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Abstract. An explicit scheme based on a weighted mass matrix, for solving time-dependent

convection-diffusion problems was recently proposed by the author and collaborators. Convenient

bounds for the time step, in terms of both the method’s weights and the mesh step size, ensure

its stability in space and time, for piecewise linear finite element discretisations in any space

dimension. In this work we study some techniques for choosing the weights that guarantee

the convergence of the scheme with optimal order in the space-time maximum norm, as both

discretisation parameters tend to zero.

Mathematical subject classification: Primary: 65M60; Secondary: 76Rxx.

Key words: Convection-diffusion, convergence, explicit scheme, finite elements, piecewise

linear, time-dependent, weighted mass.

1 Introduction

This work deals with an explicit scheme introduced in [6], for the numerical

time integration of the convection-diffusion equations, discretised in space by

techniques based on variational formulations such as the finite element method.
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In this framework, since the mid-eighties, the most widespread manner to deal

with dominant convection has been the use of stabilizing procedures based on

the space mesh parameter, among which the streamline upwind Petrov-Galerkin

(SUPG) technique introduced by Hughes & Brooks (cf. [2]) is one of the most

popular.

The author and collaborators studied in [7] a contribution in this direction,

based on a standard Galerkin approach, and a space discretisation of the

convection-diffusion equations with piecewise linear finite elements, combined

with a non standard explicit forward Euler scheme for the time integration. The

main theoretical result in that work, states that the numerical solution is stable

in the maximum norm in both space and time (and even convergent with order

h|lnh| if the mesh is of the acute type [10]), provided that roughly the time step

is bounded by the space mesh parameter h multiplied by a mesh-independent

constant, for a high Péclet number. As it should be clarified, the scheme under

consideration follows similar principles to the one long exploited by Kawahara

and collaborators, for simulating convection dominated phenomena (see e.g. [4],

among several other papers published by them before and later on). The origi-

nality of our contribution relies on the fact that it not only introduces a reliable

scheme for any space dimension, but also exhibits rigorous conditions for it to

provide converging sequences of approximations in the sense of the space-time

maximum norm.

The main purpose of this work, is to specify procedures for the determination

of sets of weights that characterize our explicit scheme. As for the theoretical

contribution, we prove that for such choices of the weights the method converges

with optimal order in the maximum space-time norm.

An outine of the paper is as follows: In Section 2 we recall the problem

to solve together with the type of discretisation corresponding to our explicit

scheme; more particularly the weighted manner to deal with the mass matrices

on both sides of the discrete equations is described. In Section 3 we further recall

the stability results that hold for the method being considered, in the sense of

the space and time maximum norm, together with the conditions to be fulfilled

by the sequences of meshes and time steps in order to ensure convergence. We

proceed in Section 4 by studying in detail some particular choices of the weights
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associated with the scheme, that satisfy the conditions leading to both stability

and convergence. Finally in Section 5 we consider some implementation aspects

of the method and give corresponding numerical results.

2 The problem to solve and its discretisation

Let us consider a time-dependent convection-diffusion problem described as

follows:

Find a scalar valued function u(x, t) defined in �̄×[0, ∞), � being a bounded

open subset of <N with boundary ∂�, N = 1, 2 or 3, such that,





ut + a ∙ ∇u − ν1u = f in � × (0, ∞)

u = g ; on ∂� × (0, ∞)

u = u0 ; in � for t = 0

(1)

where ut represents the first order derivative of u with respect to t , ν is a positive

constant and a is a given solenoidal convective velocity at every time t , assumed

to be uniformly bounded in � × (0, ∞). The data f and g are respectively, a

given forcing function belonging to L∞[� × (0, ∞)], and a prescribed value

in L∞[∂� × (0, ∞)]. We further assume that u0 ∈ L∞(�) and that for every

x ∈ � g(x, ∙) is of bounded variation in (0, ∞). In (1) ν represents the inverse

of the Péclet number.

Without loss of essential aspects, in all the sequel we assume that � is an

interval if N = 1, a polygon if N = 2 or a polyhedron if N = 3. In so doing

we consider a partition Th of � into N− simplices, with maximum edge length

equal to h. We assume that Th satisfies the usual compatibility conditions for

finite element meshes, and that it belongs to a quasi-uniform family of partitions.

We further define a second mesh parameter hmin as the minimum height of all

the elements of Th if N = 2 or 3 and the minimum length of K ∈ Th if

N = 1.

Let Nh be the number of nodes of Th , denoted by Pj , j = 1, 2, . . . , Nh . We

assume that these are numbered in such a manner that the first Ih nodes are

located in the interior of � and the remaining Nh − Ih nodes are located on ∂�.

Now for every K ∈ Th we denote by P1(K ) the space of polynomials of degree

less than or equal to one defined in K . In so doing we introduce the following
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spaces or manifolds associated with Th:

Vh :=
{
v | v ∈ C0(�̄) and v|K ∈ P1(K ), ∀K ∈ Th

}
,

V 0
h := Vh ∩ H 1

0 (�),

We further introduce for any function φ defined in C0(∂�) the following

manifold of Vh:

V φ

h :=
{
v ∈ Vh | v(Pj ) = φ(Pj ) ∀ vertex Pj of Th on ∂�

}
,

Now let u0
h be the field of V g(∙,0)

h satisfying u0
h(Pj ) = u0(Pj ) for every vertex

Pj of Th , and 1t > 0 be a given time step. Defining gn on ∂� by gn(∙) =

g(∙, n1t), f n in � by f n(∙) = f (∙, n1t) and an in � by an(∙) = a(∙, n1t),

for n = 1, 2, . . ., idealistically we wish to determine approximations un
h(∙) of

u(∙, n1t) for n ∈ N∗, by solving the following finite element discrete prob-

lem described below, corresponding to a modification of the first order forward

Euler scheme.

For n successively equal to 1, 2, . . ., we wish to determine un
h ∈ V gn

h of the

form

un
h =

Nh∑

j=1

un
jϕ j ,

where ϕ j is the canonical basis function of Vh associated with the j−th node of

Th , i.e. Pj , un
j ∈ < being the value of un

h at Pj . We denote by Sj the support of

ϕ j and by 5 j its measure.

The unknowns un
i for n = 1, 2, . . ., are recursively determined by the follow-

ing expressions:

mL
ii u

n
i =

Nh∑

j=1

[
mW

i j − 1tan−1
i j

]
un−1

j + 1tbn
i , for i = 1, . . . , Ih, (2)

where, setting an
i := an(Pi ) and f n

i := f n(Pi ), the coefficients an
i j and bn

i are

given by:

an
i j =

∫

�

[
(an

i ∙ ∇)ϕ jϕi + ν∇ϕ j ∙ ∇ϕi
]
, (3)

bn
i =

∫

�

f n−1
i ϕi .
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Coefficient mL
ii is the well-known lumped mass diagonal matrix (cf. [9]) given

by 5i
N+1 . The mass matrix coefficients mW

i j on the right hand side of (2) in turn

are defined by a weighted quadrature formula described as follows.

Let Mi be the number of nodes different from Pi lying in the closure of Si , i.e.

S̄i , and Pk j be such nodes for j = 1, 2, ..., Mi with 1 ≤ k j ≤ Nh . Let also W i
j

be the measure fractions associated with Pk j given by:

W i
j =

meas(Si ∩ Sk j )

N + 1
(4)

and ωi
j be corresponding strictly positive weights satisfying,

Mi∑

j=1

ωi
j W

i
j =

N5i

(N + 1)(N + 2)
(5)

Notice that since each N -simplex in Si appears in exactly N measure fractions

W i
j , we necessarily have:

Mi∑

j=1

W i
j =

N5i

N + 1
(6)

Now selecting the nodes Pk j in S̄i different from Pi , we define,

mW
ik j

=
hmin

ν + hmin
ωi

j W
i
j for i 6= k j (7)

together with

mW
ii =

ν

hmin + ν
mL

ii +
hmin

hmin + ν
mC

ii . (8)

where mC
ii is the i − th diagonal coefficient of the standard consistent mass

matrix ([9]) given by
25i

(N + 1)(N + 2)
.

Naturally enough, by definition, mW
i j = 0 if Pj does not lie in S̄i .

Typically we may choose ωi
j = 1

N+2 for every j and for every node Pi , thereby

generating a weighted combination of the lumped mass and the consistent mass

matrix (cf. [9]) on the right hand side of (2), with weights equal to

ν

hmin + ν
and

hmin

hmin + ν
,
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respectively. However, except for the case of uniform meshes, in principle this

is not the choice to make, if one wishes to reach the best results in terms of

accuracy.

3 Stability and convergence of the scheme

In this Section we recall the stability and convergence results proven in [7] that

hold for the above defined weighted mass scheme. In short they state that, pro-

vided 1t is chosen conveniently small with respect to the spatial mesh parameter,

the scheme (2) is stable in the sense of the maximum norm. Moreover under a

suitable condition on the mesh it converges in both space and time in the same

sense, as h and 1t go to zero.

First we have to define the following quantities:

• A = sup
t∈(0,∞)

max
1≤i≤Ih

|ai (t)|;

• ω = min
1≤i≤Ih

min
1≤ j≤Mi

ωi
j .

The following theorem proved in [7] states the stability result that holds for

scheme (2).

Theorem 1. If 1t fulfills the condition

1t ≤
ωh3

min

(ν + hmin)[Ahmin + (N + 1)ν]
, (9)

then the finite element solution sequence {un
h}n given by un

h =
Nh∑

j=1
un

jϕ j generated

by (2) for n = 1, 2, . . . satisfies the following stability result for every m ∈ N,

whereby ||F ||0,∞,D denotes the L∞−norm of a function F defined in an open set

D of <N , and BV [G] represents the standard norm of a function G(t) having

bounded variation for t ∈ (0, ∞):

||um
h ||0,∞,� ≤ ||u0||0,∞,� + max{max

P∈∂�
BV [g(P, ∙)],1t

m∑

n=1

|| f n−1||∞,�} (10)

The above stability result can be refined as follows, in the particular case

where the partition Th is of the acute type (see e.g. [10]).
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Theorem 2. (cf. [7]). Assume that the partitionTh is of the acute type (cf. [10]).

Then if 1t satisfies the condition

1t ≤
h2

min

ν + hmin
min

[
ω

A
,

ν(N + 2) + 2hmin

ν(N + 1)(N + 2)

]
(11)

the finite element solution sequence {un
h}n given by un

h =
Nh∑

j=1
un

jϕ j generated by

(2) for n = 1, 2, . . . satisfies the stability condtion (10).

In [7] we give error estimates for the approximations of the solution of (1)

generated by (2) under condition (9). In particular we recall here that, provided

the weights ωi
j are suitably chosen, this scheme provides convergent approxima-

tions in the maximum norm, as both h and 1t go to zero, under the assumption

(11) of Theorem 2. For this purpose we use Sobolev spaces W m,∞(D) equipped

with the standand norm and seminorm denoted respectively by || ∙ ||m,∞,D and

| ∙ |m,∞,D, where m is a non negative integer and D is a subset of <N (cf [1]).

As usual a suitable consistency result is needed, which together with the stabil-

ity results given in this Section leads to convergence. Actually the consistency

of our scheme is a consequence of the following lemma:

Lemma 1. (cf. [7]). Let Pi be a node of Th , for i ∈ {1, 2, . . . , Ih}, and lij be

the vector leading from Pi to its neighbor Pk j , that is, the j-th node belonging

to S̄i , j = 1, 2, . . . , Mi . Then there exists strictly positive weights ωi
j satisfying

(5) such that
Mi∑

j=1

ωi
j W

i
j l

i
j = 0. (12)

Then we can establish the validity of the following convergence result for

scheme (2):

Theorem 2. (cf. [7]). Let the strictly positive weights ωi
j , ∀i ∈ {1, 2, . . . , Ih}

and ∀ j ∈ {1, 2, . . . , Mi }, satisfy (12)-(5). Assume that for a given finite time

T > 0 both the solution u of (1) and ut belong to W 2,∞(�). Assume also that

∀t ∈ [0, T ], a(∙, t) ∈ [W 1,∞(�)]N and f (∙, t) ∈ W 1,∞(�), and (ut)t belongs

to L∞(�). Finally let a strictly positive integer kT be defined as the minimum
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of all integers k such that the quantity 1t :=
T

k
fulfills the condition (11).

Let us further assume that, besides belonging to a quasiuniform family, all the

partitions Th in use are of the acute type, and the quantity ω is bounded below

away from zero independently of h. Then there exists a constant C independent

of u, h and 1t , such that the following estimate applies:

max
1≤m≤kT

||um − um
h ||0,∞,� ≤ Ch|ln h| max

0≤s≤T
{

||u(∙, s)||2,∞,� + ||ut(∙, s)||1,∞,�

+h||ut(∙, s)||2,∞,� + h||(ut)t(∙, s)||0,∞,�

+||a(∙, s)||1,∞,�(||u(∙, s)||1,∞,� + h||u(∙, s)||2,∞,�)

+||a(∙, s)||0,∞,�||u(∙, s)||2,∞,� + || f (∙, s)||1,∞,�}

(13)

4 Consistent choices of the weights

In this section we describe two coherent strategies to determine a set of Mi strictly

positive weights, for each mesh inner node Pi , that are proven to be bounded

below away from zero, independently of the mesh parameter h.

Let us first consider the one-dimensional case. From (12) and (5) it is trivially

seen that the pair of weights (ωi
1, ω

i
2) associated with inner node Pi is uniquely

defined by the equations:





−ωi
1(l

i
1)

2 + ωi
2(l

i
2)

2 = 0
1

2
[ωi

1li
1 + ωi

2li
2] =

li
1 + li

2

6
,

(14)

where li
1 and li

2 are the lengths of the intervals of Th having Pi as the right and

the left end, respectively. This yields ωi
1 =

li
2

3li
1

and ωi
2 =

li
1

3li
2

.

Next we switch to the case N > 1. In principle for N = 2 or N = 3 there are

infinitely many solutions, except for the case of the least possible value of Mi , i.e.

Mi = N + 1, in which the solution is necessarily unique. The two constructions

described below allow for the unique determination of a set of weights satisfying

(12) and (5), and incidentally they apply even to the particular case where this

set is unique.
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4.1 A first set of weights

Let E+
i := {ei

j }
Mi
j=1 be the set of unit vectors corresponding to the vectors lij , that

is, ei
j = li

j/ li
j , where li

j is the modulus of li
j . Let also E−

i := {−ei
j }

Mi
j=1, and

Ei = E+
i ∪ E−

i . Setting Ki = card(Ei ), we clearly have Ki ≥ Mi . We number

the Mi vectors of Ei ∩ E+
i in the same manner as the vectors of E+

i .

Let us first consider the case where E−
i = E+

i = Ei . Then for every j1 ∈

{1, ..., Mi } there is necessarily another j2 ∈ {1, ..., Mi } such that ei
j1

+ ei
j2

= 0.

This implies in particular that Mi must be an even number. Hence we may choose

the weights in pairs, say (ωi
j1
, ωi

j2
), in the same way as in the one-dimensional

case (cf. (14)). More specifically, we number the vectors in Ei in such a manner

that the first Mi/2 ones form a subset of Ei whose vectors do not have any

vector opposite to it in this subset, and from Mi/2 + 1 up to Mi the vectors in

the complementary subset consisting of corresponding opposite vectors. In so

doing the weights satisfy:





−ωi
j1

li
j1

W i
j1

+ ωi
j2

li
j2

W i
j2

= 0

ωi
j1

W i
j1

+ ωi
j2

W i
j2

=
W i

j1
+ W i

j2

N + 2
,

(15)

for all pairs ( j1, j2) ∈ {1, . . . , Mi/2} × {Mi/2 + 1, . . . , Mi }, such that

ei
j1

+ ei
j2

= 0. Notice that the set of weights determined by solving (15) trivially

satisfy both (12) and (5).

Next we assume that E−
i 6= E+

i (or equivalently, Ei 6= E+
i ). In this case we

have Ki > Mi , and we number the Ki − Mi vectors in Ei that do not belong

to E+
i from Mi + 1 up to Ki in an arbitrary order, say ei

k , k = Mi + 1, . . . , Ki .

By assumption the intersection of S̄i with the half straight line with origin at

Pi and oriented in the sense and direction of ei
k for k > Mi , cannot be an edge

Pi Pk j with j ≤ Mi . Letting the segment Pi Qi
k be such intersection, where Qi

k is

necessarily a point of the boundary of Si , it follows that it is contained in either

a single N -simplex of Si for N = 2 or N = 3, or in a common face of exactly

two neighboring tetrahedra for N = 3. In any case, the vector leading from

Pi to Qi
k , for k = Mi + 1, . . . , Ki , still denoted by lik , is a non trivial convex

combination of either exactly N edge vectors li
j with 1 ≤ j ≤ Mi pertaining to

the same N -simplex of Si , or of two such edge vectors pertaining to a common

face of two neighboring tetrahedra of Si . Let J be the number of such edge
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vectors, i.e., either J = N for N = 2 or N = 3, or J = 2 for N = 3 only, and

Pkml
, for l = 1, . . . , J with 1 ≤ ml ≤ Mi , be the vertices of Si whose convex

combination yields li
k for k = Mi + 1, . . . , Ki . Let us denote the modulus of lik

by li
k , for k = Mi + 1, . . . , Ki too. In so doing we have:

li
k =

J∑

l=1

αk
l li

ml
, k = Mi + 1, . . . , Ki , (16)

where the αk
l ’s for l = 1, . . . , J , are coefficients of a non trivial convex

combination, that is, 0 < αk
l < 1, l = 1, . . . , J and k = Mi + 1, . . . , Ki ,

with
∑J

l=1 αk
l = 1.

Now we momentarily assign to each node Pk j of Si different from Pi , and to

each point Qi
j , j = Mi + 1, . . . , Ki , the same measure fraction, say

W̃ i
j :=

N5i

(N + 1)Ki
,

and the weight

ω̃i
j :=

Ki

N + 2
×

[
Ki∑

k=1

li
j

l i
k

]−1

.

Thanks to the fact that
Ki∑

j=1

ei
j = 0 by construction, we necessarily have:

Ki∑

j=1

ω̃i
j W̃

i
j l

i
j = 0, (17)

together with
Ki∑

j=1

ω̃i
j W̃

i
j =

N5i

(N + 1)(N + 2)
, (18)

as one can easily check.

Now we replace in (17) the li
k’s for k = Mi + 1, . . . , Ki , by the expression

given by (16). Then rearranging the terms in the resulting expression, we estab-

lish that relation (12) holds for weights ωi
j defined in the following manner:

ωi
j =

Ci W̃ i
j

(
ω̃i

j + δi
j

)

W i
j

, for j = 1, . . . , Mi . (19)
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In (19) Ci is a normalizing constant allowing (5) to hold. Notice that, provided

the weight increments δi
j are all non-negative, the value of Ci is strictly positive.

The values of δi
j in turn, simply account for the sum of the contributions of li

j

for a given j ≤ Mi , to the vectors li
k for k > Mi , expressed by (16), respectively

multiplied by ω̃i
k , and the corresponding convex combination coefficient. More

specifically we have,

δi
j =

Ki∑

k=Mi +1

βk
j ω̃

i
k (20)

where βk
j = 0 if Qi

k does not belong to Si ∩ Sk j and βk
j = αk

l for the pertaining

convex combination coefficients in (16), that is, all the αk
l ’s such that ml = j .

Notice that by construction (5) holds for the weights ωi
j defined by (19)-(20).

An important result that holds in connection with the above construction is

Theorem 4.1. The weights generated in the way prescribed in this sub-section

are all bounded below by a strictly positive constant ω independent of the mesh

step size, whatever the mesh one might consider in the quasi-uniform family of

meshes in use.

Proof. The case where Ki = Mi is trivial and hence we give a detailed proof

only for the case Ki > Mi .

First of all we note that

(N + 2)ω̃
j
i ≥

[
min

1≤k≤Ki
lk
i

]
(l j

i )−1 ≥ hminh−1.

Next from (20) and (5) we have,

N5i

(N + 1)(N + 2)
=

Mi∑

j=1

W̃ j
i

(
ω̃

j
i + δ

j
i

)
Ci . (21)

Since

δ
j
i ≤

Ki∑

k=Mi +1

ω̃k
i ≤

h(Ki − Mi )

(N + 2)hmin

and from (18) it holds that
Mi∑

j=1

ω̃
j
i W̃ j

i ≤
N5i

(N + 1)(N + 2)
, taking into account
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(21) we obtain,

Ci ≥
1

1 +
Mi (Ki − Mi )h

ki hmin

. (22)

It follows from (22) that for a suitable mesh independent constant c0 we have

Ci ≥ c0 ∀i . Indeed Ki ≤ 2Mi and for no mesh of the quasi-uniform family of

meshes {Th}h under consideration, Mi exceeds the value c−N , where c is a mesh

independent constant such that ρ ≥ ch for every h, ρ being the minimum over

the elements of Th of the radii of the largest inscribed balls in the elements of

Th for a given h (cf. [3]).

Finally, since δ
j
i > 0 for all i, j we have,

ω
j
i ≥

c0hminW̃ j
i

(N + 2)hW j
i

≥
c0

N + 2

(
hmin

h

)N+1

. (23)

It immediately follows from (23) that there exists a suitable mesh independent

strictly positive constant cN such that

ω
j
i ≥ cN ∀i ∈ {1, . . . Ih} and ∀ j ∈ {1, . . . , Mi }. (24)

�

Remark 4.2. (24) clearly indicates that cN may play the role of the parameter

ω in the relations (9) and (11). However for very distorted meshes such a value of

ω may be largely under-evaluated, and for this reason in practical computations

it is advisable to determine this parameter simply as the minimum of all the

ω
j
i ’s for a given mesh, keeping in mind that, according to (24) such a value is

necessarily bounded below away from zero independently of the mesh size.

4.2 A second set of weights

Here we consider again the sets E+
i and E−

i . The case where E−
i = E+

i is to

be treated in the same manner as above. Hence we may assume that E+
i 6= E−

i .

Distinguishing eventually coincident vectors in E−
i and E+

i , we put together all

the vectors in both sets. Otherwise stated we are dealing with a set of exactly

2Mi vectors not necessarily distinct, say E
′

i := {ei
j }

2Mi
j=1, where the first Mi

vectors are those of E+
i and the last Mi vectors are given by ei

j+Mi
:= −ei

j ,
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for j = 1, ∙ ∙ ∙ , Mi . Now let the segment Pi Qi
k be the intersection of S̄i with

the half straight line with origin at Pi and oriented in the sense and direction of

ei
k for k > Mi , Qi

k being necessarily a point of the boundary of Si . It follows

that Pi Qi
k either coincides with an edge Pi Pk j , where Pk j is a vertex of Si , or

is contained in either a single N -simplex of Si for N = 2 or N = 3, or in a

common face of exactly two neighboring tetrahedra for N = 3. In any case, the

vector leading from Pi to Qi
k , for k = Mi + 1, ∙ ∙ ∙ , 2Mi , still denoted by li

k , is

a convex combination of at most N edge vectors li
j with 1 ≤ j ≤ Mi pertaining

to the same N -simplex of Si . Let J be the number of such edge vectors, i.e.,

J = 1 if Qi
k coincides with a given vertex of Si , J = 2 for N = 3 only if Qi

k is

contained in a common face of two neighboring tetrahedra of Si , or J = N for

N = 2 or N = 3 otherwise. Let Pkml
, for l = 1, ∙ ∙ ∙ , J with 1 ≤ ml ≤ Mi , be

the vertices of Si whose convex combination yields lik for k = Mi +1, ∙ ∙ ∙ , 2Mi .

Here again we denote the modulus of lik by li
k , for k = Mi + 1, ∙ ∙ ∙ , 2Mi too.

In so doing we have:

li
k =

J∑

l=1

αk
l li

ml
, k = Mi + 1, ∙ ∙ ∙ , 2Mi , (25)

where the αk
l ’s for l = 1, ∙ ∙ ∙ , J , are coefficients of a convex combination, that

is, 0 ≤ αk
l ≤ 1, l = 1, ∙ ∙ ∙ , J and k = Mi + 1, ∙ ∙ ∙ , 2Mi , with

J∑

l=1
αk

l = 1.

Now we assign to each point Qi
k , k = Mi + 1, ∙ ∙ ∙ , 2Mi the measure frac-

tion W i
k = W i

k−Mi
, and the weight ω̃i

k =
li
k−Mi

li
k

ω̃i
k−Mi

, where ω̃i
j are provisional

weights respectively associated with the vertices Pk j of Si different from Pi

satisfying ω̃i
k + ω̃i

k−Mi
=

1

N + 2
. Then similarly to the case of (15) we neces-

sarily have:
2Mi∑

j=1

ω̃i
j W

i
j l

i
j = 0, (26)

together with
2Mi∑

j=1

ω̃i
j W

i
j =

N5i

(N + 1)(N + 2)
, (27)

as one can easily check.
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Now we replace in (26) the lik’s for k = Mi + 1, ∙ ∙ ∙ , 2Mi , by the expres-

sion given by (25). Then rearranging the terms in the resulting expression, we

establish that relation (12) holds for weights ωi
j defined in the following manner:

ωi
j = Ci (ω̃

i
j + δi

j ), for j = 1, . . . , Mi . (28)

In (28) Ci is a normalizing constant allowing (5) to hold. Notice that, provided

the weight increments δi
j are all non-negative, the value of Ci is strictly positive.

The values of δi
j in turn, simply account for the sum of the contributions of li

j

for a given j ≤ Mi , to the vectors li
k for k > Mi , expressed by (25), respectively

multiplied by ω̃i
k , and the corresponding convex combination coefficient. More

specifically we have,

δi
j =

2Mi∑

k=Mi +1

βk
j ω̃

i
k (29)

where βk
j = 0 if Qi

k does not belong to Si ∩ Sk j and βk
j = αk

l for the pertaining

convex combination coefficients in (25), that is, all the αk
l ’s such that ml = j .

Notice that by construction (5) holds for the weights ωi
j defined by (28)-(29).

By arguments in all similar to those in the proof of Theorem 4.1 we can prove,

Theorem 4.3. The weights generated in the way prescribed in this sub-section

are all bounded below by a strictly positive constant ω independent of the mesh

step size, whatever the mesh one might consider in the quasi-uniform family of

meshes in use.

Remark 4.4. The pairs of expressions (19)-(20) and (28)-(29) defining two

a priori different sets of weights ω
j
i attempt to take into account three main

factors playing a role in the influence of the vector l j
i in equation (12). First

of all its modulus, since the smaller it is, the larger must be the corresponding

weight. Next the associated measure fraction W j
i , which goes in the same sense

as l j
i . Finally the increments δ

j
i , which introduce the necessary adjustment in the

weight values, in order to take into account the eventual existence of vectors in

Li roughly opposite to l j
i , that is, making angles with it close to π . In this sense

we may assert that the above described procedure for determining the ω
j
i ’s, can

be viewed as both close to optimal choices of the weights of our method, and

straightforward manners to compute them.
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5 Implementation and Numerical Aspects

It is not difficult to figure out from the construction of the sets of weights de-

scribed in the last Section, that both choices give rise to a straightforward im-

plementation of the method. Nevertheless we would like to point out that it is

wiser to assemble node by node both the weighted mass matrix and the matrix

generated by the discretisation of the convection-diffusion operator, instead of

the usual element-by-element procedure. All that is needed for this purpose is a

table of node numbers and an associated integer pointer vector having as many

components as there are nodes. In the table the series of numbers of the neigh-

bors of each inner node are successively stored, while in the pointer vector the

i − th component contains the position in the table corresponding to the first

neighbor of the i − th inner node, thereby allowing to uniquely identify all the

series of neighbors in the table.

Next we check the performance of the method studied in this paper as compared

to a well-established technique to deal with dominant convection in convection-

diffusion problems, namely, the least squares formulation. Here the latter is

implemented in connection with the Crank-Nicholson scheme for the time-

integration, as described in [5]. This comparative study is illustrated by means

of some results extracted from [8], in the framework of a test-problem described

below, where uniform meshes are used, thereby allowing the use of weights all

equal to 1/(N + 2).

Take � to be the unit square (0, 1)× (0, 1) and a space discretisation based on

a uniform L × L mesh in which every square cell is subdivided into two triangles

by means of the diagonal parallel to the line x1 = x2. We take T = 0.1 and

ν = 10−k , for k = 2 and k = 5, and a = (1/π; 1/π). For this choice the Péclet

number equals 10k/π . An exact solution is considered to be a function with a

double boundary layer in the neighborhood of the edges given by x1 = 1 and

x2 = 1. More specifically we take

u(x1, x2, t) = e−t
[
s(x1) sin(πx2) + s(x2) sin(πx1)

]

where for z ∈ [0, 1],

s(z) :=

[
e

π2ν−1
πν − 1

]
eπ z + (eπ − 1)e

(π2ν−1)(1−z)
πν

e
2π2ν−1

πν − 1
.
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Equation (1) has effectively the above solution, provided the right hand side

is given by f (x1, x2, t) = e−t [s(x1) cos(πx2) + s(x2) cos(πx1)], and the pre-

scribed initial and boundary values are those of u.

In self explanatory Tables 1 through 4 we summarize the results generated by

both methods in the solution of the above test problem, by showing both L2 and

L∞ relative errors.

L Weighted explicit method Least-squares formulation

16 0.27550 × 10+0 0.74477 × 10−1

32 0.13929 × 10+0 0.20806 × 10−1

64 0.68628 × 10−1 0.53658 × 10−2

128 0.50245 × 10−1 0.13526 × 10−2

Table 1 – Relative error of u in the norm of L2(�) for t=0.1 with Pé = 0.3183 × 102.

L Weighted explicit method Least-squares formulation

16 0.84379 × 10+0 0.10739 × 10+0

32 0.40427 × 10+0 0.33655 × 10−1

64 0.21973 × 10+0 0.78437 × 10−2

128 0.16351 × 10+0 0.19133 × 10−2

Table 2 – Maximum relative error of u in � for t=0.1 with Pé = 0.3183 × 102.

Observation of Tables 1 and 2 leads to the conclusion that both methods being

compared simulate correctly thicker boundary layers, that is, those corresponding

to a moderate Péclet number close to 102. Moreover, as one can infer from the

above results, our scheme is much less accurate than the least-squares formulation

in this case. This is quite natural for the latter is a second order method in the

L2-norm, and empirically in the L∞-norm too, whereas the former is a quasi first

order method in the L∞-norm (cf. [7]). Nevertheless the least-squares approach

failed completely in the case of a thin boundary layer corresponding to Pé roughly

equal to 105, as clearly indicated in Tables 3 and 4, while our explicit scheme

showed a much better behavior. However even so the errors in the maximum

norm are not so small. In this respect it is worthwhile commenting that such

results are to be expected. Indeed the maximum error values tend to occur

precisely in the interior of the thin boundary layer, which cannot be reached by
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any numerical method, at least not for the degree of mesh refinement used in

the above test.

L Weighted explicit method Least-squares formulation

16 0.16682 × 10+0 0.18919 × 10+0

32 0.14754 × 10+0 0.20459 × 10+0

64 0.12560 × 10+0 0.27201 × 10+0

128 0.99616 × 10−1 0.29258 × 10+0

Table 3 – Relative error of u in the norm of L2(�) for t =0.1 with Pé = 0.3183 × 105.

L Weighted explicit method Least-squares formulation

16 0.33093 × 10+0 0.88493 × 10+0

32 0.32787 × 10+0 0.16663 × 10+1

64 0.32539 × 10+0 0.23959 × 10+1

128 0.32244 × 10+0 0.23286 × 10+1

Table 4 – Maximum relative error of u in � for t=0.1 with Pé = 0.3183 × 105.
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