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Abstract. The nonlinear conjugate gradient method is a very useful technique for solving

large scale minimization problems and has wide applications in many fields. In this paper, we

present a new algorithm of nonlinear conjugate gradient method with strong convergence for

unconstrained minimization problems. The new algorithm can generate an adequate trust region

radius automatically at each iteration and has global convergence and linear convergence rate

under somemild conditions. Numerical results show that the new algorithm is efficient in practical

computation and superior to other similar methods in many situations.
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1 Introduction

Consider an unconstrained minimization problem

min f (x), x ∈ Rn, (1)

where Rn is an n-dimensional Euclidean space and f : Rn −→ R is a continu-
ously differentiable function.
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When n is very large (for example, n > 106) the related problem is called

large scale minimization problem. In order to solve large scale minimization

problems, we need to design special algorithms that avoid the high storage and

computation cost of some matrices.

The conjugate gradient method is a suitable approach to solving large scale

minimization problems. For strictly convex quadratic objective functions, the

conjugate gradient method with exact line searches has the finite convergence

property. If the objective function is not a quadratic or the inexact line searches

are used, the conjugate gradient method has no finite convergence property or

even no global convergence property [6, 20].

When the conjugate gradient method is used to minimize non-quadratic ob-

jective functions, the related algorithm is called the nonlinear conjugate gradient

method [17, 18]. There has beenmuch literature to study the nonlinear conjugate

gradient methods [3, 4, 5]. Meanwhile, some new nonlinear conjugate gradient

methods have appeared [8, 11].

The conjugate gradient method has the form

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (2)

where x0 is an initial point, αk is a step size, and dk can be taken as

dk =
{

−gk, k = 0;
−gk + βkdk−1, k ≥ 1, (3)

in which gk = ∇ f (xk). Different βk will determine different conjugate gradient
methods. Some famous formulae for βk are as follows.

βFR = ‖gk‖2
‖gk−1‖2 ,

(
Fletcher-Reeves [10]

)
(4)

β PRP = gTk (gk − gk−1)
‖gk−1‖2 ,

(
Polak-Ribiére-Polyak [15, 16]

)
(5)

βHS = gTk (gk − gk−1)
dTk−1(gk − gk−1) ,

(
Hestenes-Stiefiel [12]

)
(6)

βCD = − ‖gk‖2
dTk−1gk−1

,
(
Conjugate-Descent [11]

)
(7)
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βDY = ‖gk‖2
dTk−1(gk − gk−1) ,

(
Dai-Yuan [16]

)
(8)

βLS = −g
T
k (gk − gk−1)
dTk−1gk−1

.
(
Liu-Storey [13]

)
(9)

Although some conjugate gradient methods have good numerical performance

in solving large scale minimization problems, they have no global convergence

in some situations [6]. We often have two questions. Whether can we construct a

conjugate gradient method that has both global convergence and good numerical

performance in practical computation? Whether can we design a conjugate

gradient method that is suitable to solve ill-conditioned minimization problems

(the Hessian of objective functions at a stationary point is ill-conditioned)?

Yuan and Stoer [19] studied the conjugate gradient method on a subspace

and obtained a new conjugate gradient method. In their algorithm, the search

directionwas taken from the subspace span{gk, dk−1} at the kth iteration (k ≥ 1),
i.e.,

dk = γkgk + βkdk−1, (10)

where γk and βk are parameters.

Motivated by [19], we can apply the trust region technique to the conjugate

gradient method and propose a new algorithm of nonlinear conjugate gradient

methods. This new algorithm has both global convergence and good numerical

performance in practical computation. Theoretical analysis andnumerical results

show that the proposed algorithm is promising and can solve some ill-conditioned

minimization problems.

The paper is organized as follows. Section 1 is the introduction. In Section 2,

we introduce the new conjugate gradientmethod. In Sections 3 and 4, we analyze

the global convergence and convergence rate of the new method. Numerical

results are reported in Section 5.

2 New Algorithm

We first assume that

(H1) The objective function f (x) has a lower bound on Rn .
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(H2) The gradient function g(x) = ∇ f (x) of the objective function f (x) is
Lipschitz continuous on an open convex set B that contains the level set

L(x0) = {x | f (x) ≤ f (x0)}, i.e., there exists L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ B. (11)

Lemma 2.1. Assume that (H2) holds and xk, xk + dk ∈ B, then

f (xk + dk) − fk ≤ gTk dk + 1

2
L‖dk‖2. (12)

Proof. The proof is easy to obtain from mean value theorem and here is omit-

ted. �

Algorithm (A)

Step 0. Choose parameters µ ∈ (0, 1), ρ ∈ (0, 1) and M0 � L0 > 0; given

initial point x0 ∈ Rn , set k := 0.

Step 1. If ‖gk‖ = 0 then stop else go to Step 2.

Step 2. xk+1 = xk + dk(αk), where αk is the largest one in {1, ρ, ρ2, . . . , }
such that

fk − f (xk + dk(α))

qk(0) − qk(dk(α))
≥ µ, (13)

in which

dk(α) =
{

−γ gk, k = 0;
−γ gk + βdk−1, k ≥ 1, (14)

and (γ, β)T ∈ R2 is a solution to

min qk(dk(α)) = fk + gTk dk(α) + 1

2
Lk‖dk(α)‖2, s.t. ‖dk(α)‖

≤ α‖gk‖
Lk

.

(15)

Step 3.

Lk+1 = max

(
L0,min

( |(gk+1 − gk)T (xk+1 − xk)|
‖xk+1 − xk‖2 ,M0

))
; (16)
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or

Lk+1 = max

(
L0,min

(‖gk+1 − gk‖
‖xk+1 − xk‖ ,M0

))
; (17)

or

Lk+1 = max

(
L0,min

( ‖gk+1 − gk‖2
|(gk+1 − gk)T (xk+1 − xk)| ,M0

))
; (18)

Step 4. Set k := k + 1 and goto Step 1.

Remark 2.1. In Algorithm (A), the main task is to solve (15). In fact, if k = 0

then the problem (15) has a solution γ = α/Lk . If k ≥ 1 then the problem (5)

has the solution

y = (γ, β)T =




− yk
Lk

, ‖yk‖ ≤ α‖gk‖;

− α‖gk‖
Lk‖yk‖ yk, ‖yk‖ > α‖gk‖,

(19)

where yk = (γ ′, β ′)T is a solution of the equations in two variables


‖gk‖2γ − (gTk dk−1)β = ‖gk‖2,
−(gTk dk−1)γ + ‖dk−1‖2β = −gTk dk−1.

(20)

Moreover Lk is an approximation to the Lipschitz constant L of the gradient
of the objective function. If we set β ≡ 0 then Algorithm (A) is very similar to

BB method [1, 7]. However, Algorithm (A) has global convergence.

Lemma 2.2. If (H2) holds then

L0 ≤ Lk ≤ max(L ,M0). (21)

In fact, by the Cauchy-Schwartz inequality, we have

|(gk+1 − gk)T (xk+1 − xk)|
‖xk+1 − xk‖2 ≤ ‖gk+1 − gk‖

‖xk+1 − xk‖ ≤ ‖gk+1 − gk‖2
|(gk+1 − gk)T (xk+1 − xk) ,
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and thus, Lk+1 should be in the interval[ |(gk+1 − gk)T (xk+1 − xk)|
‖xk+1 − xk‖2 ,

‖gk+1 − gk‖2
|(gk+1 − gk)T (xk+1 − xk)

]
.

Generally, we take

Lk+1 = ‖gk+1 − gk‖
‖xk+1 − xk‖

in practical computation.

3 Global convergence

Lemma 3.2. Assume that (H1) and (H2) hold, then

qk(0) − qk(dk(α)) ≥ 1

2
α‖gk‖2/Lk . (22)

Proof. Set dk(α) = −γ gk such that ‖dk(α)‖ = α‖gk‖/Lk , then dk(α) is a

feasible solution to (15). By noting α ∈ (0, 1] and dk(α) being an optimal

solution to (15), we have

qk(0) − qk(dk(α)) ≥ qk(0) − qk(dk(α))

= −gTk dk(α) − 1

2
Lk‖dk(α)‖2

= α‖gk‖2/Lk − 1

2
α2‖gk‖2/Lk

≥ 1

2
α‖gk‖2/Lk .

�

Theorem 3.1. Assume that (H1) and (H2) hold. Algorithm (A) generates an
infinite sequence {xk}. Then

lim
k→∞

‖gk‖ = 0. (23)

Proof. It is easy to obtain from (H1), (H2) and Lemmas 2.1, 2.2 and 3.1, that∣∣∣∣ fk − f (xk + dk(α)

qk(0) − qk(dk(α))
− 1
∣∣∣∣ =

∣∣∣∣ fk − f (xk + dk(α)) − qk(0) + qk(dk(α))

qk(0) − qk(dk(α)

∣∣∣∣
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≤
1
2
L‖dk(α)‖ + 1

2
Lk‖dk(α)‖2

1
2
α‖gk‖2/Lk

≤ 2max(L ,M0)‖dk(α)‖2
α‖gk‖2/Lk

≤ 2max(L ,M0)α
Lk

≤ 2max(L ,M0)
L0

α

→ 0(α → 0).

This shows that if α ≤ (1− µ)L0
2max(L ,M0)

then we have
fk − f (xk + dk(α)

qk(0) − qk(dk(α))
≥ µ.

Therefore, there exists η0 > 0 such that αk ≥ η0. By Lemma 3.2 and the

procedure of Algorithm (A), we have

fk − f (xk + dk(αk)) ≥ µ[qk(0) − qk(dk(αk))]
≥ 1

2
µα‖gk‖2/Lk

≥ 1

2
µη0‖gk‖2/max(L ,M0).

By (H1) and the above inequality, we assert that { fk} is a monotone decreasing
number sequence and has a lower bound. Therefore, { fk} has a limit and thus,

1

2
µη0/max(L ,M0)

+∞∑
k=0

‖gk‖2 ≤ f0 − lim
k→∞

fk < +∞,

which implies that (23) holds. �

4 Linear convergence rate

We further assume that

(H3) The sequence {xk} generated by Algorithm (A) converges to x∗, ∇2 f (x∗)
is a positive definite matrix and f (x) is twice continuously differentiable
on N (x∗, ε0) = {x | ‖x − x∗‖ < ε0}.
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Lemma 4.1. Assume that (H3) holds. Then there exist m ′, M ′ and ε with
0 < m ′ ≤ M ′ and ε ≤ ε0 such that

m′‖y‖2 ≤ yT∇2 f (x)y ≤ M ′‖y‖2, ∀x, y ∈ N (x∗, ε); (24)

1

2
m′‖x − x∗‖2 ≤ f (x) − f (x∗) ≤ 1

2
M ′‖x − x∗‖2, ∀x ∈ N (x∗, ε); (25)

M ′‖x − y‖2 ≥ (g(x) − g(y))T (x − y) ≥ m′‖x − y‖2, ∀x, y ∈ N (x∗, ε); (26)

and thus

M ′‖x − x∗‖2 ≥ g(x)T (x − x∗) ≥ m′‖x − x∗‖2, ∀x ∈ N (x∗, ε). (27)

By (27) and (26) we can also obtain, from Cauchy-Schwartz inequality, that

M ′‖x − x∗‖ ≥ ‖g(x)‖ ≥ m ′‖x − x∗‖, ∀x ∈ N (x∗, ε), (28)

and
‖g(x) − g(y)‖ ≤ M ′‖x − y‖, ∀x, y ∈ N (x∗, ε). (29)

Its proof can be seen from the literature (e.g. [11]).

Lemma 4.2. Assume that (H3) holds and Algorithm (A) generates an infinite
sequence {xk}. Then

η0 = inf∀k
{
αk
}

> 0.

Proof. Without loss of generality, suppose that x0 ∈ N (x∗, ε). By Lemma 4.1
it follows that (H1) and (H2) hold. By the proof of Theorem 3.1, as long as

α ≤ (1− µ)L0
2max(L ,M0)

,

we have
fk − f (xk + pk(α))

qk(0) − qk(yk(α))
− 1 ≥ −2max(L ,M0)

L0
α.

Therefore,
fk − f (xk + pk(α))

qk(0) − qk(yk(α))
≥ µ,

which shows that there exists η0:

0 < η0 ≤ (1− µ)L0
2max(L ,M0)

such that αk ≥ η0. The proof is finished. �
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Theorem 4.1. If the conditions of Lemma 4.2 hold, then {xk} converges to x∗

at least R-linearly.

Proof. By the proof of Theorem 3.1 and Lemma 4.2, and noting Lemmas 2.2

and 4.1, we have

fk − fk+1 ≥ µ[qk(0) − qk(pk)] ≥ µαk

2Lk
‖gk‖2

≥ µη0

2max(L ,M0)
‖gk‖2 = η‖gk‖2 ≥ ηm ′2‖xk − x∗‖2

≥ 2ηm ′2

M ′ ( fk − f ∗),

where

η = µη0

2max(L ,M0)
.

By setting

θ = m ′
√
2η

M ′ ,

we can prove that θ < 1. In fact, since m ′ ≤ L ≤ max(L ,M0) and η0 ≤ 1, by

the definition of η, we obtain

θ2 = 2m ′2η
M ′ ≤ 2m ′2µη0

2max(L ,M0)M ′ ≤ µ < 1.

By setting

ω =
√
1− θ2,

(obviously ω < 1), we obtain that

fk+1 − f ∗ ≤ (
1− θ2

)(
fk − f ∗)

= ω2
(
fk − f ∗) ≤ . . .

≤ ω2(k−k
′)( fk′+1 − f ∗).

By Lemma 4.1 we have

‖xk+1 − x∗‖2 ≤ 2

m ′
(
fk+1 − f ∗)

≤ ω2(k−k
′) 2
(
fk′+1 − f ∗)
m ′ ,
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and thus,

‖xk+1−x∗‖ ≤ ωk−k
′
√
2( fk′+1 − f ∗)

m ′ , i.e., ‖xk−x∗‖ ≤ ωk

√
2( fk′+1 − f ∗)
m ′ω2(k′+1)

.

We finally have

lim
k→∞

‖xk − x∗‖1/k ≤ ω < 1,

which shows that {xk} converges to x∗ at least R-linearly. �

5 Numerical results

We choose the following numerical examples from [2, 9, 14] to test the new

conjugate gradient method.

Problem 1. Penalty function I (problem (23) in [14])

f (x) =
n∑
i=1
10−5(xi − 1)2 +

[( n∑
i=1
x2i

)
− 1

4

]2
, [x0]i = i.

Problem 2. Variable dimensioned function (problem (25) in [14])

f (x) =
n∑
i=1

(xi − 1)2 +
[ n∑
i=1
i(xi − 1)

]2
+
[ n∑
i=1
i(xi − 1)

]4
,

[x0]i = 1− i/n.

Problem 3. Trigonometric function (problem (26) in [14])

f (x) =
n∑
i=1

[
n −

n∑
j=1
cos(x j ) + i(1− cos(xi )) − sin(xi )

]2
,

[x0]i = 1/n.

Problem 4. A penalty function (problem (18) in [2])

f (x) = 1+
n∑
i=1
xi + 103

(
1−

n∑
i=1
1/xi
)2

+ 103
(
1−

n∑
i=1
i/xi
)2

,

[x0]i = 1.
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Problem 5. Extended Rosenbrock function (problem (21) in [14])

f (x) =
n∑
i=1

[
100(x2i−x2i−1)2+(1−x2i−1)2

]
, [x0]2i−1 = −1.2, [x0]2i = 1.

Problem 6. Penalty function II (modification of problem (24) in [14])

f (x) = (x1 − 0.2)2 + 10−5
n∑
i=2

[
exp
( xi
m

)
+ exp

( xi−1
m

)
− yi
]2

+ 10−5
2n−1∑
i=n+1

[
exp
( xi−n+1

m

)
− exp

(−1
m

)]2
+



 n∑
i=1

(n − i + 1)x2i


− 1


2

,

yi = exp

(
i
m

)
+ exp

(
i − 1
m

)
, [x0]i = 0.5, m = n

10
.

Problem 7. Brown almost linear function (problem (27) in [14])

f (x) =
n−1∑
i=1

[
xi +

n∑
j=1

−(n + 1)
]2

+
[( n∏

i=1

)
− 1
]2

, [x0]i = 0.5.

Problem 8. Linear function-rank 1 (problem (33) in [14], with modified initial

values)

f (x) =
m∑
i=1

[
i
( n∑
j=1

j x j
)

− 1
]2

(m ≥ n), [x0]i = 1/ i.

In the numerical experiment, we set the parameters µ = 0.013, ρ = 0.5,

L0 = 0.00001 and M0 = 1030. We use Matlab 6.1 to program the procedure

and stop criterion is

‖gk‖ ≤ 10−8‖g0‖.
The numerical results are summarized in Table 1. Strong Wolfe line search is

used in the traditional conjugate gradient methods such as FR, PRP, CD, DY,

HS and LS.

Strong Wolfe line serach. αk is defined by

f (xk + αdk) − fk ≤ µαgTk dk, (30)
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T n NM PRP HS FR CD DY LS

1
104 29/63 37/78 17/58 37/78 37/78 37/78 37/78

5000 29/55 37/75 40/78 37/75 37/75 37/75 37/75

2
104 33/72 fail fail 37/128 37/128 37/128 fail

5000 28/64 fail fail 37/121 37/121 37/121 fail

3
1000 19/38 23/42 35/74 19/40 29/50 25/46 24/45

500 24/40 29/49 fail 30/49 36/56 27/46 31/51

4
104 32/76 39/96 fail 38/80 38/80 38/80 fail

5000 23/55 40/85 37/76 41/83 39/79 40/80 fail

5
104 28/52 fail 36/87 37/69 32/58 33/62 35/72

5000 21/48 fail 27/67 32/72 30/69 26/57 27/71

6
104 25/53 29/66 28/61 28/53 26/64 28/53 22/78

5000 18/45 26/74 27/72 24/69 29/68 27/83 22/72

7
104 26/51 fail fail 28/60 28/72 28/72 fail

5000 21/51 fail fail 25/63 fail 24/58 fail

8
104 28/69 35/76 fail 34/72 33/73 32/69 fail

5000 18/48 26/57 27/67 23/62 29/35 28/72 27/46

CPU – 178s – – 336s >275s 234s –

Table 1 – Number of iterations and functional evaluations.

and

|g(xk + αdk)T dk | ≤ −σgTk dk, (31)

in which

µ = 0.25 and σ = 0.75.

In Table 1, a pair of numbers denote the number of iterations and functional

evaluations. The symbol “fail” means that the corresponding conjugate gradient

method fails in solving the problem. “CPU” denotes the total CPU time of the

corresponding algorithm for solving all the problems. It can be seen fromTable 1

that the new nonlinear conjugate gradient method (NM) is effective in practical

computation and superior (total CPU time (seconds)) to other similar methods

in many situations. Moreover, PRP, HS and LS may fail to converge in solving

some problems, while NM always converges in a stable manner when solving

the mentioned problems. The new method has the strong convergence property

and is more stable than FR, CD and DY conjugate gradient methods.
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Numerical results also show that the proposed new method has the best nu-

merical performance in practical computation. Meanwhile, the Lischitz constant

estimation of the derivative of objective functions plays an important role in the

new method.

6 Conclusion

In this paper, we presented a new nonlinear conjugate gradient method with

strong convergence for unconstrained minimization problems. The new method

can generate an adequate trust region radius automatically at each iteration and

have global convergence and linear convergence rate under somemild conditions.

Numerical results showed that the new conjugate gradient method is effective in

practical computation and superior to other similar conjugate gradient methods

in many situations.
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