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1 Introduction

We are interested in solving linear systems of equations,

Ax = b, (1)

where A ∈ Rn×n is not symmetric, (A + AT ) is positive (or negative) definite,

b ∈ Rn , and n is large. This kind of linear systems arise in many areas of

scientific computing. For example, when discretizing the two point boundary

value problems or the partial differential equations that frequently appear in oil-

reservoir engineering, in weather forecasting, or in electronic device modelling

among others, linear systems like (1) need to be solved (see, e.g., [1, 16]).

The well-known Richardson’s method (also known as Chebyshev method) and

its variations are characterized by using the residual vector, r(x) = b − Ax , as

search direction to solve linear systems iteratively (see, e.g., [7, 11, 12, 24, 26]).

In general, these variations of Richardson’s method have not been considered

to be competitive with Krylov subspace methods, which represent nowadays

the best-known options for solving (1), specially when combined with suitable

preconditioning strategies. For a review on Richardson’s method and variations

see [8, 29, 30].

Nevertheless, from a different perspective, solving linear systems of equations

can be seen as a particular (although very special) case of solving nonlinear

systems of equations. For nonlinear systems, some new iterative schemes have

recently been presented that use in a systematic way the residual vectors as search

directions [19, 20]. These low-memory ideas become effective, and competitive

with Newton-Krylov ([3, 9, 10, 18]) schemes for large-scale nonlinear systems,

when the step lengths are chosen in a suitable way.

In this work we combine and adapt, for linear systems, the ideas introduced in

[19, 20] for the nonlinear case. To be precise, we present in Section 2 a scheme

that takes advantage of the method presented in [19] for choosing the direction,

plus or minus the residual, depending on the sign of a Rayleigh quotient closely

related to the step length. It also takes advantage of the new globalization strategy

proposed and analyzed in [20] that allows the norm of the residual to decrease

non monotonically and still guarantees convergence.

It is worth noticing that since our proposal uses plus or minus the residual
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as search direction, then it can be viewed as a new variant of the well-known

Richardson’s method. However, there are significant new features. The most

important is the use of the spectral steplength choice, also known as the Barzilai-

Borwein choice, ([2, 13, 17, 22]) that has proved to yield fast local convergence

for the solution of nonlinear optimization problems ([4, 5, 6, 15, 23]). However,

this special choice of step size cannot guarantee global convergence by itself, as it

usually happens with other variations (see, e.g., [7, 11, 12, 24, 26]). For that, we

combine its use with a tolerant globalization strategy, that represents the second

new feature. In section 3 we present a preliminary numerical experimentation to

compare the proposed scheme with some variations on Richardson’s method, and

also with well-known and well-established Krylov subspace methods: GMRES

and BiCGSTAB, with and without preconditioning. In section 4 we present some

concluding remarks.

2 General algorithm and convergence

We now present our general algorithm for solving the minimization problem

min
x∈Rn

f (x) ≡ ‖g(x)‖2,

where

g(x) = Ax − b, (2)

and ‖ ∙ ‖ denotes, throughout this work, the Euclidian norm. The new algorithm

generates the iterates using plus or minus the residual vector as search direc-

tion, and a spectral steplength closely related to the Barzilai-Borwein choice of

steplength [2], as follows

xk+1 = xk + sgn(βk)(1/βk−1)rk,

where βk = (r t
k Ark)/(r t

krk), and rk = b − Axk = −g(xk) is the residual vec-

tor at xk . The use of the this steplength is inspired by the success obtained

recently for solving nonlinear systems of equations [19, 20]. Properties of the

spectral step length, αk+1 = (r t
krk)/(r t

k Ark), for the minimization of convex

quadratic functions were established in [22], and further analyzed in [13]. For a

review containing the more recent advances on spectral choices of the steplength,

see [17].
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To guarantee convergence, from any initial guess x0 and any positive initial

steplength 1/β0, the nonmonotone line search condition

f (xk+1) ≤ f (xk)+ ηk − γ λ2
k‖g(xk)‖

2, (3)

needs to be enforced at every k, for a 0 < λk ≤ 1. Obtaining λk via a backtracking

process to force (3) represents a globalization strategy that is inspired by the

proposition presented in [20], and requires some given parameters: {ηk}, γ , and

σmin < σmax. Let us assume that {ηk} is a given sequence such that ηk > 0 for

all k ∈ N (the set of natural numbers) and

∞∑

k=0

ηk = η <∞. (4)

Let us also assume that γ ∈ (0, 1) and 0 < σmin < σmax < 1.

Algorithm 2.1. Residual Algorithm 1 (RA1)

Given: x0 ∈ Rn , α0 > 0, γ ∈ (0, 1), 0 < σmin < σmax < 1, {ηk}k∈N such

that (4) holds. Set r0 = b − Ax0, and k = 0;

Step 1. If rk = 0, stop the process (successfully);

Step 2. Set βk = (r t
k Ark)/(r t

krk);

Step 3. If βk = 0, stop the process (unsuccessfully);

Step 4. (Backtracking process) Set λ← 1;

Step 5. If ‖rk − sgn(βk)(λ/αk)Ark‖2 ≤ ‖rk‖2 + ηk − γ λ2‖rk‖2 go to Step 7;

Step 6. Choose σ ∈ [σmin, σmax], set λ← σλ, and go to Step 5;

Step 7. Set λk = λ, xk+1 = xk + sgn(βk)(λ/αk)rk , and rk+1 = rk − sgn(βk)(λ/

αk)Ark ;

Step 8. Set αk+1 = |βk |, k = k + 1 and go to Step 1.

Remark 2.1. In practice, the parameters associated with the line search strategy

are chosen to reduce the number of backtrackings as much as possible while

keeping the convergence properties of the method. For example, the parameter

γ > 0 is chosen as a very small number (γ ≈ 1.D − 4), and ηk is chosen as a
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large number when k = 0 and then it is reduced as slow as possible making sure

that (4) holds (e.g., ηk = 104(1 − 10−6)k). Finally σmin < σmax are chosen as

classical safeguard parameters in the line search process (e.g., σmin = 0.1 and

σmax = 0.5).

Remark 2.2. For all k ∈ N, the following properties can be easily established:

(i) g(xk+1) = g(xk)− sgn(βk)(λk/αk)Ag(xk).

(ii) dk = sgn(βk)(1/αk)rk = − sgn(βk)(1/αk)g(xk).

(iii) f (xk + λdk) = ‖rk − sgn(βk)(λ/αk)Ark‖2.

(iv) ‖rk − (λ/αk) sgn(βk)Ark‖2 ≤ ‖rk‖2 + ηk − γ λ2‖rk‖2.

In order to present some convergence analysis for Algorithm 2.1, we first need

some technical results.

Proposition 2.1. Let {xk}k∈N be the sequence generated by Algorithm 2.1.

Then, dk is a descent direction for the function f , for all k ∈ N.

Proof. Since ∇ f (x) = 2At g(x), then we can write

∇ f (xk)
t dk = 2(g(xk)

t A)(− sgn(βk)(1/αk)g(xk))

= −2(g(xk)
t Ag(xk)) sgn(βk)(1/αk)

= −2(βk(g(xk)
t g(xk))) sgn(βk)(1/αk)

= −2(|βk |/αk)‖g(xk)‖
2 < 0, for k ∈ N.

This completes the proof. �

By Proposition 2.1 it is clear that Algorithm 2.1 can be viewed as an iterative

process for finding stationary points of f . In that sense, the convergence analysis

for Algorithm 2.1 consists in proving that the sequence of iterates {xk}k∈N is such

that limk→∞∇ f (xk) = 0.

First we need to establish that Algorithm 2.1 is well defined.

Proposition 2.2. Algorithm 2.1 is well defined.
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Proof. Since ηk > 0, then by the continuity of f (x), the condition

f (xk + λdk) ≤ f (xk)+ ηk − γ λ2‖g(xk)‖
2,

is equivalent to

‖rk − (λ/αk) sgn(βk)Ark‖
2 ≤ ‖rk‖

2 + ηk − γ λ2‖rk‖
2,

that holds for λ > 0 sufficiently small. �

Our next result guarantees that the whole sequence of iterates generated by

Algorithm 2.1 is contained in a subset of Rn .

Proposition 2.3. The sequence {xk}k∈N generated by Algorithm 2.1 is con-

tained in the set

80 =
{

x ∈ Rn : 0 ≤ f (x) ≤ f (x0)+ η
}
. (5)

Proof. Clearly f (xk) ≥ 0 for k ∈ N. Hence, it suffices to prove that f (xk) ≤

f (x0)+ η for k ∈ N. For that we first prove by induction that

f (xk) ≤ f (x0)+
k−1∑

i=0

ηi . (6)

Equation (6) holds for k = 1. Indeed, since λ1 satisfies (3) then

f (x1) ≤ f (x0)+ η0.

Let us suppose that (6) holds for k− 1 where k ≥ 2. We will show that (6) holds

for k. Using (3) and (6) we obtain

f (xk) ≤ f (xk−1)+ ηk−1 ≤ f (x0)+
k−2∑

i=0

ηi + ηk−1 = f (x0)+
k−1∑

i=0

ηi ,

which proves that (6) holds for k ≥ 2. Finally, using (4) and (6) it follows that,

for k ≥ 0:

f (xk+1) ≤ f (x0)+
k∑

i=0

ηi ≤ f (x0)+ η,

and the result is established. �

For our convergence results, we need the following two technical propositions.

The next one is presented and established in [14] as Lemma 3.3. We include it

here for the sake of completeness.
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Proposition 2.4. Let {ak}k∈N and {bk}k∈N be sequences of positive numbers

satisfying

ak+1 ≤ (1+ bk)ak + bk and
∞∑

k=0

bk <∞.

Then, {ak}k∈N converges.

Proposition 2.5. If {xk}k∈N is the sequence generated by Algorithm 2.1, then

∞∑

k=0

‖xk+1 − xk‖
2 <∞, (7)

and

lim
k→∞

λk‖g(xk)‖ = 0. (8)

Proof. Using Proposition 2.3 and the fact that 80 is clearly bounded,

{‖g(xk)‖}k∈N is also bounded. Since ‖xk+1 − xk‖ = λk‖g(xk)‖, then using

(3) we have that

‖xk+1 − xk‖
2 = λ2

k‖g(xk)‖
2 ≤

ηk

γ
+

1

γ

(
f (xk)− f (xk+1)

)
. (9)

Since ηk satisfies (4), adding in both sides of (9) it follows that

∞∑

k=0

‖xk+1 − xk‖
2 ≤

1

γ

∞∑

k=0

ηk +
1

γ

∞∑

k=0

(
f (xk)− f (xk+1)

)

≤
η + f (x0)

γ
<∞,

which implies that

lim
k→∞
‖xk+1 − xk‖ = 0,

and so

lim
k→∞

λk‖g(xk)‖ = 0.

Hence, the proof is complete. �

Proposition 2.6. If {xk}k∈N is the sequence generated by Algorithm 2.1, then

the sequence {‖g(xk)‖}k∈N converges.
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Proof. Since f (xk) ≥ 0 and (1 + ηk) ≥ 1, for all k ∈ N, then using (3) we

have that

f (xk+1) ≤ f (xk)+ ηk ≤ (1+ ηk) f (xk)+ ηk .

Setting ak = f (xk) and bk = ηk , then it can also be written as

ak+1 ≤ (1+ bk)ak + bk,

and
∑∞

k=0 bk < η < ∞. Therefore, by Proposition 2.4, the sequence {ak}k∈N
converges, i.e., the sequence { f (xk)}k∈N converges. Finally, since f (x) =

‖g(x)‖2, then the sequence {‖g(xk)‖}k∈N converges. �

We now present the main convergence result of this section. Theorem 2.1

shows that either the process terminates at a solution or it produces a sequence

{rk}k∈N for which limk→∞ r t
k Ark = 0.

Theorem 2.1. Algorithm 2.1 terminates at a finite iteration i where ri = 0, or

it generates a sequence {rk}k∈N such that

lim
k→∞

r t
k Ark = 0.

Proof. Let us assume that Algorithm 2.1 does not terminate at a finite iteration.

By continuity, it suffices to show that any accumulation point x̄ of the sequence

{xk}k∈N satisfies g(x̄)t Ag(x̄) = 0. Let x̄ be a accumulation point of {xk}k∈N.

Then, there exists an infinite set of indices R ⊂ N such that limk→∞,k∈R xk = x̄ .

From Proposition 2.5 we have that

lim
k→∞

λk‖g(xk)‖ = 0

that holds if

lim
k→∞
‖g(xk)‖ = 0, (10)

or if

lim inf
k→∞

λk = 0. (11)

If (10) holds, the result follows immediately.

Let us assume that (11) holds. Then, there exists an infinite set of indices

K = {k1, k2, k3, . . . } ⊆ N such that

lim
j→∞

λk j = 0.

Comp. Appl. Math., Vol. 27, N. 2, 2008
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If R ∩ K = ∅, then by Proposition 2.5

lim
k→∞,k∈R

‖g(xk)‖ = 0.

Therefore, the thesis of the theorem is established.

Without loss of generality, we can assume that K ⊆ R. By the way λk j is

chosen in Algorithm 2.1, there exists an index j̄ sufficiently large such that for

all j ≥ j̄ , there exists ρk j (0 < σmin ≤ ρk j ≤ σmax) for which λ = λk j /ρk j does

not satisfy condition (3), i.e.,

f

(

xk j +
λk j

ρk j

dk j

)

> f (xk j )+ ηk j − γ
λ2

k j

ρ2
k j

‖g(xk j )‖
2

≥ f (xk j )− γ
λ2

k j

ρ2
k j

‖g(xk j )‖
2.

Hence,

f
(

xk j +
λk j

ρk j
dk j

)
− f

(
xk j

)

λk j /ρk j

> −γ
λk j

ρk j

‖g(xk j )‖
2 ≥ −γ

λk j

σmin
‖g(xk j )‖

2.

By the Mean Value Theorem it follows that

∇ f
(
xk j + tk j dk j

)t
dk j > −γ

λk j

σmin
‖g(xk j )‖

2, for j ≥ j̄ , (12)

where tk j ∈ [0, λk j /ρk j ] tends to zero when j → ∞. By continuity and the

definitions of βk and dk , we obtain

lim
j→∞

dk j = − sgn
(

g(x̄)t Ag(x̄)

g(x̄)t g(x̄)

)
(1/ᾱ)g(x̄), (13)

where ᾱ = limk→∞,k∈K αk . We can assume that ᾱ > 0. If ᾱ = 0, then

by the definition of the αk , the thesis of the theorem is established. Setting

d̄ = lim j→∞ dk j and noticing that (xk j + tk j dk j )→ x̄ when j →∞, then taking

limits in (12) we have that

∇ f (x̄)t d̄ ≥ 0. (14)

Since ∇ f (x̄)t d̄ = 2g(x̄)t Ad̄ , ᾱ > 0, and ∇ f (x̄)t d̄ < 0, then by (13) and (14)

we obtain

g(x̄)t Ag(x̄) = 0.

This completes the proof. �

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 18:31 — page 160 — #10

160 NONSYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS

Theorem 2.1 guarantees that Algorithm 2.1 converges to a solution of (1)

whenever the Rayleigh quotient of A,

c(x) =
xt Ax

xt x
, x 6= 0, (15)

satisfies that |c(rk)| > 0, for k ≥ 1. If the matrix A is indefinite, then it could

happen that Algorithm 2.1 generates a sequence {rk}k∈N that converges to the

residual r̄ such that r̄ t Ar̄ = 0 and r̄ 6= 0.

In our next result, we show the convergence of the algorithm when the sym-

metric part of A, As = (At + A)/2, is positive definite, that appears in many

different applications. Of course, similar properties will hold when As is negative

definite.

Theorem 2.2. If the matrix As is positive definite, then Algorithm 2.1 termi-

nates at a finite iteration i where ri = 0, or it generates a sequence {rk}k∈N such

that

lim
k→∞

rk = 0.

Proof. Since As is positive definite, r t
k Ark = r t

k ASrk > 0, rk 6= 0, for all k ∈ N.

Then, by the Theorem 2.1 the Algorithm 2.1 terminates at a finite iteration i

where ri = 0, or it generates a sequence {rk}k∈N such that limk→∞ rk = 0. �

To be precise, the next proposition shows that if As is positive definite, then in

Algorithm 2.1 it holds that βk > 0 and dk = (1/αk)rk , for all k ∈ N.

Proposition 2.7. Let the matrix As be positive definite, and let αmin and αmax be

the smallest and the largest eigenvalues of As, respectively. Then the sequences

{βk}k∈N and {dk}k∈N, generated by Algorithm 2.1 satisfy that dk = (1/αk)rk,

for k ∈ N.

Proof. It is well-known that the Rayleigh quotient of A satisfies, for any x 6= 0,

0 < αmin ≤ c(x) ≤ αmax. (16)

By the definition of βk we have that

βk = c(rk) ≥ αmin > 0, for k ≥ 0.
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Moreover, since βk > 0 for k ≥ 0, then

dk = sgn(βk)(1/αk)rk = (1/αk)rk, for k ≥ 0. �

Proposition 2.7 guarantees that the choice dk = (1/αk)rk is a descent di-

rection, when As is positive definite. This yields a simplified version of the

algorithm for solving linear systems when the matrix has positive (or negative)

definite symmetric part. This simplified version of the algorithm will be re-

ferred, throughout the rest of this document, as the Residual Algorithm 2 (RA2),

for which βk = αk+1 = (r t
k Ark)/(r t

krk) and sgn(βk) = 1 for all k.

Remark 2.3.

(i) Algorithm RA2 is well defined.

(ii) The sequence {xk}k∈N generated by Algorithm RA2 is contained in 80.

(iii) Since αk+1 = c(rk) and c(x) satisfies (16), then

0 < αmin ≤ αk ≤ αmax, for k ≥ 1. (17)

Moreover,

0 < (λk/αk) ≤ σmaxα
−1
min, for k ≥ 1.

(iv) Since Algorithm RA2 is a simplified version of Algorithm 2.1 when As is

positive definite, then its convergence is established by Theorem 2.2.

3 Numerical experiments

We report on some numerical experiments that illustrate the performance of

algorithm RA2, presented and analyzed previously, for solving nonsymmetric

and positive (or negative) definite linear systems. In all experiments, computing

was done on a Pentium IV at 3.0 GHz with MATLAB 6.0, and we stop the

iterations when
‖rk‖

‖b‖
≤ ε, (18)

where 0 < ε � 1.

Comp. Appl. Math., Vol. 27, N. 2, 2008
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As we mentioned in the introduction, our proposal can be viewed as a new

variant of the well-known Richardson’s method, with some new features. First,

we will compare the behavior of algorithm RA2 with two different variations of

Richardson’s method, whose general iterative step from a given x0 is given by

xk+1 = xk + λkrk,

where the residual vectors can be obtained recursively as

rk+1 = rk − λArk .

It is well-known that if we choose the steplengths as the inverse of the eigenvalues

of A (i.e., λk = λ−1
i for 1 ≤ i ≤ n), then in exact arithmetic the process termi-

nates at the solution in at most n iterations (see [8] and references therein).

Due to roundoff errors, in practice, this process is repeated cyclically (i.e.,

λk = λ−1
i mod n for all k ≥ n). In our results, this cyclic scheme will be re-

ported as the ideal Richardson’s method.

A recent variation on Richardson’s method that has optimal properties con-

cerning the norm of the residual, is discussed by Brezinski [7] and chooses the

steplength as follows:

λk =
r T

k wk

wT
k wk

, (19)

where wk = Ark . This option will be referred in our results as the Optimal

Richardson’s Method (ORM).

For our first experiment, we set n = 100, b = rand(n, 1), ε = 10−16, and

the matrix

A = −Gallery (′lesp′, n).

The results for this experiment are shown in Figure 1. We observe that the ideal

Richardson’s method is numerically unstable and requires several cycles to ter-

minate the process. The ORM has a monotone behavior and it is numerically

stable, but requires more iterations than the RA2 algorithm to reach the same ac-

curacy. It is also worth noticing the nonmonotone behavior of the RA2 algorithm

that accounts for the fast convergence.

We now present a comparison on several problems with well-known Krylov

subspace methods. GMRES [25] and BiCGSTAB [28] are among the best-known

Comp. Appl. Math., Vol. 27, N. 2, 2008
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Figure 1 – Behavior of the ideal and the optimal Richadson’s method when compared

with the RA2 algorithm for A = −Gallery (′lesp′, 100).

Krylov iterative methods for solving large-scale non symmetric linear systems

(see, e.g., [27, 29]). Therefore, we compare the performance of algorithm RA2

with these two methods, and also with ORM, without preconditioning and also

taking advantage of two classical preconditioning strategies of general use: In-

complete LU (ILU) and SSOR. For the preconditioned version of ORM [7], the

search direction is given by zk = Crk , where C is the preconditioning matrix;

and the steplength is given by (19) where now wk = Azk . In the preconditioned

version of RA2 the residual is redefined as rk = C(b− Axk) for all k ≥ 0, where

once again C is the preconditioning matrix.

In all the experiments described here we use the Householder MATLAB im-

plementation of GMRES, based on [27, Alg. 6.11, page 172], with the restart

parameters m = 20 (GMRES(20)) and m = 40 (GMRES(40)), and the MAT-

LAB implementation of BiCGSTAB, based on [27, Alg. 7.7, page 234]. For
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all considered methods we use the vector x0 = 0 as the initial guess. For algo-

rithm RA2 we use the following parameters: α0 = ‖b‖, γ = 10−4, σmin = 0.1,

σmax = 0.5, and ηk = 104
(
1− 10−6

)k
. For choosing a new λ at Step 4, we use

the following procedure, described in [20]: given the current λc > 0, we set the

new λ > 0 as

λ =






σminλc, if λt < σminλc;

σmaxλc, if λt > σmaxλc;

λt , otherwise;

where

λt =
λ2

c f (xk)

f (xk + λcd)+ (2λc − 1) f (xk)
.

In the following tables, the process is stopped when (18) is attained, but it

can also be stopped prematurely for different reasons. We report the different

possible failures observed with different symbols as follows:

* : The method reaches the maximum (20000) number of iterations.

** : The method stagnates (three consecutive iterates are exactly the same).

*** : Overflow is observed while computing one of the internal scalars.

For our second experiment we consider a set of 10 test matrices, described

in Table 1, and we set the right hand side vector b = (1, 1, . . . , 1)t ∈ Rn . In

Table 1 we report the problem number (M), a brief description of the matrix, and

the MATLAB commands to generate it.

We summarize on Table 2 the behavior of GMRES(20), GMRES(40),

BICGSTAB, ORM, and RA2 without preconditioning. We have chosen ε =

10−10 in (18) for stopping the iterations. We report the matrix number (M) from

Table 1, the dimension of the problem (n); the number of iterations (Iter); and

the CPU time in seconds until convergence (T). GMRES(m) requires per iter-

ation one matrix-by-vector multiplication, solving one preconditioned system,

and computing 2(Iter mod m) inner products. BICGSTAB requires per iteration

two matrix-by-vector multiplications, solving one preconditioned system, and

computing 4 inner products. Finally, ORM and RA2 require per iteration one

matrix-by-vector multiplication, solving one preconditioned system, and com-

puting 2 inner products.
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M Description MATLAB Commands

1 Sparse adjacency matrix from NASA
airfoil.

MATLAB demo: airfoil

2 Singular Toeplitz lower Hessenberg
matrix

A=gallery(’chow’,n,1,1)

3 Circulant matrix A=gallery(’circul’,v), where v ∈ Rn

is such that

vi =






10−6, i = 1,

1, i = n/2,

−1, i = n,

0, otherwise.

4 Diagonally dominant, ill condi-
tioned, tridiagonal matrix

A=gallery(’dorr’,n,1)

5 Perturbed Jordan block A=gallery(’forsythe’,n,-1,2)

6 Matrix whose eigenvalues lie on a
vertical line in the complex plane

A=gallery(’hanowa’,n,n)

7 Jordan block A=gallery(’jordbloc’,n,2)

8 Tridiagonal matrix with real sensi-
tive eigenvalues

A = -gallery(’lesp’,n)

9 Pentadiagonal Toeplitz matrix A=gallery(’toeppen’,n,1,10,n,-10,-1)

10 Upper triangular matrix discussed by
Wilkinson and others

A=gallery(’triw’,n,-0.5,2)

Table 1 – First set of test matrices.

In Tables 3 and 4 we report the results for the matrices 4, 5, 6, 7, 8 and 9, when

we use the following two preconditioning strategies.

(A) Incomplete LU factorization with drop tolerance

The preconditioning matrix is obtained, in MATLAB, with the command

[L , U ] = luinc(A,0.5).

(B) The SSOR preconditioning strategy

The preconditioning matrix is given by

(D − ωE)D−1(D − ωF),
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where −E is the strict lower triangular part of A, −F is the strict upper

triangular part of A, and D is the diagonal part of A. We take ω = 1.

In this case, we set ε = 5× 10−15 in (18) for stopping the iterations. In Figure 2

we show the behavior of all considered methods when using preconditioning

strategy (A) for problems 5, 7 and 8; and in Figure 3 for problems 4, 5, 7 and 8

when using preconditioning strategy (B).

Table 2 – GMRES(20), GMRES(40), BICGSTAB, RA2, and ORM without precondi-

tioning.

GMRES(20) GMRES(40) BICGSTAB RA2 ORM

M n Iter T Iter T Iter T Iter T Iter T

4 50000 * * * * * * 3 0.088 2 0.094

5 500000 38 59.500 48 97.859 81 37.781 20 4.625 20 5.469

6 500000 1 0.715 1 0.715 1 0.715 2 0.547 1 0.438

7 500000 37 57.500 38 84.375 72 33.469 20 4.641 19 5.453

8 500000 21 34.359 21 35.438 46 22.969 10 2.516 11 3.391

9 500000 2 2.341 2 2.859 3 2.250 2 0.719 2 0.922

Table 3 – GMRES(20), GMRES(40), BICGSTAB, RA2, and ORM with precondition-

ing (A).

For our third experiment we explore the effect, on the convergence behavior

of RA2, produced by clustering the eigenvalues. For that we consider the right

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 18:31 — page 167 — #17

WILLIAM LA CRUZ and MARCOS RAYDAN 167

Table 4 – GMRES(20), GMRES(40), BICGSTAB, RA2, and ORM with precondition-

ing (B).
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Figure 2 – Behavior of all methods when using preconditioning techniques (A).

hand side vector b = (1, 1, . . . , 1)t and the matrix

A =











a11 −1

1 a22 −1
. . .

. . .
. . .

1 an−1,n−1 −1

1 ann











,
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Figure 3 – Behavior of all methods when using preconditioning techniques (B).

where n = 10000, aii = 3 + (i − 1)
(

αmax−3
n−1

)
, for i = 1, . . . , n, and αmax ≥ 3.

It is clear that the symmetric part of A is a diagonal matrix whose eigenvalues are

μi = aii , for i = 1, . . . , n. We consider the following three cases: (i) αmax = 10,

(ii) αmax = 1000, and (iii) αmax = 10000. We have chosen ε = 10−15 in (18) for

stopping the iterations.

Figure 4 shows the behavior of RA2, with and without preconditioning, for

the system Ax = b and each one of the cases (i), (ii) and (iii). We clearly

observe that clustering the eigenvalues of the symmetric part drastically reduce

the number of required iterations. We can also observe that preconditioning (A)

was more effective on cases (ii) and (iii), since the eigenvalues in case (i) are

already clustered. A similar behavior is observed when the clustering effect is

applied to ORM.

For our last test problem, we consider the second order centered-differences

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 18:31 — page 169 — #19

WILLIAM LA CRUZ and MARCOS RAYDAN 169

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
10

−20

10
−10

10
0

10
10

Iterations

‖rk‖

RA2 without preconditioning

(i)
(ii)
(iii)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
10

−20

10
−10

10
0

10
10

Iterations

‖rk‖

RA2 with preconditioning (A)

(i)
(ii)
(iii)

Figure 4 – Behavior of RA2 for solving Ax = b when clustering the eigenvalues for

each one of the cases (i), (ii) and (iii).

discretization of

−∇2u + γ (xux + yuy)+ βu = f, (20)

on the unit square, with homogeneous Dirichlet boundary conditions, u = 0,

on the border of the region. We set the parameters γ = 7100 and β = 100

to guarantee that the symmetric part of the matrix is positive definite. The

discretization grid has 71 internal nodes per axis producing an n × n matrix

where n = 5041. The right hand side vector is chosen such that the solution

vector is x = (1, 1 . . . , 1)t . Once again we compare GMRES(20), GMRES(40),

BICGSTAB, ORM, and RA2 with the preconditioning strategies (A) and (B).

In Table 5 we report the results obtained with GMRES, BICGSTAB, ORM,

and RA2 for solving problem (20), when using the preconditioning strategies

described in (A) and (B). We set ε = 10−13 in (18) for stopping the iterations.

In Figure 5 we show the behavior of all methods when using preconditioning

techniques (A) and (B) for solving (20).

We observe that, in general, RA2 is a robust method for solving non symmetric

linear systems whose symmetric part is positive (negative) definite. Moreover, it

is competitive with the well-known GMRES and BICGSTAB in computational
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GMRES(20) GMRES(40) BICGSTAB RA2 ORM

Strategy Iter T Iter T Iter T Iter T Iter T

(A) 400 3.297 481 5.094 ** ** 14 0.031 14 0.031

(B) 400 3.031 240 24.844 ** ** 10 0.984 10 0.906

Table 5 – GMRES(20), GMRES(40), BICGSTAB, RA2, and ORM for solving (20).
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Figure 5 – Behavior of all methods when using preconditioning techniques (A) and (B)

for solving (20).

cost and CPU time, without preconditioning. We also observe that RA2 and

ORM outperform GMRES and BICGSTAB when preconditioning strategies that

reduce the number of cluster of eigenvalues are incorporated.

4 Conclusions

We present a residual algorithm RA2 for solving large-scale nonsymmetric linear

systems when the symmetric part of the coefficient matrix is positive (or negative)

definite. Due to its simplicity for building the search direction, the method is very

easy to implement, memory requirements are minimal and, so, its use for solving

large-scale problems is attractive. MATLAB codes written by the authors are

available upon request.
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We have compared the performance of the new residual method, as well

as the Optimal Richardson Method (ORM), with the restarted GMRES and

BICGSTAB, on some test problems, without preconditioning and also using

two classical preconditioning strategies (ILU and SSOR). Our preliminary nu-

merical results indicate that using the residual direction with a suitable step

length can be competitive for solving large-scale problems, and preferable when

the eigenvalues are clustered by a preconditioning strategy. Many new precondi-

tioning techniques have been recently developed (see e.g., [27, 29] and references

therein) that possess the clustering property when dealing with nonsymmetric

matrices. In general, any preconditioning strategy that reduces the number of

cluster of eigenvalues of the coefficient matrix (suitable for Krylov-subspace

methods) should accelerate the convergence of the residual schemes considered

in this work. In that sense, the RA2 method can be viewed as an extension of the

preconditioned residual method, based on the Barzilai-Borwein choice of step

length, introduced in [21].

In order to explain the outstanding and perhaps unexpected good behavior of

RA2 and ORM when an effective preconditioner is applied, it is worth noticing

that if the preconditioning matrix C approaches A−1 then the steplength chosen

by RA2, as well as the one chosen by ORM, approaches 1. Consequently, both

preconditioned residual iterations tend to recover Newton’s method for finding

the root of the linear map C Ax −Cb = 0, which requires for C = A−1 only one

iteration to terminate at the solution.

For nonsymmetric systems with an indefinite symmetric part, the proposed

general scheme RA1 can not guarantee convergence to solutions of the linear

system, and usually convergence to points that satisfy limk→∞ r t
k Ark = 0 but

such that limk→∞ rk 6= 0, as predicted by Theorem 2.1, is observed in practice.

For this type of general linear systems, it would be interesting to analyze in the

near future the possible advantages of using ORM with suitable preconditioning

strategies.
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