct an F-ortho-

normal matrix Vl = [V1, . . . , Vl] whose blocks form an F-orthonormal basis

of the matrix Krylov subspace Vl = span{C̃, A C̃ . . . , Al−1 C̃} and then we

solve m independent small (l + 1) × l least squares problems with the matrices
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(H̃l − μi Il). The bulk of the work is in generating Vl , and this is done only

once [9].

When the solution Y of the block linear system (3.5) is obtained, we apply m

steps of the global Arnoldi process to the pair (A, Y ) to get an F-orthonormal

matrix Vm and an upper Hessenberg matrix Hm . We then have to modify the

last column of Hm in such a way that the resulting Hessenberg matrix Ĥm has

a desired set of eigenvalues {μ1, . . . , μm}. To achieve this task, we will use a

variant of the pole-assignment method proposed in [8].

Let Hm = [hi, j ] be an m × m unreduced upper Hessenberg matrix, and define

the following quantities:

s = qm(Hm) e1 =
m∏

j=1

(Hm − μ j I )e1 (3.9)

α =
m−1∏

j=1

h−1
j+1, j , (3.10)

where qm is defined by (3.6). If the parameters μ1, . . . , μm form a set of distinct

complex numbers and are such that Sp(Hm) ∩ {μ j } j=1,...,m = ∅, we can show,

using Theorem 5.1 in [9], that

Sp(Ĥm) = {μ j } j=1,...,m, where Ĥm = Hm − αseT
m . (3.11)

Moreover, if the set {μ j } j=1,...,m is invariant under complex conjugation, then

the matrix Ĥm is real [5].

Next, we give some results that will be used later.

Lemma 3.2. Suppose that Vm, Hm are obtained after applying m steps of the

global Arnoldi process to the pair (A, V ) and let p be a polynomial of degree

less than m. Then

V T
m � (p(A) V1) = p(Hm) e1. (3.12)

Proof. By induction, it is clear that A j V1 = Vm (H j
m e1 ⊗ Ir ), for 0 ≤ j < m,

where e1 = (1, 0, . . . , 0)T ∈ Rm . Hence, for any polynomial p of degree less

than m, we have

p(A) V1 = Vm (p(Hm) e1 ⊗ Ir ), (3.13)

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 23:53 — page 536 — #10

536 SYLVESTER-OBSERVER EQUATION

and we get (3.12) by pre-multiplying, with the �-product, the previous equality

on the left by V T
m and by using the relation 6 of Proposition 2.2. �

Lemma 3.3 [5]. Let Hm+1 = [Hi, j ]i, j=1,...,(m+1) ∈ R(m+1)×(m+1) be an upper

Hessenberg matrix and p a monic polynomial of degree m. Then

eT
m+1 p(Hm+1) e1 =

m∏

j=1

h j+1, j . (3.14)

Now, let {μ j } j=1,...,m be a set of distinct complex numbers, such that Sp(A) ∩

{μ j } j=1,...,m = ∅. Let Y be the unique solution of the block-linear system of

equations (3.5). The following results show how to combine the global Arnoldi

process with the assignment procedure in order to solve the Sylvester-Observer

equation (1.4).

Proposition 3.4. Let Vm+1 = [Vm, Vm+1] and Hm be the F-orthonormal ma-

trix and the upper Hessenberg matrix obtained after applying m steps of the

global Arnoldi process to the pair (A, Y ), respectively. Define

βm =
hm+1,m

tr(V T
m+1 C̃)

and f = βm V
T
m � C̃ .

Then

AVm −Vm
[(

Hm − f eT
m

)
⊗ Ir

]
= βm C̃ E T

m . (3.15)

Moreover

Sp
(
Hm − f eT

m

)
= {μ j } j=1,...,m . (3.16)

Proof. As the starting block vector Y ensures that Vm+1 is equal to C̃ up to a

scaling factor, then C̃ ∈ Km+1(A, V1). Now, since the block vectors V1, . . . ,

Vm+1, form a basis of Km+1(A, V1), it follows that there exist g ∈ Rm and

λ ∈ R such that

C̃ = Vm(g ⊗ Ir ) + λ Vm+1. (3.17)

Pre-multiplying (3.17) on the left by V T
m , V T

m+1 respectively, and using the fact

that Vm+1 =
[
Vm, Vm+1

]
is an F-orthonormal matrix, we get

V T
m � C̃ = V T

m �Vm(g ⊗ Ir ) + λV T
m � Vm+1 = g, (3.18)
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and

V T
m+1 � C̃ = V T

m+1 �Vm(g ⊗ Ir ) + λ V T
m+1 � Vm+1 = λ. (3.19)

Using (3.17), the fact that f = βm g and V T
m+1 � C̃ = tr(V T

m+1 C̃), we obtain

βm C̃ = Vm ( f ⊗ Ir ) + βm tr(V T
m+1 C̃) Vm+1

= Vm ( f ⊗ Ir ) + hm+1,m Vm+1,

which gives

βm C̃ (eT
m ⊗ Ir ) = Vm ( f eT

m ⊗ Ir ) + hm+1,m Vm+1 (eT
m ⊗ Ir )︸ ︷︷ ︸
=ET

m

.

Finally, combining this last equality with (3.3), we get (3.15).

Now, since V1 = Y
‖Y‖F

, then using (3.5), property 3 of Proposition 2.2 and

Lemma 3.2 we get

f = βm V
T
m � (qm(A) Y )

= βm ‖Y‖F V
T
m � (qm(A) V1)

= βm ‖Y‖F qm(Hm) e1,

Thus f = βm ‖Y‖F s, where s is defined by (3.9). Moreover, we have

βm ‖Y‖F =
hm+1,m

tr(V T
m+1 C̃)

‖Y‖F

=
hm+1,m

tr(V T
m+1 qm(A) Y )

‖Y‖F

=
hm+1,m

tr(V T
m+1 qm(A) V1)

,

and by using (3.13) and Lemma 3.3, we get

tr(V T
m+1 qm(A) V1) = V T

m+1 � (qm(A) V1)

= V T
m+1 �

[
Vm+1 (qm(Hm+1) e1 ⊗ Ir )

]

= (V T
m+1 �Vm+1) (qm(Hm+1) e1)

= eT
m+1 qm(Hm+1) e1

=
m∏

j=1

h j+1, j

= α−1 hm+1,m,
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where the parameter α is defined by (3.10). Hence α = βm ‖Y‖F , and we

obtain (3.16) by using (3.11). �

Next, we give a new expression for the scaling factor βm given in Proposi-

tion 3.4. Let D be the last block column of AVm − Vm (Ĥm ⊗ Ir ), we have

D = βm C̃ and so

βm =
tr(C̃T D)

‖C̃‖2
F

. (3.20)

We note that the new expression (3.20) gives better numerical results than the

one given in Proposition 3.4.

Finally, the solution X of the Sylvester-Observer equation (1.4) is defined by

X =
Vm

βm
. (3.21)

In the single input case, i.e. r = 1, the solution obtained by the Datta-Saad

method is orthonormal, while in the multiple-output case the obtained solution

is F-orthonormal.

Using the previous results, we summarize the global Arnoldi process for

multiple-output Sylvester-Observer equation as follows

Algorithm 2. The global Arnoldi algorithm for multiple-output Sylvester-

Observer equation.

• Inputs: A an n × n matrix, C̃ an n × r matrix and m parameters

μ1, . . . , μm equation.

• Step 1. Solve the linear system q(A) Y = C̃ , where q is given by (3.6);

i.e.,

solve the m linear independent systems

(A − μi In) Yi = C̃, i = 1, . . . , m.

Get the solution Y as the linear combination Y =
m∑

i=1

λi Yi .

where λi =
1

q ′
m(μi )

and q
′

m(μi ) =
m∏

j=1, j 6=k

(μi − μ j ).

Comp. Appl. Math., Vol. 29, N. 3, 2010



“main” — 2010/10/28 — 23:53 — page 539 — #13

B.N. DATTA, M. HEYOUNI and K. JBILOU 539

• Step 2. Apply m steps of the global Arnoldi process to the pair (A, Y ) to

generate

Vm+1 = [V1, . . . , Vm+1] and Hm ;

• Step 3. Change the last column of Hm to get Ĥm such that

Sp(Ĥm) = {μ j }m
j=1, i.e.,

compute f = α s where α and s are given by (3.10) and (3.9);

set Ĥm = Hm − f eT
m ;

• Step 4. Compute D the last block-column of AVm −Vm (Ĥm ⊗ Ir );

set βm =
tr(C̃T D)

‖C̃‖2
F

.

• Step 5. Set X =
Vm

βm
and Ĥ = Ĥm .

4 Numerical experiments

The numerical tests were run using Matlab 7.1, on an Intel Pentium workstation,

with machine precision equal to 2.22 × 10−16. In all our experiments, the n × r

matrix C̃ is generated randomly using the Matlab function rand. The m linear

systems, in Step 1 of Algorithm 2 are solved using the global GMRES and a

maximum of 50 iterations was allowed in the global Arnoldi process. The initial

guess was (Yi )0 = 0n×r . The relative tolerance used when solving (3.7) was

ε = 10−10.

Example 1. The matrix A = gearmat used in this first example is of size

n = 10000. It is the tridiagonal matrix given by

A =
















1 1 0 . . . . . . 0

1 0 1
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . 1

0 . . . . . . 0 1 0
















.
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For a detailed description of the Gear matrix, we refer the readers to [14] and

to [18]. We choose μk = −4k, for k = 1, . . . , m. The obtained results for

different values of r and m are given in Table 4.1.

(r, m) ‖(A Xm − Xm Ĥ) − C‖F/‖C‖F ‖λ(Hm − f eT
m) − μ‖/‖μ‖ κ(X)

(2,10) 5.12 10−10 1.67 10−10 10.18

(5,10) 5.14 10−10 3.91 10−10 16.2

(10,20) 8.84 10−10 3.71 10−6 26.9

Table 4.1 – Results for Example 1.

The approximation Xm = Vm
βm

was computed with the parameter βm as given

by (3.20).

Example 2. In this second experiment, we consider the following matrix of

size n = 2p with p = 4000.

A =

(
0p Ip

L D

)

,

where L and D are diagonal matrices of size p× p. Letting L = diag(l1, . . . , l p)

and D = diag(d1, . . . , dp), the eigenvalues of A are given by the solutions of

the quadratic equations

x2 − dk x − lk, k = 1, . . . , p.

Hence, if dk = 2 αk and lk = −(α2
k + β2

k ) then Sp(A) = {λk, λ̄k}k=1,...,p,

where λk = αk + ı βk . In this example, we took r = 4 and the parameters

αk, βk were random values uniformly distributed in [–1, 0] and [0, 1] respec-

tively. In order to show the influence of the parameters {μ1, . . . , μm}, we give

the results for two choices: We consider the set {μ1, . . . , μm}, invariant under

complex conjugation, and such that the real and imaginary parts of μ1, . . . , μm

are uniformly distributed in [–2, –1] and [0, 1] respectively in the first choice

(Table 4.2). For the second choice (Table 4.3), the real and imaginary parts of

μ1, . . . , μm are uniformly distributed in [–4, –3] and [0, 1], respectively. To

show that the formula (3.20) gives better numerical results than the one de-

fined in Proposition 3.4, we set Xm = Vm
βm

, where βm is given by (3.20) and
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X̃m = Vm
βm

, where βm is given in Proposition 3.4. The obtained results with

different values of m are listed in Table 4.2 and Table 4.3.

m ‖(A Xm − Xm Ĥ) − C‖F/‖C‖F ‖λ(Hm − f eT
m) − μ‖/‖μ‖

4 6.78 10−9 5.42 10−16

8 3.85 10−8 1.94 10−13

12 5.45 10−6 3.50 10−12

Table 4.2 – Results obtained for the first choice in Example 2.

In Table 4.3, we reported the Frobenius norms of the residuals corresponding

to the approximations Xm and X̃m for different values of the parameter m, the

total number of iterations (in parentheses) and the required cpu-time.

m ‖(AXm − Xm Ĥ) − C‖F/‖C‖F ‖(AX̃m − X̃m Ĥ) − C‖F/‖C‖F cpu-time

4 1.02 10−8 (18) 2.16 10−7 0.78s

8 9.18 10−6 (19) 2.82 10−3 1.14s

12 8.82 10−4 (21) 6.45 101 1.60s

Table 4.3 – Results obtained for the second choice in Example 2.

As can be seen from Table 4.3, the results obtained with Xm are more accurate

than those given by the approximation X̃m .

Example 3. The last example describes a model of heat flow with convec-

tion in the given domain. The matrix A, is obtained from the centered finite

difference discretization of the operator

L(u) = 1u − y
∂u

∂x
− 2 x

∂u

∂y
− x y2 u,

on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary condi-

tions. The dimension of the matrix A is n = n2
0 where n0 = 70 is the number of

inner grid points in each direction. As the eigenvalues of A are large, we divided

the matrix A by ‖A‖1. For this experiment, we used μi = −i; i = 1, . . . , m

and different values of m and r . In Table 4.4, we listed the relative residual

norms with the total number of iterations (in parentheses) and also the obtained

cpu-time (in seconds).
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(r, m) ‖(A Xm − Xm Ĥ) − C‖F/‖C‖F λ(Hm − f eT
m) − μ‖/‖μ‖ cpu-time

(2, 8) 8.39 10−15 (271) 1.01 10−11 17.8 s

(4, 10) 2.90 10−14 (273) 5.96 10−10 28.3 s

(7, 13) 2.52 10−14 (272) 5.27 10−8 43.5 s,

Table 4.4 – Results for Example 3.

5 Conclusion

A global Arnoldi method, suitable for large and sparse computing, is proposed

for the solution of the multi-output Sylvester-Observer equation arising in state-

estimation in a linear time-invariant control system. The method can be con-

sidered to be a generalization of the Arnoldi-method proposed earlier by Datta

and Saad in the single-output case. The proposed method is developed by ex-

ploiting an interesting relationship between the initially chosen block-row vector

and the block-row vector obtained after m steps of the global Arnoldi method.

This relationship holds for the standard Arnoldi method but does not seem to

hold, in general, for the standard block Arnoldi method. The method has the

additional feature that the solution produced is F-orthonormal and in the single-

output case the obtained solution is the same as the one obtained by the standard

Arnoldi method. A numerical stability analysis of the method, as is done in the

single-output case by Calvetti, Reichel and the co-authors earlier, is in order.
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