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Abstract. A computational method based on Bézier control points is presented to solve optimal

control problems governed by time varying linear dynamical systems subject to terminal state

equality constraints and state inequality constraints. The method approximates each of the system

state variables and each of the control variables by a Bézier curve of unknown control points.

The new approximated problems converted to a quadratic programming problem which can be

solved more easily than the original problem. Some examples are given to verify the efficiency

and reliability of the proposed method.
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1 Introduction

In the numerical solution of differential equations, polynomial or piecewise

polynomial functions are often used to represent the approximate solution [1].

Legendre and Chebyshev polynomials are used for solving optimal control prob-

lems (see [2], [3], [4] and [5]). Razzaghi and Yousefi [6] defined functions which

they called Legendre wavelets for solving constrained optimal control problem.

In particular, B-splines and Bezier curves have become popular tools for solving

dynamical systems [7]. For both Bezier and B-spline representations, the curve
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or surface shape is outlined by a “control polygon” that is formed by connecting

the control points. Since the control point structure captures important geometric

features of the Bezier or B-spline shape, it is tempting to perform computations

just based on the control points. This paper intends to investigate the use of the

control points of Bezier representations for solving optimal control problems

with inequality constrained. Since the use of B-splines is to cause the continuity

of control curves, we propose to represent the approximate solution in Bezier

curves for time varying optimal control problem with inequality constraints. The

choice of the Bezier form rather than the B-spline form is due to the fact that the

Bezier form is easier to symbolically carry out the operations of multiplication,

composition and degree elevation than the B-spline form. We choose the sum of

squares of the Bezier control points of the residual to be the measure quantity.

Minimizing this quantity gives the approximate solution. Obviously, if the quan-

tity is zero, then the residual function is also zero, which implies the solution is

the exact solution. We call this approach the control-point-based method.

Consider the following time varying optimal control problem with pathwise

state inequality constraints,

min Cost =
1

2
x(t f )

T H(t f )x(t f ) +
∫ t f

t0

(
xT Px + uT Qu + K x + Ru

)
dt

s.t.

ẋ(t) = A(t)x(t) + B(t)u(t) + F(t), x(t0) = x0,

li (x(t f )) = 0, i ∈ E = {1, 2, . . . , N1},

gh(x(t f )) ≤ 0, h ∈ I = {1, 2, . . . , N2},

q(t, x(t)) ≤ 0, t ∈ [t0, t f ], (1)

where

H(t) = [hi j (t)]p×p, P(t) = [pi j (t)]p×p, Q(t) = [qi j (t)]m×m,

A(t) = [ai j (t)]p×p and B(t) = [bi j (t)]p×m

are matrices functions and K (t) = (k1(t) . . . kp(t)), R(t) = (r1(t) . . . rm(t)),

F(t) = ( f1(t) . . . f p(t))T are vectors functions, where the entries of men-

tioned matrices and polynomials in [t0, t f ]. One may note when the entries of
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mentioned matrices are not polynomials in [t0, t f ], Taylor series is used for ap-

proximation. x(t) = (x1(t) x2(t) . . . x p(t))T ∈ R p is p × 1 trajectory state

vector, u(t) ∈ U = {(u1(t) u2(t) . . . um(t))T : bi
−(t) ≤ ui ≤ bi

+(t), 1 ≤ i ≤

m} ⊆ Rm is m × 1 control vector. The fixed finite terminal time t f is given,

and x0 is the vector of initial conditions. In addition, li : R p → R for i ∈ E ,

gh : R p → R for h ∈ I , q : [t0, t f ] × R p → R, and bi
−(t), bi

+(t), 1 ≤ i ≤ m

are given bounded functions.

The constrained optimal control of a linear system with a quadratic perfor-

mance index has been of considerable concern and is well covered in many pa-

pers (see [6] and [8]). One of the methods to solve constrained optimal control

problem (1), based on parameterizing the state/control variables, which convert

the problem to a finite dimensional optimization problem, i.e. a mathematical

programming problem (see [9], [10], [11]-[16]).

Analytical techniques developed in [5] are of benefit also in studying the

convergence properties of related algorithms for solving optimal control prob-

lems, involving Chebyshev type functional constraints where, owing to the use

of a variable step-size in integration or high order integration procedures, it

is either not possible or inconvenient to base the analysis on an a priori dis-

cretization of the dynamic. The method used slack variables to convert the

inequality constraints into equality constraints. This approach has an obvi-

ous disadvantage when applied to constrained optimal control of time vary-

ing linear problems because it converts the linear constraints into a nonlinear

one (see [17]).

In this paper, we show a novel strategy by using the Bézier curves to find

the approximate solution for (1). In this method, we divided the time interval,

into k subintervals and approximate the trajectory and control functions in each

subinterval by Bézier curves. We have chosen the Bézier curves as piecewise

polynomials of degree n, and determine Bézier curves on any subinterval by

n + 1 control points. By involving a least square optimization problem, one can

find the control points, where the Bézier curves that approximate the action of

control and trajectory, can be found as well (see [7] and [18]).

To show the effectiveness of this method the computational results of three

examples are presented and compared with the results obtained in [5] and [17].
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2 Least square method

Let k be a chosen positive integer and {t0 < t1 < ∙ ∙ ∙ < tk = t f } be an equidis-

tance partition of [t0, t f ] with length τ and Sj = [t j−1, t j ] for j = 1, 2, . . . , k.

We define the following suboptimal control problems

min Cost j = C jk +
∫ t j

t j−1

(
xT

j Px j + uT
j Qu j + K x j + Ru j

)
dt

s.t.

ẋ j (t) = A(t)x j (t) + B(t)u j (t) + F(t), x1(t0) = x0, t ∈ Sj ,

li (xk(t f )) = 0, i ∈ E,

gh(xk(t f )) ≤ 0, h ∈ I,

q(t, x j (t)) ≤ 0, t ∈ Sj , j = 1, 2, . . . , k, (2)

where C jk = 1
2δ jkxT

k (t f )H(t f )xk(t f ), and δ jk is the Kronecker delta which

has the value of unity when j = k and otherwise is zero.

x j (t) =
(
x j

1 (t) x j
2 (t) . . . x j

p(t)
)T

and u j (t) =
(
u j

1(t) u j
2(t) . . . u j

m(t)
)T

are respectively vectors of x(t) and u(t) when are considered in Sj = [t j−1, t j ].

Our strategy is using Bezier curves to approximate the solutions x j (t) and

u j (t) by v j (t) and w j (t) respectively, where v j (t) and w j (t) are given below.

Individual Bezier curves that are defined over the subintervals are joined together

to form the Bezier spline curves. For j = 1, 2, . . . , k, define the Bezier poly-

nomials of degree n that approximate the actions of x j (t) and u j (t) over the

interval Sj = [t j−1, t j ] as follows:

v j (t) =
n∑

r=0

a j
r Br,n

(
t − t j−1

τ

)
,

w j (t) =
n∑

r=0

b j
r Br,n

(
t − t j−1

τ

)
,

(3)

where

Br,n

(
t − t j−1

τ

)
=

(
n

r

)
1

τ n
(t j − t)n−r (t − t j−1)

r ,
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is the Bernstein polynomial of degree n over the interval [t j−1, t j ], a j
r and b j

r

are respectively p and m ordered vectors from the control points. By substi-

tuting (3) in (2), one may define residual R1, j (t) and R2, j (t) for t ∈ [t j−1, t j ]

as:

R1, j (t) = v̇ j (t) − A(t)v j (t) − B(t)w j (t) − F(t),

R2, j (t) = vT
j (t)P(t)v j (t) + wT

j (t)Q(t)w j (t) + K (t)v j (t) + R(t)w j (t).
(4)

Beside the boundary conditions on v(t), in nodes, there are also continuity con-

straints imposed on each successive pair of Bezier curves. Since the differential

equation is of the first order, the continuity of x (or v) and its first derivative

gives

v(s)
j (t j ) = v(s)

j+1(t j ), s = 0, 1, j = 1, 2, . . . , k − 1.

where v(s)
j (t j ) is the s-th derivative of v j (t) with respect to t at t = t j .

Thus the vector of control points a j
r (for r = 0, 1, n − 1 and n) must satisfy

a j
n

(
t j − t j−1

)n
= a j+1

0

(
t j+1 − t j

)n
,

(
a j

n − a j
n−1

)(
t j − t j−1

)n−1
=

(
a j+1

1 − a j+1
0

)(
t j+1 − t j

)n−1
.

(5)

One may recall that a j
r is an p ordered vector. This approach is called the

subdivision scheme (or τ -refinement in the finite element literature), in the

Section 3, we prove the convergence in the approximation with Bezier curves

when n tends to infinity.

Note 1: If we consider the C1 continuity of w, the following constraints will

be added to constraints (5),

b j
n

(
t j − t j−1

)n
= b j+1

0

(
t j+1 − t j

)n
,

(
b j

n − b j
n−1

)(
t j − t j−1

)n−1
=

(
b j+1

1 − b j+1
0

)(
t j+1 − t j

)n−1
,

(6)

where the so-called b j
r is an m ordered vector.

Now, we define residual function in Sj as follows

R j = (C jk)
2 +

∫ t j

t j−1

(M‖R1, j (t)‖
2 + (R2, j (t))

2)dt,

Comp. Appl. Math., Vol. 31, N. 3, 2012



“main” — 2012/11/20 — 13:47 — page 438 — #6

438 BÉZIER CONTROL POINTS METHOD TO SOLVE CONSTRAINED...

where ‖.‖ is the Euclidean norm (Recall that R1, j (t) is a p vector where t ∈ Sj )

and M is a sufficiently large penalty parameter. Our aim is to solve the following

problem over S =
⋃k

j=1 Sj ,

min
k∑

j=1

R j

s.t.

li (vk(tk)) = 0, i ∈ E,

gh(vk(tk)) ≤ 0, h ∈ I,

q(t, v j (t)) ≤ 0, t ∈ Sj , j = 1, 2, . . . , k,

v(s)
j (t j ) = v(s)

j+1(t j ), s = 0, 1, j = 1, 2, . . . , k − 1. (7)

The mathematical programming problem (7) can be solved by many subroutines,

we used Maple 12 to solve this optimization problem.

Note 2: If in time varying optimal control problem (1), x(t f ) be unknown, then

we set Ckk = 0.

Note 3: To find good polynomial approximation, one needs to increase the

degree of polynomial, in this article, we used sectional approximation, to find

accurate results by low degree polynomials.

3 Convergence analysis

In this section, we analyze the convergence of the control-point-based method

when applied to the following time varying optimal control problem:

min I =
1

2
x(1)H(1)x(1) +

∫ 1

0
(x(t)P(t)x(t) + u(t)Q(t)u(t)

+ K (t)x(t) + R(t)u(t)) dt

s.t.

L(x(t), u(t), ẋ(t)) = ẋ(t) − A(t)x(t) − B(t)u(t) = F(t), t ∈ [0, 1]

x(0) = x0 = a, x(1) = x f = b, u(0) = u0 = a1. (8)
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where the state x(t) ∈ R, u(t) ∈ R, a, b ∈ R, H(t), P(t), Q(t), K (t), R(t),

A(t), B(t) and F(t) are polynomials in [0, 1].

Without loss of generality, we consider the interval [0, 1] instead of [t0, t f ],

since one can change the variable t with the new variable z by t = (t f − t0)z + t0
where z ∈ [0, 1].

Lemma 3.1. For a polynomial in Bezier form

x(t) =
n1∑

i=0

ai,n1 Bi,n1(t),

we have
∑n1

i=0 a2
i,n1

n1 + 1
≥

∑n1+1
i=0 a2

i,n1+1

n1 + 2
≥ . . . ≥

∑n1+m1
i=0 a2

i,n1+m1

n1 + m1 + 1
,

where ai,n1+m1 is the Bezier coefficients of x(t) after it is degree-elevated to

degree n1 + m1.

Proof. See [1]. �

The convergence of the approximate solution could be done in two ways.

1. Degree raising case of the Bezier polynomial approximation.

2. Subdivision case of the time interval.

In the following we prove the convergence in each case.

3.1 Degree raising case

Theorem 3.2. If time varying optimal control problem (8) has a unique, C1

continuous trajectory solution x̄ , C0 continuous control solution ū, then the

approximate solution obtained by the control-point-based method converges to

the exact solution as the degree of the approximate solution tends to infinity.

Proof. Given an arbitrary small positive number ε > 0, by the Weierstrass

Theorem (see [19]) one can easily find polynomials Q1,N1(t) of degree N1 and

Q2,N2(t) of degree N2 such that

‖
di Q1,N1(t)

dt i
−

di x̄(t)

dti
‖∞ ≤

ε

16
, i = 0, 1, and ‖Q2,N2(t) − ū(t)‖∞ ≤

ε

16
,
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where ‖.‖∞ stands for the L∞-norm over [0, 1]. Especially, we have

‖a − Q1,N1(0)‖∞ ≤
ε

16
,

‖b − Q1,N1(1)‖∞ ≤
ε

16
,

‖a1 − Q2,N2(0)‖∞ ≤
ε

16
. (9)

In general, Q1,N1(t) and Q2,N2(t) do not satisfy the boundary conditions. Af-

ter a small perturbation with linear and constant polynomials αt + β and γ ,

respectively for Q1,N1(t) and Q2,N2(t), we can obtain polynomials P1,N1(t) =

Q1,N1(t) + (αt + β) and P2,N2(t) = Q2,N2(t) + γ such that P1,N1(t) satisfy the

boundary conditions P1,N1(0) = a, P1,N1(1) = b, and P2,N2(0) = a1. Thus

Q1,N1(0) + β = a, and Q1,N1(1) + α + β = b. By using (9), one have

‖a − Q1,N1(0)‖∞ = ‖β‖∞ ≤
ε

16
,

‖b − Q1,N1(1)‖∞ = ‖α + β‖∞ ≤
ε

16
.

Since

‖α‖∞ − ‖β‖∞ ≤ ‖α + β‖∞ ≤
ε

16
,

so

‖α‖∞ ≤
ε

16
+ ‖β‖∞ ≤

ε

16
+

ε

16
=

ε

8
.

By the time, a1 = P2,N2(0) = Q2,N2(0) + γ , so

‖a1 − Q2,N2(0)‖∞ = ‖γ ‖∞ ≤
ε

16
.

Now, we have

‖P1,N1(t) − x̄(t)‖∞ = ‖Q1,N1(t) + αt + β − x̄(t)‖∞

≤ ‖Q1,N1(t) − x̄(t)‖∞ + ‖α + β‖∞ ≤
ε

8
<

ε

3
,

∥
∥
∥
∥

d P1,N1(t)

dt
−

dx̄(t)

dt

∥
∥
∥
∥

∞

=

∥
∥
∥
∥

d Q1,N1(t)

dt
+ α −

dx̄(t)

dt

∥
∥
∥
∥

∞

≤

∥
∥
∥
∥

d Q1,N1(t)

dt
−

dx̄(t)

dt

∥
∥
∥
∥

∞

+ ‖α‖∞ ≤
3ε

16
<

ε

3
,
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‖P2,N2(t) − ū(t)‖∞ = ‖Q2,N2(t) + γ − ū(t)‖∞

≤ ‖Q2,N2(t) − ū(t)‖∞ + ‖γ ‖∞ ≤
ε

8
<

ε

3
.

Now, let define

L PN (t) = L
(
P1,N1(t), P2,N2(t), Ṗ1,N1(t)

)

=
d P1,N1(t)

dt
− A(t)P1,N1(t) − B(t)P2,N2(t) = F(t),

for every t ∈ [0, 1]. Thus for N ≥ max{N1, N2}, one may find an upper bound

for the following residual:

‖L PN (t) − F(t)‖∞ = ‖L(P1,N1(t), P2,N2(t), Ṗ1,N1(t)) − F(t)‖∞

≤

∥
∥
∥
∥

d P1,N1(t)

dt
−

dx̄(t)

dt

∥
∥
∥
∥

∞

+‖A(t)‖∞‖P1,N1(t)− x̄(t)‖∞

+‖B(t)‖∞‖P2,N2(t) − ū(t)‖∞

≤ C1

(ε

3
+

ε

3
+

ε

3

)
= C1ε

where C1 = 1 + ‖A(t)‖∞ + ‖B(t)‖∞ is a constant.

Since the residual R(PN ) := L PN (t)− F(t) is a polynomial, we can represent

it by a Bezier form. Thus we have

R(PN ) :=
m1∑

i=0

di,m1 Bi,m1(t).

Then from Lemma 1 in [1], there exists an integer M(≥ N ) such that when

m1 > M , we have
∣
∣
∣
∣
∣

1

m1 + 1

m1∑

i=0

d2
i,m1

−
∫ 1

0
(R(PN ))2 dt

∣
∣
∣
∣
∣
< ε,

which gives

1

m1 + 1

m1∑

i=0

d2
i,m1

< ε +
∫ 1

0
(R(PN ))2 dt ≤ ε + C2

1ε
2. (10)
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Suppose x(t) and u(t) are approximated solution of (8) obtained by the control-

point-based method of degree m2 (m2 ≥ m1 ≥ M). Let

R(x(t), u(t), ẋ(t)) = L(x(t), u(t), ẋ(t)) − F(t)

=
m2∑

i=0

ci,m2 Bi,m2(t), m2 ≥ m1 ≥ M, t ∈ [0, 1].

Define the following norm for difference approximated solution (x(t), u(t)) and

exact solution (x̄(t), ū(t)):

‖(x(t), u(t)) − (x̄(t), ū(t))‖ :=
∫ 1

0

1∑

j=0

∣
∣
∣
∣
d j x(t)

dt j
−

d j x̄(t)

dt j

∣
∣
∣
∣

2

dt

+
∫ 1

0
|u(0) − ū(0)| dt.

(11)

It is easy to show that:

‖(x(t), u(t))−(x̄(t), ū(t))‖ ≤ C
(
|x(0) − x̄(0)| + |x(1) − x̄(1)|

+ |u(0) − ū(0)| + ‖R(x(t), u(t), ẋ(t))‖2
2

)

= C
∫ 1

0

m2∑

i=0

(ci,m2 Bi,m2(t))
2 dt

≤
C

m2 + 1

m2∑

i=0

c2
i,m2

(12)

Last inequality in (12) is obtained from Lemma 1 in [1] in which C is a constant

positive number. Now from Lemma 1 in [1], one can easily show that:

‖(x(t), u(t)) − (x̄(t), ū(t))‖ ≤
C

m2 + 1

m2∑

i=0

c2
i,m2

≤
C

m2 + 1

m2∑

i=0

d2
i,m2

≤
C

m1 + 1

m1∑

i=0

d2
i,m1

≤ C(ε + C2
1ε

2)

= ε1, m1 ≥ M,

(13)

where last inequality in (13) is coming from (10).
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Thus, from (13) we have:

‖x(t) − x̄(t)‖ ≤ ε1,

‖u(t) − ū(t)‖ ≤ ε1.

Since the infinite norm and the norm defined in (11) are equivalent, there is a

ρ1 > 0 where

‖x(t) − x̄(t)‖∞ ≤ ρ1ε1,

‖u(t) − ū(t)‖∞ ≤ ρ1ε1.

Now, we show that the approximated cost function tends to exact cost function

as the degree of Bezier approximation increases. Define

Iexact =
1

2
x̄(1)H(1)x̄(1) +

∫ 1

0
(x̄(t)P(t)x̄(t) + ū(t)Q(t)ū(t)

+ K (t)x̄(t) + R(t)ū(t)) dt,

Iapprox =
1

2
x(1)H(1)x(1) +

∫ 1

0
(x(t)P(t)x(t) + u(t)Q(t)u(t)

+ K (t)x(t) + R(t)u(t)) dt,

for t ∈ [0, 1]. Now, there are four positive integers Mi ≥ 0, i = 1, . . . , 6, such

that

‖P(t)‖∞ ≤ M1, ‖Q(t)‖∞ ≤ M2, ‖K (t)‖∞ ≤ M3,

‖R(t)‖∞ ≤ M4, ‖x̄(t)‖∞ ≤ M5 and ‖ū(t)‖∞ ≤ M6.

Since

‖x(t)‖∞ − ‖x̄(t)‖∞ ≤ ‖x̄(t) − x(t)‖∞ ≤ ρ1ε1,

‖u(t)‖∞ − ‖ū(t)‖∞ ≤ ‖ū(t) − u(t)‖∞ ≤ ρ1ε1,

we have

‖x(t)‖∞ ≤ ‖x̄(t)‖∞ + ρ1ε1 ≤ M5 + ρ1ε1,

‖u(t)‖∞ ≤ ‖ū(t)‖∞ + ρ1ε1 ≤ M6 + ρ1ε1,
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so

‖x̄(t) + x(t)‖∞ ≤ ‖x̄(t)‖∞ + ‖x(t)‖∞ ≤ 2M5 + ρ1ε1,

‖ū(t) + u(t)‖∞ ≤ ‖ū(t)‖∞ + ‖u(t)‖∞ ≤ 2M6 + ρ1ε1,

now, we have

‖Iexact − Iapprox‖∞ = ‖
∫ 1

0
x̄(t)P(t)x̄(t) + ū(t)Q(t)ū(t) + K (t)x̄(t)

+ R(t)ū(t) − x(t)P(t)x(t) − u(t)Q(t)u(t) − K (t)x(t) − R(t)u(t) dt‖∞

≤
∫ 1

0
‖x̄(t)P(t)x̄(t) − x(t)P(t)x(t)‖∞dt

+
∫ 1

0
‖ū(t)Q(t)ū(t) − u(t)Q(t)u(t)‖∞dt

+
∫ 1

0
‖K (t)x̄(t) − K (t)x(t)‖∞dt +

∫ 1

0
‖R(t)ū(t) − R(t)u(t)‖∞dt

≤
∫ 1

0
‖P(t)‖∞‖x̄2(t) − x2(t)‖∞dt +

∫ 1

0
‖Q(t)‖∞‖ū2(t) − u2(t)‖∞dt

≤
∫ 1

0
‖P(t)‖∞‖x̄(t) − x(t)‖∞‖x̄(t) + x(t)‖∞dt

+
∫ 1

0
‖Q(t)‖∞‖ū(t) − u(t)‖∞‖ū(t) + u(t)‖∞dt

+
∫ 1

0
‖K (t)‖∞‖x̄(t) − x(t)‖∞dt +

∫ 1

0
‖R(t)‖∞‖ū(t) − u(t)‖∞dt

≤ M1ρ1ε1(ρ1ε1 + 2M5) + M2ρ1ε1(ρ1ε1 + 2M6) + M3ρ1ε1 + M4ρ1ε1.

This completes the proof. �

3.2 Subdivision case

Theorem 3.3. Let (x, u) be the approximate solution of the linear optimal

control problem (8) obtained by the subdivision scheme of the control-point-

based method. If (8) has a unique solution (x̄, ū) where (x̄, ū) is smooth enough

so that the cubic spline T (x̄, ū) interpolating to (x̄, ū) converges to (x̄, ū) in the

order O(τ q), (q > 2), where τ is the maximal width of all subintervals, then

(x, u) converges to (x̄, ū) as τ → 0.
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Proof. We first impose a uniform partition
∏

d =
⋃

i [ti , ti+1] on the interval

[0, 1] as ti = id where d = 1
n1+1 .

Let Id

(
x̄(t), ū(t), dx̄(t)

dt

)
be the cubic spline over

∏
d interpolating to (x̄, ū).

Then for an arbitrary small positive number ε > 0, there exists a δ1 > 0 such

that ∥
∥
∥
∥L

(
x̄(t), ū(t),

dx̄(t)

dt

)
− L

(
Id

(
x̄(t), ū(t),

dx̄(t)

dt

))∥
∥
∥
∥

∞

≤ ε

provided that d < δ1. Let

R
(

Id

(
x̄(t), ū(t),

dx̄(t)

dt

))
= L

(
Id

(
x̄(t), ū(t),

dx̄(t)

dt

))
− F(t)

be the residual. For each subinterval [ti , ti+1], R
(

Id

(
x̄(t), ū(t), dx̄(t)

dt

))
is a

polynomial. On each interval [ti , ti+1], we impose another uniform partition
∏

i,τ =
⋃

j [ti, j , ti, j+1] as ti, j = id + jτ where τ = d
m1

, j = 0, . . . , m1. Express

R
(

Id

(
x̄(t), ū(t), dx̄(t)

dt

))
in [ti, j−1, ti, j ] as

R
(

Id

(
x̄(t), ū(t),

dx̄(t)

dt

))
=

l∑

p1=0

r i, j
p1

Bp1,l(t), t ∈ [ti, j−1, ti, j ].

By Lemma 3 in [1], there exists a δ2 > 0 (δ2 ≤ δ1) such that when τ < δ2, we

have
∣
∣
∣
∣
∣
∣

m1∑

j=1

(ti, j − ti, j−1)

l∑

p1=0

(r i, j
p1

)2(l + 1)

∫ ti+1

ti

R2
(

Id

(
x̄(t), ū(t),

dx̄(t)

dt

))
∣
∣
∣
∣
∣
∣
≤

ε

d
.

Thus
∣
∣
∣
∣
∣
∣

n1∑

i=1

m1∑

j=1

(ti, j − ti, j−1)

l∑

p1=0

(r i, j
p1

)2(l + 1)

∫ 1

0
R2

(
Id

(
x̄(t), ū(t),

dx̄(t)

dt

))
∣
∣
∣
∣
∣
∣
≤ ε,

or

n1∑

i=1

m1∑

j=1

(ti, j − ti, j−1)

l∑

p1=0

(r i, j
p1

)2 < (l + 1)

∫ 1

0
R2(Id

(
x̄(t), ū(t),

dx̄(t)

dt

)
+ ε

< (l + 1)ε2 + ε.
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Now combining the partitions
∏

d and all
∏

i,τ gives a denser partition with the

length τ for each subinterval. Suppose (x(t), u(t)) is the approximate solution

by the control-point-based method with respect to this partition, and denote the

residual over [ti, j−1, ti, j ] by

R
(

x(t), u(t),
dx(t)

dt

)
= L

(
x(t), u(t),

dx(t)

dt

)
− F(t) =

l∑

p1=0

ci, j
p1

Bp1,l(t).

Then there is a constant C such that

‖(x(t), u(t)) − (x̄(t), ū(t))‖

≤ C

∥
∥
∥
∥R

((
x(t), u(t),

dx(t)

dt

)
− (x̄(t), ū(t),

dx̄(t)

dt
)
)∥
∥
∥
∥

2

2

≤
C

l + 1

n∑

i=1

m∑

j=1

(ti, j − ti, j−1)

l∑

p1=0

(ci, j
p1

)2

(14)

last inequality in (14) is obtained from Lemma 1 in [1]. One can easily show

that:

‖(x(t), u(t)) − (x̄(t), ū(t))‖ ≤
C

l + 1

n1∑

i=1

m1∑

j=1

(ti, j − ti, j−1)

l∑

p1=0

(ci, j
p1

)2

≤
C

l + 1

n1∑

i=1

m1∑

j=1

(ti, j − ti, j−1)

l∑

p1=0

(r i, j
p1

)2

≤ C
(
ε2 +

ε

l + 1

)
= ε2.

(15)

Thus, from (15) we have:

‖x(t) − x̄(t)‖ ≤ ε2,

‖u(t) − ū(t)‖ ≤ ε2.

Since the infinite norm and the norm defined in (11) are equivalent, there is a

ρ2 > 0 where

‖x(t) − x̄(t)‖∞ ≤ ρ2ε2,

‖u(t) − ū(t)‖∞ ≤ ρ2ε2.
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Now, we show that the approximated cost function tends to exact cost function

as the degree of approximation increases. Define

Iexact =
1

2
x̄(1)H(1)x̄(1) +

∫ 1

0
(x̄(t)P(t)x̄(t) + ū(t)Q(t)ū(t)

+ K (t)x̄(t) + R(t)ū(t)) dt,

Iapprox =
1

2
x(1)H(1)x(1) +

∫ 1

0
(x(t)P(t)x(t) + u(t)Q(t)u(t)

+ K (t)x(t) + R(t)u(t)) dt,

for t ∈ [ti, j−1, ti, j ]. Now, there are four positive integers Mi ≥ 0, i = 1, . . . , 6,

such that ‖P(t)‖∞ ≤ M1, ‖Q(t)‖∞ ≤ M2, ‖K (t)‖∞ ≤ M3, ‖R(t)‖∞ ≤ M4,

‖x̄(t)‖∞ ≤ M5, and ‖ū(t)‖∞ ≤ M6. Since

‖x(t)‖∞ − ‖x̄(t)‖∞ ≤ ‖x̄(t) − x(t)‖∞ ≤ ρ2ε2,

‖u(t)‖∞ − ‖ū(t)‖∞ ≤ ‖ū(t) − u(t)‖∞ ≤ ρ2ε2,

we have

‖x(t)‖∞ ≤ ‖x̄(t)‖∞ + ρ2ε2 ≤ M5 + ρ2ε2,

‖u(t)‖∞ ≤ ‖ū(t)‖∞ + ρ2ε2 ≤ M6 + ρ2ε2,

so

‖x̄(t) + x(t)‖∞ ≤ ‖x̄(t)‖∞ + ‖x(t)‖∞ ≤ 2M5 + ρ2ε2,

‖ū(t) + u(t)‖∞ ≤ ‖ū(t)‖∞ + ‖u(t)‖∞ ≤ 2M6 + ρ2ε2,

now, we have

‖Iexact − Iapprox‖∞ = ‖
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

x̄(t)P(t)x̄(t) + ū(t)Q(t)ū(t) + K (t)x̄(t)

+ R(t)ū(t) − x(t)P(t)x(t) − u(t)Q(t)u(t) − K (t)x(t) − R(t)u(t) dt‖∞

≤
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖x̄(t)P(t)x̄(t) − x(t)P(t)x(t)‖∞dt
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+
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖ū(t)Q(t)ū(t) − u(t)Q(t)u(t)‖∞dt

+
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖K (t)x̄(t) − K (t)x(t)‖∞dt

+
n∑

i=1

m∑

j=1

∫ ti, j

ti, j−1

‖R(t)ū(t) − R(t)u(t)‖∞dt

≤
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖P(t)‖∞‖x̄2(t) − x2(t)‖∞dt

+
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖Q(t)‖∞‖ū2(t) − u2(t)‖∞dt

≤
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖P(t)‖∞‖x̄(t) − x(t)‖∞‖x̄(t) + x(t)‖∞dt

+
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖Q(t)‖∞‖ū(t) − u(t)‖∞‖ū(t) + u(t)‖∞dt

+
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖K (t)‖∞‖x̄(t) − x(t)‖∞dt

+
n1∑

i=1

m1∑

j=1

∫ ti, j

ti, j−1

‖R(t)‖∞‖ū(t) − u(t)‖∞dt

≤
n1(n1 + 1)

2

m1(m1 + 1)

2
τ M1ρ2ε2(ρ2ε2 + 2M5)

+
n1(n1 + 1)

2

m1(m1 + 1)

2
τ M2ρ2ε2(ρ2ε2 + 2M6) + M3ρ2ε2 + M4ρ2ε2.

Now, from Lemma 3 in [1], we conclude that the approximated solution con-

verges to the exact solution in order o(τ q), (q > 2).

This completes the proof. �
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4 Numerical examples

Example 4.1. Consider the following constrained optimal control problem

(see [5]):

min I =
∫ 3

0
2x1(t) dt

s.t. ẋ1(t) = x2(t)

ẋ2(t) = u(t)

− 2 ≤ u(t) ≤ 2

x1(t) ≥ −6

x1(0) = 2, x2(0) = 0

Let k = 6 and, n = 3, if one consider the C1 continuity of u(t), one can find the

following solution from (7)

u(t) =






−1.997033122 − 0.05933753750t + 0.3204226750t2 − 0.4272302200t3 0 ≤ t ≤ 0.5,

−1.895851300 − 0.4017993675t + 0.4760881250t2 − 0.1781683800t3 0.5 ≤ t ≤ 1,

−1.815689262 − 0.5715973000t + 0.5751978700t2 − 0.1876422300t3 1 ≤ t ≤ 1.5,

−5.617179042 + 10.40916179t − 8.997161210t2 + 2.439960460t3 1.5 ≤ t ≤ 2,

19.95368871 − 36.19728204t + 18.43113180t2 − 2.818933558t3 2 ≤ t ≤ 2.5,

103.0503639 − 156.4637034t + 74.75786477t2 − 11.42518654t3 2.5 ≤ t ≤ 3.

Then by involving the above control function u(.), in the indicated differential

equation, one can find the trajectories x1(.) and x2(.) as follows:

x1(t) =






−.998516561t2 − 0.0098895895t3 + .0267018895t4 − .021361511t5 + 2 0 ≤ t ≤ 0.5,

−.947925649t2 − .0669665625t3 + .0396740105t4 − .008908419t5 − .02251014t + 2.001950237 0.5 ≤ t ≤ 1,

−.90784463t2 − .09526621483t3 + .04793315525t4 − .0093821114t5 − .048441339t + 2.008314617 1 ≤ t ≤ 1.5,

−2.808589511t2 + 1.734860295t3 − .749763434t4 + .1219980229t5 + .741484077t + 1.961919191 1.5 ≤ t ≤ 2,

9.976844345t2 − 6.032880343t3 + 1.53592765t4 − .1409466778t5 − 9.293902341t + 4.874893216 2 ≤ t ≤ 2.5,

51.525182t2 − 26.07728389t3 + 6.229822062t4 − .5712593272t5 − 50.5251822t + 20.1372572 2.5 ≤ t ≤ 3,

and,

x2(t) =






−1.997033122t − 0.02966876850t2 + .1068075580t3 − .1068075550t4 0 ≤ t ≤ 0.5,

−1.895851298t − 0.2008996875t2 + .1586960420t3 − 0.04454209500t4 − 0.022510140 0.5 ≤ t ≤ 1,

−1.815689260t − 0.2857986445t2 + .1917326210t3 − 0.04691055700t4 − 0.048441339 1 ≤ t ≤ 1.5,

−5.617179022t + 5.204580886t2 − 2.999053736t3 + .6099901145t4 + .741484077 1.5 ≤ t ≤ 2,

19.95368869t − 18.09864103t2 + 6.143710602t3 − .7047333890t4 − 9.293902341 2 ≤ t ≤ 2.5,

103.0503640t − 78.23185168t2 + 24.91928825t3 − 2.856296636t4 − 50.52518220 2.5 ≤ t ≤ 3.
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The graphs of approximated trajectories x1(t) and x2(t) are shown respectively

in Figure 1 and Figure 2, and the graph of approximated control is shown Fig-

ure 3. The approximated and exact objective function are respectively I =

−5.389857789, I ∗ = −5.528595476 (see [5]).

In this example, we used Bezier polynomials of degree 10 to approximate the

trajectories x1(.) and x2(.) through the time interval J = [0, 3], and without

using subintervals. The objective function is found I = −5.360252730 and the

trajectories x1(t), and x2(t) for t ∈ J are shown in Figures 4, 5. For reduction

in complicated manipulations, the authors recommend to use low degree Bezier

approximation polynomials and use subintervals approach.

Example 4.2. Consider the following optimal control problem ([17]):

min I =
∫ 1

0
(x2

1(t) + x2
2(t) + 0.005u2(t)) dt

s.t. ẋ1(t) = x2(t)

ẋ2(t) = −x2(t) + u(t)

x2(t) ≤ q(t) = 8(t − 0.5)2 − 0.5

x1(0) = 0, x2(0) = −1

Let k = 12, t0 = 0, t f = 1, t j = t0 + (t f −t0) j
12 = j

12 , ( j = 1, . . . , 12), and

n = 3. From (7), one can find the following solution

u(t) =






11.43511691 − 76.63782944t − 44.52584083t2 + 0.0035860000t3 0 ≤ t ≤ 1
12 ,

7.861400876 − 35.62214319t − 22.10043759t2 + 0.021243000t3 1
12 ≤ t ≤ 1

6 ,

8.180459190 − 37.33660935t − 23.29089144t2 − 0.031848700t3 1
6 ≤ t ≤ 1

4 ,

−1.652748711 − 3.681790087t − .5992407498t2 + 0.049746000t3 1
4 ≤ t ≤ 1

3 ,

−6.522781102 + 8.110829441t + 7.889653090t2 − 0.059637000t3 1
3 ≤ t ≤ 5

12 ,

−6.503100780 + 8.011432661t + 7.992145038t2 − 0.00515290t3 5
12 ≤ t ≤ 1

2 ,

−6.497644189 + 7.992176154t + 8.004580588t2 + 0.003349300t3 1
2 ≤ t ≤ 7

12 ,

−6.493920361 + 7.982943896t + 8.007520923t2 + 0.00668000t3 7
12 ≤ t ≤ 2

3 ,

3.602879581 + 0.4707623628t − 3.420687999t2 − 0.02529800t3 2
3 ≤ t ≤ 3

4 ,

11.39254692 − 3.778190612t − 11.63683471t2 + 0.0188618000t3 3
4 ≤ t ≤ 5

6 ,

.9495509436 − 0.1355315210t − .9484970841t2 − 0.0070753900t3 5
6 ≤ t ≤ 11

12 ,

0.4749655029 − 0.08216181395t − 0.4509062307t2 + 0.0027248400t3 11
12 ≤ t ≤ 1,
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Figure 1 – The graphs of approximated and exact trajectories x1(t) for Example 4.1.

Figure 2 – The graphs of approximated and exact trajectories x2(t) for Example 4.1.
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Figure 3 – The graph of approximated control for Example 4.1.

Figure 4 – The graphs of approximated and exact trajectories x1(t) for Example 4.1.
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Figure 5 – The graphs of approximated and exact trajectories x2(t) for Example 4.1.

The graphs of approximated trajectories x1(t) and x2(t) are shown respec-

tively in Figure 6 and Figure 7, and the graph of approximated control is shown

Figure 8. The approximated and exact objective function respectively are I =

0.1728904530, I ∗ = 0.17078488 (see [17]). The computation takes 5 seconds of

CPU time when it is performed using Maple 12 on an AMD Athelon X4 PC with

2 GB of RAM. The QPSolve command solves (7), which involves computing the

minimum of a quadratic objective function possibly subject to linear constraints.

The QPSolve command uses an iterative active- set method implemented in a

built-in library provided by the numerical algorithms group.

5 Conclusions

In this paper, a Bézier control points method for solving optimal control prob-

lems governed by time varying linear dynamical systems with terminal state con-

straints and inequality constraints on the states and control has been suggested.

The method replaces the constrained optimal control problem by a quadratic

programming one, and the control point structure provides a bound on the resid-

ual function. The new mathematical programming problem is intuitive and easy

to solve.
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Figure 6 – The graph of approximated trajectory x1(t) for Example 4.2.

Figure 7 – The graphs of approximated trajectory x2(t) and q(t) = 8(t − 0.5)2 − 0.5

for Example 4.2.
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Figure 8 – The graph of approximated control for Example 4.2.

Numerical examples show that the proposed method is reliable and efficient.

The control polygon gives an intermediate approximation to the appearance of

the solution.
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