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Abstract. In this work, we are interested in obtaining existence, uniqueness of the solution
and an approximate numerical solution for the model of linear thermoelasticity with moving
boundary. We apply finite element method with finite difference for evolution in time to obtain
an approximate numerical solution. Some numerical experiments were presented to show the

moving boundary'’s effects for problems in linear thermoelasticity.
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1 Introduction

Let Q; = {(x,t) e R% a(t) < x < B(t), 0<t < T} be the non-cylindrical
domain with boundary

o= fe®, BO) x {t)

O<t<T
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440 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

and consider the following problem:
[ 92u 92U 00

_ ~Z o, V (X, 1) €

52 ax2 +m i X, 1) € Q¢

96 926 92u

— —k— =0, VX, t) e Q,
ot Naxz T gxat * 1) € Q

(1
U=9=0, V(X,t)eZt,

au

U(X, O) = UO(X), E(X’ 0) = U1(X),
i 0(x,0) =609(X); «a(0) <x < B(0).

Existence and uniqueness of linear and nonlinear elasticity in a bounded or
an unbounded cylindrical domain, has been studied by several authors, among
them, [4] and [5].

In this work, we will investigate existence, uniqueness and approximate so-

lution of the problemI(). We will also show the influence of moving boundary
employing numerical examples. For this we consider the following hypotheses:

H1: «, B € C3([0, T); R),
with 0 < yp = OrRLnT y(t), where y(t) = B(t) — a(t),

H2: 3k; € R, such that,
O<ki<1l—(a/)+7'(Hy)°, for 0<t<T and 0<y<1,

H3: k> 0, and n1.n, > 0.

We will now consider a change of variables to transform the dor@giimto a
cylindrical domainQ. Observe that, whe(x, t) varies inQ; the point(y, t) of
R?, with y = (x — «(t))/y (t) varies in the cylinde® = (0, 1) x (0, T). Thus,
we define the application

T :Q—>Q=(0,1)x(0T)

X —a(t) ’ t). (1)
y(®

The applicationZ” belongs toC? and its inversel’ ~ is alsoC2. The transfor-
mation of a moving boundary domain to a domain with fixed boundary has been
employed elsewhere (see [2, 10, 11]).

00 (.0 =
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M.A. RINCON, B.S. SANTOS and J. LIMACO 441

Doing the change of variable(y,t) = u(a(t) + y()y,t) and¢(y,t) =
O(x(t) + y(t)y, t) and applying to the problema)( we obtain the following
equivalent problem defined in a fixed cylindrical domain:

9% 9 A

G2 gy (A v )+ 05
+ag(y. )% +aa(y. 2 =0, in Q

a¢p 82¢ ¢

" o bl(t) >+ bz('[)8 at + ba(y, )

+b4(t) v T bs(y. t)2 8yz =0, in Q

v=¢ =0, Yy, t) e &,

ov

v(y, 0) = vo(y), ﬁ(y, 0) = vi(y),

#(Y, 0) = ¢o(y), for O0<y<1
where
bi(t) = k/y ()2, ba(t) = m2/v (1) , ba(y.t) = —(@'(t) + ¥' Oy /¥ (1),

2
ba(®) = —v'®/y 2. bs(y.1) = ba(y /¥ () . &yt =1/y®? = (baty. 1)
RO =n/r®.  @wED=20.0.  a.b=—-" O+ ON/O.

Let((,)), |l - land(, ), |- |, be respectively the scalar product and the norms
in H}(0, 1) andL?(0, 1). We denote by (t, v, w) andb(t, v, w) the bilinear
forms, continuous, symmetric and coercive, definedifii0, 1) by

, O, w) = s —_— ,
1 1 y a ay y

. (2)
bl(t, v, w) = / bl(t)a—v a—w dy
0 ay

2 Existence and uniqueness

We shall first establish the existence and uniqueness of problgim Theorem 2
as auxiliary and then prove the following Theorem 1 of the original problém (
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442 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

Theorem 1. Under the hypothesd$il), (H2) and (H3) and given the initial
data
{Uo, 6o} € Hy(Q0) N H*(Q0), U1 € Hy(R),

there exist functionéu; 0} : Q¢ — R, solution of Problengl) in Q, satisfying
the following conditions:

1. ue L®O, T; HH Q) NH2()), U € L=, T; HI (),
u” e L0, T; L2(2y)),

2.0 € L20, T; H(Q0) N H2(Q)), 6" € L20, T; HH ().
Theorem 2. Under the hypothesd$il), (H2) and (H3) and given the initial
data
{vo, ¢o} € H3(0,1) N H?(0,1), w3 € Hy(0, 1),

there exists functionf; ¢} : Q — R, solution of Problengll) in Q, satisfying
the following conditions:

1. v € L®(0, T; H}(0, 1) N H2(0, 1)), v’ € L>(0, T; H(O, 1)),
v” € L*®(0, T; L?(0, 1)),

2. ¢ € L2(0, T; H(0,1)) N H2(0,1), ¢’ € L%(0, T; HZ(O, 1)).
Proof of Theorem 2. To prove the theorem, we introduce the approximate so-
lutions. LetT > 0 and denote by, the subspace spanneday;, wo, ..., wm},

where{w,, A,; v =1, ---m} are solutions of the spectral probldw;, v)) =
p(wi, v), Yo € H(0, 1). If {vm; ¢m} € Vi then it can be represented by

Um = Zdvm(t)wu(y)’ ¢m = Z gvm(t)wv(y) (3)

v=1 v=1
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Let us considefvm; ¢m} solutions of the system of ordinary differential equa-
tions,

d
(Vs w) + a4 (t, vm, w) + & (i; w)

v’ 0
+ <a3 vm, w) + (@;ﬂ, w) =0,
ay ay

v’ dbm
(¢hy, w) + by (t, Ppm, w)+b2( aU;’w) N (%%,w)

ainy
n (2b43ﬂ, w> + (bg,aﬂ, a—w) —0,
ay ay ay

um(0) = vom — vo, iN HF(O, 1) N H3(0, 1),

V(0) = vim = v1 N Hol(O, 1),

¢m(0) = gom — do In  Hg(0, 1) N H*(0, 1),

wherew € Vy,. The system (lIl) has local solution in the intervél T.,). To
extend the local solution to the interv@, T) independent o, the following
estimates are necessary:

A priori estimate

Takingw = v, andw = ¢n, in the equation (l1l) and (Ill),, respectively, we
get

Ll + @t om vl (S i)
/ 4)
+ (agaal;”,v;n) + (m%,v&) =0,
%%wmﬁ + bu(t, pm, pm) + bz(%ﬂﬁm) + (b3a;;i;’¢m) -
+ 2b4(%"“,¢m) + (bsaaiy'“,%) =0

Comp. Appl. Math., Vol. 24, N. 3, 2005



444 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

Note that, we have the following relations:

ai(t, vm, v, = %% a(t, vm, vm) — l<a188v;1 , 2—1;),

(g vn) =~ in(0m).

(g o) = =Lt ©
(b2 0) = 2 1o

\(b 88';’“ a;’;)\ < Cluml + ba(t, . P

Multiplying (4) by (n2/n1), adding it to (5) and using (6) we have

d
2 gt (12l 2t v, o)+ 2 imP?) <+ Bict, 6 )

(7)
< C(lvmP? + lvoml? + |¢m|2).

Knowing thata;(t, v, w) and by(t, v, w) are coercive forms, by integrating
(7) and applying the Gronwall’s inequality, we get

t
[l? + llomll + [l +/ I6mll? = ca(Jvanl® + llvamll® + [goml) €. (8)
0
Second estimate

Taking the derivative with respect tpof approximate system (I4),, and also
w = vy, w= ¢, respectively, we obtain

a "
( /// //) +a1(t Umv //)+a2< gbym r/;]>+<a3h v//)

/

+((ag+a4)aav n) +a(t, v, m)+(a28¢y, ) (@
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and

ds(gn, ¢h) +b1<t,¢;n,¢;q>+bz(a;—/"/‘,¢5) + (20 0

+ @0+ b2 " ) - (%,a‘pm)

a d
y ya (10)
v
+ B ) + (D5 1) + 2045 07)
(b 2m, 20m) _ g
dy Iy
We also have the following relations:
/ " 1 !/ / /
ai(t, vy, vy) = 2 dt al(t vm vm) al(t, Ums Um)>
8U;T/1 7"\ _ )/ "2
(a3 ay ,Um) - 7|Um| ’
d /,duvm dvp ,dum vy, , vy, dvp,
a.l(t Um, Um) = dt (ala—y, a—y) — (ala_y, a_y) - (a‘l 8y s a_y)»
/ / 11)
0Pm 4 _ m.by vy, (
3-2( Wﬂ Um> = __772 (W’ ¢m),

(ba 5 S ¢m):}%|¢:n|2

dvm vy
‘( ™ 20| < Clloml? + 32t vy, v
4

ala_y’ ay
Multiplying (9) by (n1/12), adding it to (10) and using (11), we obtain

N2 ,0vm vy,
o dt{| vl? 2t v o)+ (25 ) + |¢m|}

+ bi(t, B D) < C (llvmll? + Nl + [Vinl® + lpmll® + [dml?) -

(12)

From (ll1)y 5, vy, (0)|? and |¢/,(0)|? are bounded. Hence, by integrating (12)
with respect and applying the Gronwall’'s inequality, we get

t
LI + 2 + |¢;n|2+fo 1612 < C. (13)
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446 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

Third estimate

Takingw = — 8%vy,/dy? andw = — 3%¢m/dy?, in the approximate system
(1) 1 o, we have

92 92 9 92
y y

0 2 Kl 2 ay » ayz
(14)
v/, 9%um dvm  0%vm
a s T T Ao AL T oo = O
+(38y 8y2)+<a48y 8y2>
and
(=) = o ~52) =)
m» ayz 1 9 ms 8y2 2 ay ) ayz
(15)
vm 3% vm  3%¢m
b4 —, — bs——, — =0
+ 4<8y’ 8y2>+( ay 8y3)
Note that, we have the following equalities:
8%vm Vm dum da; dvm 9%um
aft ) =a(t 50 50 + (5 5 %)
9% Ipm Ipm
_ZOmy ZPm  IPm 16
bl(ta ¢m, ayz ) b].(ta 8y ’ 8y ) ( )
(b dvm _33¢m> B (b 3%Um 32¢m) B (8_bs dum 82¢m)
ay  ay3 /) \Tay2 ay? oy oy ay? /)

From (14), (15) and (16) and sinag(t, v, w) andb, (t, v, w) are coercive forms,
we obtain

aZv 2 4 !/

sy | = 0o (IomlP + il + ol + lom ). (17)
32¢m 2 72 2 "2 /12 2

oz | = O (0l + 9l + i + g + el ). (18)

The estimates obtained (8), (13), (17) and(18), permit us to pass the limits
in the approximate system (lil} in the Galerkin method and hence, we have
proved the existence of solutiofis, ¢} in the sense defined in Theorem 2.
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Unigueness of solution

Let {0, ¢} and {7, ¢} be two solutions of Problem (Il). Them= & — ¥ and
® = ¢ — ¢ are also solutions of Problem (1N, with null initial conditions. Then,
multiplying the equation (l1),, respectively by(ni/n2)v and¢, we obtain

t
W2+ ol + 12 < C/o (102 + 112 + [1?). (29)

From Gronwall Lemma, we havie'|? + ||v]|> + |¢|?> = 0 and therefore, we
conclude that = ¢ = Oforall0 <t < T. This completes the proof of
Theorem 2. O

The original problem (1)

Now let us restate the previous results for the original problem (I) in order to
prove Theorem 1.

Proof of Theorem 1. Let{v, ¢} be a solution of Problerdl ), with initial data
given by

w0(y) = Uo((0) + ¥(Oy) . do(¥) = bo((0) + ¥ (O))

0(y) = Us(€(0) + yOy) + («'©) + ' ©Oy) U(«(® + y ).

Consider the functionsi(x,t) = v(y,t) ando(x,t) = ¢(y,t), wherex =

a(t) + y(t)y. To verify thatu(x, t) andd(x, t), under the hypotheses of Theo-
rem 1, are a solution of problem (I), it is sufficient to observe that the mapping:
X, t) > (X—a)/y , t) of the domainQ; into Q = (0, 1) x (0, T) is of class

C?. Since that

| v _ 19 06 _ 96
Toax2 oy ay?’ Mox = 23y’
5 , 0 (a av)+a 3% n 8v+ 1 0%
. =v — —|\a1— —+ —=—
ay \May) T Boyar THMay T 2ay2
020 92 9 0 9
3. k—zzbl—q;, —:—¢+b3—¢,
ax ay at ot dy
92u 0%v v
4. 4,

gt~ Zayat T Moy
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448 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

and from problem (Il) we also have thit, 6} satisfies the problem (I).

The regularity offv(y, t), ¢ (y, t)} given by Theorem 2 implies thati(x, t),
6(x, t)} is a solution of problem (I) and the uniqueness of the solution of problem
() is a direct consequence of the uniqueness of problem (11). O

3 Approximate solution

Our goal in this section is the numerical implementation of approximate solu-
tions. To obtain the numerical approximate solutions we will use both finite
element method and finite difference method. Moreover, some numerical ex-
periments will be presented to analyze the effect of the moving boundary in the
thermoelasticity system.

For convenience, our numerical analysis using finite element method approx-
imation will be based on the equivalent problem (lI) in the rectangular domain,
instead of the problem (1), for which the domain depends on time. We will con-
sider, in numerical simulations, the case in which the following change in the
boundary functionsy(t) = —K(t) and(t) = K (t), is assumed.

Note that, now we have

Q={x.t) eR*% x=K()y, ye (=11, te (0, T)} (20)
being the non-cylindrical domain with boundary
me= | (=K, K®) x {t},
O<t<T

and consequently we have the fixed cylindrical dom@ie= (-1, 1) x (O, T).
In this way we obtain the following relation between the functions:

uix,t) = t) = <Lt) and
X, ) =vy,t) =v KD

(21)

M&U=¢MU=¢(%%J)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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3.1 \Variational form of the problem

Let us consider the following variational form, given Gyl ), ,,

0 v’
(v, w) + au(t, vm, w)+a2<ai;,w) + (as Um, w)

0
a Y (22)
Um
+ <a48—y, w) =0
and
, 8v§n dPm
(@ w) + Ba(t, $rn, w) + o - w) + <b38_y’ w)
0 0 0 (23)
Um Um w
+ 2b4(a—y, U)) — (b58—y, a—y) = O, Yw € Vm,
where now, using (20), the functiobsanda; are given by
by = k/K?(t), by = n2/K(1), bs = —K'(H)y/K (1),
by = —K'(t)/K3(t), bs=—by/K(t), a =1/K3t)—b3 (24
ax = n1/K(1), ag = 2Dz, as = —K"(t)y/K(1).

Galerkin method and approximation

Consider the functionfvm; ¢m} € Vi defined in (3). Takingy = ¢;(y) and
substituting in (22) and (23), we obtain the system of ordinary equations, given

by
Ad/(t) + (B(t) n E(t))d(t) + (@C)gt) + D(t) d'(t) = O,

(25)
Ag® + (b1F + G )g®) + (52000 + (20C + R®) )d(t) =0,

Comp. Appl. Math., Vol. 24, N. 3, 2005



450 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

where

1 1 S0 So
A=/l<pi(y) @j(y) dy, B(t):/ ay @i (Y) 9pj(y) dy

ay ay
1 o 1 i
C=/ # ) @j(y) dy, D(t)=/ ag %) ej(y) dy,
—1 oy -1 ay (26)
1 dwi 1 i Qi
Et) = /1a4—¢5;y) gy dy, F= fl_sz;;y) _¢5;y) dy
L dgiy) Lo dgi(y) 9 (y)
®) Laay sy dy. R [1 s L ay

In (25) we have introduced

d(t) = (di(t), ---dm(®)'  and g(t) = (gu(t), -+ - gm(®)".

For numerical reasons, we can rewrite maigt) in the formB = B! 4+ B?
by using (24), where

1. 1 /1 dpi(y) ;i (y)

PO =Rz L, Ty ey W

2 K (t) / ) 8<p.(y) awy)
B(t) = K . (y)

3.2 Finite element approximation

We now present a semi-discrete formulation for problem (25) using the Galerkin
finite element method to discretize the spatial variable. We first applied the
method to find the approximate solution of the exact solutign t) of the Prob-
lem (I) and later, using the transformation (21) we can obtain the approximate
solution ofu(x, t) for the Problen{l) in the domainQ;.

First, we divide the domaif2 = (0, 1) in local domaire2; = (v, Yi+1). Then,
Q=int(U, @) andQ NQj =9, ifi # j. Infinite element method, the
@ are piecewise polynomials of some degreeiirand vanish ord2. More
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specifically, in this work, we have used the basis function

%, Vyelyi_1 ¥l
wi(y) = W Vy ey, Yitdl (27)
0, Vy ¢ [Yi-1, Yisl
where we are considering the uniformmedsk; h = yi.1—Vyi,i =1,2,...,m

in the discretization im-parts, with—1 =vy; < y» < --- < Ymy1 = 1. Note
that, if[i — j| > 2, then(g;, ;) = 0, and(d¢; /9y, d¢;/dy) = 0. Hence all the
matrices of system are tridiagonal.

Matrix calculation

For each?;, we have to calculate each integral defined in (26), using the functions
(24), (27) and its derivatives. Doing the calculus, we obtain, respectively the
following elements, for each tridiagonal mati B, B2, C, D, E, F, G and

R:

4 1
Qi = 3m’ &, i+1=8aj+1,i = 3m’
1 m 1 1 m
biizﬁ’ bl i+1 = b|+1|=_ﬂ’
2
2 m(K’) 2 4
o =Tz ()
2 2 mKH o 6y, 4
2 =bliai = Tg (F T+ )
1 1
Gi =0, ¢ jt1= 5 Cit+1,i = =5
4K/ K/ K/ 2 (28)
dij = 3mK’ diiy1= 3K< +3y|> dig i =—R(a +3Yi)7
2K" K" /4 K" /2
i =3k 8 HLT 6K( +3y‘) G+1i =~ 6K< +3y>
m
fi=m fiit1="fitei = )
2K’ K’ /4 K’ /2
Gii = 3m K’ 9,i+1= 6K( + y,) 9i+1,i=—6K< +3y.)
mK’y; K/’

i,i =— K2 ri,i+1=ri+1,i=ﬁ(1+m)4),

Comp. Appl. Math., Vol. 24, N. 3, 2005
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3.3 Finite difference method

The equation (25) represent a system of ordinary differential equations of second
order and due to matrices characteristics (dependent on the vanabhett)
of system, obtaining the solution is not always possible. So, we will apply a
numerical method to obtain the approximated solution for the system (25), using
the approximate Newmark’s Method (see, for instance, Hugles [7], pp 493).
Letd" = d(t,) andg" = g(t,) be the approximate solution of the exact solution
d(t) andg(t) of (25); 2, respectively, where we denote the discrete times in the
interval[O, T] byt, = nAt, n=20,1---N.
Fors > 1/4, with § € R, consider the following approximation

d" = sd™t 4+ (1 —28)d" +5d"t
(29)
g*n — (S gI’H—l + (1 _ 25)gn + 5gn—1’

and for the first and second derivative, we take the difference operator in the
following form

Tdn B dn+l _ dn—l
B 2At
n+1 _ 4n-1
g = 2AtgJ ’ )
52dn B dn+l —2dn + dnfl

At2
which, for this approximation the discrete error can be showed to be of order
O(At?).

Coupled system

For the systeni25), , at the discrete mesh poirtts= nAt, using (29) and (30),
we obtain the following coupled system:

~

A\n dn+l + §n gn+l — édn _ 6dn—1 _ Egn _ an—l

Kn gn+l + gn gn+l — _édn + Sdn—l _ ﬁgn + I'fgn—l

Comp. Appl. Math., Vol. 24, N. 3, 2005
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where,

At _
A" = A+ SAtA(BYH + — D", B" = aj 5At? C

G = 2A— Atz((l —28) (BY" + (BY)" + E”)

_ At
D" = A+ SAt3(BYH" — 7D”, E" = al (1—25)At’C

. R (32)
F" = a) sAt%C, K":EZC, §”=§+bQ5AtF

~

E"=at(2ic+R), D'=2cC

N ~ A
E“=At(b2(1—25)F+G“), Fr= 2 — b oAt F

To determine the solutiofd", g"}, the coupled system of algebraic equations
(31) may be solved by iteration, as follows: To start the iteration, we first take
n = 0in (31) and rewrite the system as

K0d1+’B‘oglz(’jodo_’D‘od—l_’E*ogo_l’:‘og—l
Kodl—l—ﬁoglz—éodo—5°d—1—E°g°+IE°g—1

where the right-hand side is determined by the (starting) values, since the exact
solutions{v(y, t); ¢(y, t)} are known at time = 0 and{v°; ¢°} are just the
initial values, i.ed® = v°() = v(,,0), @¢°=¢°) = ¢(., 0), where we have
used (3) and (27).

We can calculate an approximation far—*; g—} by the second order Taylor
extrapolation offv(., t); ¢ (., 1)} fromt® = 0, viz,

A 2
d1=d°— Atd'(0) + Tt d”(0), g t=g"— Atg(0), (33)
in which the values ofl’(0), d”0) andg’(0) are given by

9%v A

0
d'(0) = a—f 3.0 =nm). 4O =500, g0 =330,

Comp. Appl. Math., Vol. 24, N. 3, 2005



454 THERMOELASTICITY SYSTEM WITH MOVING BOUNDARY

calculated from the equatiofil ), and (Il ),, att® = 0 and the initial values
v9() = v(,,0) andg®() = ¢ (., 0).

The system may be solved uniquely fdt, g}, since its coefficient matrix is
nonsingular. Having determined the valyé% g'}, thenforn=1,2,--- N, we
obtain the approximate solutigd"+*, g"*} for the coupled system of algebraic
equations (31), which can be rewritten in the form of block matrix,

AB ][ o g
= (34)
Kn §n gn+l TN

where,
S = Cd"—-Dd"'-Eg"— Fg™! and
T" = —Cd"+ Dd" ' - E¢" + Fg"~

The system (34) may be solved uniquely, since the matrix is non-singular. In
order to solve the system we can use de Gauss Elimination, LU factorization,
(see [6, 9]) or Uzwa Method (see [6]).

Note that each square matrix of linear system igwf- 1)th order, since every
matrix defined by (32) is of ordefm — 1). So the linear system is of order
2(m—1) x 2(m — 1), with the coefficient block matrix and the right-hand side
known from the previous iteration.

Uncoupled system

Since{d", g"} must be solved simultaneously at each time step, the preceding
numerical scheme is computationally coupled. From the numerical standpoint
the coupled system is larger and hence harder to solve than an uncoupled system
involving only d™** or only g" at each time stef,. In order to get uncoupled
system, (see [1] and [12]), we replace the central difference by the backward
extrapolation for the first derivative,

/ _ i n n-1 n-2
d'(t) = 55 (3d —4d™1 4 d ) (35)
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then by substituting itin the syste(®5); , together with (29) and (30), we obtain,
after some simple calculation,

A‘n dn+l — §n dn — 6n gn-1_ Sn gn-q—l . En gn o fn gn—1

(36)
Kn gn-q—l — _gn d" + én gn-1_ f)“n dn-2_ En gn + IEn gn—l
where
AN _ 2ph ﬂ n Bn _ _ 2 _ n n n
A= A+sat?Bl + —- D" B"=2A- At*((1-20)B] + BJ +E"),
—~ A —~
C"= A+sat?B] - ?t D", D" =safat?C,
E" = (1-25)a)At2 C, F" = sajat?C,
an 1 n Bn 1 n n n (37)
A" = > A+ SbALF, B" = > (35 +4bjAt) C + AtR",
~ ~ 1~
C"=2b) C, D" =>C",
4
E”:At((l—25)b”F+G”) En =1 A soiatk
1 ’ 2 1 .

We start the iteration by taking= 0 in (36), and then takingh = 0 in (36)4,
to obtain
Kogl — _Bogo + Cod-1 — DOg-2 — Eogo + ﬁog—l
(38)
A\Odl — §0d0 . 60d—1 . 5091 _ E‘ogo _ |’:‘og—1

The terms on the right-hand side (88)1, now involve the value$d®, d—,
d=2, g% g~} which are known by (33) and the terd7? calculated by taking
n = 0in (35),

d=2 = —3d° +4d~1 + 2At d'(0) (39)

Therefore, the value oft is calculated in(38); and the value ofi* can be
determined from(38),. Now we can go to iteration steps = 1,2---, N
similarly, by first solving(36), then (36), alternatively in each step. In this
manner the numerical system is uncoupled in this computational scheme and we
obtain the valuegg”, d"} forn = 1, 2, --- N. These values together with the
starting values, constitute the finite element approximate solutions to the initial
boundary value problem of Proble(ih) .
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4 Numerical simulation

A numerical example will be given to illustrate some features of the present
model, using the method developed for the uncoupled system that is more effi-
cient. In the example, we need the constants), andk, which give rise to the
coupling of the parabolic and hyperbolic equation in the thermoelastic sytem
The constants are given by the following formulas

@ (3% + 2u)+/Bo K

N = ., me=In, K= ———.
! vO+2u)pcl? ? ! clvp(h+2p)

wherec is the specifiheat;« is the coefficient of thermalxq»ansion;R is the
thermal conductivity] = 2K (0) is the length of the stringy is the density of
the string;9y is the initial temperature; andu are the coefficients of Lamé,

B Ev s E

L+v)1-2v)’ 21+v)’
wherev is the coefficient of Poisson and E is the Young's modulus.

For the numerical example, these values will be calculated from the physical
properties ofaluminum In this case, we haveu = 26.24 x 10° and 1 =
5841 x 10°. Using the thermal and mechanical properties of aluminum, we
obtain the approximate values, = 0.164, n, = 0.161 andk = 0.177.

Let us consider in (29) the weighit= 0.5 and let @ = (—K(t), K(t)) be
divided intom subintervals, i.eh = 2/m and At = T/N, for different values
of N andT for the discrete time. To calculate the coefficients defined in (24) in
each step, the functioK (t) that defines the time dependence of the boundary
for the non-cylindrical domair®Q; in (20) must be given. In this example it is
given byK (t) = 1 — 1/ exp'™Y. Note that in this caseQ; tends toQ rapidly
ast increases. This particular function is taken in order to satisfy the hypothesis
H2, i.e, K'(t) = 1. From the physical point of view, we require that the speed
of the end points be less than the “characteristic” speed of the system.

Note that when only wave equations for small vibrations of elastic string or
beam equation, both with moving boundaries, the monotonicity of those func-
tions is not required (see [3], [8], [13]).

We consider the initial temperature, the initial position and velocity given by

"

do(y) = 0.0331—y?), wo(y) =0.057y*—1) and vi(y) =0. (40)
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In all the figures the space variable is the axjBy the change of variable
y = (x—a(t)/y®).

For Fig. 1-Fig. 4 we have usett = 0.03 andh = 0.02, withN = m = 100
andT = 3. Fig. 1 and Fig. 2, respectively, shows the temperat@xet) and
the displacemeni(x, t) in the midpointx = 0.

0.04 T T T

0.03

0.02

0.01

0

-0.01 L L L

0.06 | | |
0.04 | .
0.02 | .

0.02 i
-0.04
-0.06 ! ! !

Figure 2 — Displacement at midpoiat0, t).

Fig. 3and Fig. 4, show the approximate solutiéps, t*) andu(x, t*), inthe in-
terval[0, T] = [O, 3] for different values of*, t* = 0, 0.25, 0.75, 1.5, 2.25, 3.0.

Note that the interval of the boundary has varied frpr0.63, 0.63] to
[—0.98, 0.98].

To obtain Fig. 5-Fig. 8, we have uséd = 0.1 andh = 0.04. In Fig. 5 and
Fig. 6 the evolution of the displacement functiofx, t) is plotted, showing the
profile of the displacement, where time varies from 0 to 5 and O to 10, at 0.1
interval respectively.
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0.04

0.02

-0.02
-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 3 -0(x, t*) att* = 0, 0.25,0.75, 1.5, 2.25, 3.0.

0.06
0.04
0.02
0
-0.02
-0.04

-0.06
-1 -0.8 -06 -04 -02 0 02 04 06 08 1

Figure 4 —u(x, t*) att* = 0, 0.25,0.75, 1.5, 2.25, 3.0.

u(z,t)
0.04

0.03
s

0.02 £

L277777 1777 '.:
777 L1AT
0.01 AR AT

-0.01

Figure 5 — Displacement with 50 time steps.

In Fig. 7 and Fig. 8 the evolution of the temperature funcéion t) are plotted,
showing the profile of the temperature, where time varies from 0 to 5 and 0 to
10, at 0.1 interval respectively.
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Figure 8 — Temperature with 100 time steps.
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