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Abstract. A numerical moment method (NMM) is applied to study groundwater flow and solute

transport in a multiple-scale heterogeneous formation. The formation is composed of various

materials and conductivity distribution within each material is heterogeneous. The distribution of

materials in the study domain is characterized by an indicator function and the conductivity field

within each material is assumed to be statistically stationary. Based on this assumption, a general

expression is derived for the covariance function of the composite field in terms of the covariance

of the indicator variables and the statistical properties of the composite materials. The NMM is

used to investigate the effects of various uncertain parameters on flow and transport predictions

in two case studies. It is shown from the study results that the two-scale stochastic processes of

heterogeneity will both significantly influence the flow and transport predictions, especially for

the variances of hydraulic head and solute fluxes. This study also shows that the NMM can be

used to study flow and transport in complex subsurface environments. Therefore, the method may

be applicable to complex environmental projects.

Mathematical subject classification: 60H30, 60G60.
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1 Introduction

It is a well known that at a field scale, geological formations are heterogeneous,

and the groundwater flow and solute transport processes in the formation are

#570/03. Received: 24/IX/03. Accepted: 29/IV/04.



122 MODELING GROUNDWATER FLOW AND SOLUTE TRANSPORT

considerably affected by the heterogeneity of the formation properties. In the

last two decades, many stochastic theories have been developed for groundwater

flow and solute transport in heterogeneous porous media [e.g., Dagan, 1989;

Gelhar, 1993; Cushman, 1997; Zhang, 2002]. In development of the theories, it

is common to assume that the spatial distributions of the medium properties can

be characterized by one single correlation scale. This assumption was based on

some field studies [Hoeksema and Kitanitis, 1984; Gelhar, 1993], as well as on the

notion of the existence of a discrete hierarchy of scales of heterogeneity [Dagan,

1986], with disparity between the scales such that when modeling groundwater

flow and solute transport at one scale, variations at other scales can either be

averaged out (if other scales are much smaller), or be modeled as a deterministic

trend (if other scales are much larger). However, hydraulic properties of many

natural media exhibit heterogeneity at multi-scales [Wheatcraft and Tyler, 1998],

where the heterogeneity at any scale cannot be averaged out, nor be treated as a

deterministic trend.

The usual approach to dealing with multi-scale heterogeneity is simply to

increase the variance of stationary processes and not account for the structure of

the heterogeneity. This simplification leads to the increase of the variances of

hydraulic parameters like conductivity and make the stochastic solution invalid

since stochastic groundwater flow models usually rely on small σ 2
f , the variance

of log transformed conductivity.

In many applications, a random field may be composed of a number of sub-

fields. For example, a geologic formation may consist of several distinct geolog-

ical units (e.g., layers), each of which may be resulted from different geological

processes. Although the permeability of each geologic unit (or subunit) may

be a stationary process (field), it has different statistical moments than do its

neighboring units. Therefore, the permeability of the entire formation is not a

stationary field although that of each subunit is [Zhang, 2002]. In some cases, the

large-scale features, such as the locations of geological layers (or zones), can be

identified from measurements, only the spatial variability of medium properties,

such as the hydraulic conductivity, within each layer (or zone) need to be treated

as random processes. Solute transport in this kind of medium has been studied

[Zhang et al., 2000; Wu et al., 2003]. But in other cases, the geometries or
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boundaries of the large-scale features cannot be very well defined due to incom-

plete knowledge about them, they also need to be treated as random variables.

This kind of media are called multi-(or dual-) scale heterogeneous media. This

study focuses on the influence of the multi-scale heterogeneity on groundwater

flow and solute transport processes.

A medium with multi-scale heterogeneity is generally nonstationary (statisti-

cally non-omogeneous). Solute transport in a nonstationary permeability field

is a relatively new research area. Recently, a theoretical framework for solute

flux through spatially nonstationary flows in porous media has been developed

[Zhang et al., 2000; Wu et al., 2003]. The solute flux depends on the solute

travel time and transverse displacement at a fixed control plane. The solute flux

statistics (mean and variance) were derived using a Lagrangian framework and

were expressed in terms of the probability density functions (PDFs) of particle

travel time and transverse displacement. These PDFs were evaluated through

the first two moments of travel time and transverse displacement and the as-

sumed distribution function. This approach was applied to study solute transport

in multiscale media, where random heterogeneities exist at some small scale

while deterministic geological structures and patterns can be prescribed at some

larger scale. Lu and Zhang [2002] applied moment equation approach to study

groundwater flow in a multimodal heterogeneous medium, where the large-scale

heterogeneity, the distribution of the various media, is also stationary. In this

study, we will firstly extend the flow study to a multi-scale medium, then study

solute transport in this medium and also in a multimodal medium.

2 Mean and covariance of a log-hydraulic conductivity field
in a multiple-scale heterogeneous formation

Let us consider a formation composed of k distinct features (e.g., layers, zones,

or facies). The process of log hydraulic conductivity, Y (x) of the formation is

represented by a k-dimensional stochastic process, Z(x) = (Y1(x), �, Yk(x)′,
and the indicator, I (x), is represented by a process I (x) = (I1(x), �, Ik(x))′,
where the possible values of I (x) are Rk base vectors: e1.e2, �, ek, that is each

of e/s is a k-dimensional vector with an 1 on i’th coordinate and 0 on the rest

of the coordinates. The formulation in terms of the base vectors is easier for
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the definition of the final process Y (x) as a dot product (below), which is the

only reason we used it. Further, the probability that I (x) = e1 is p1(x), that

is p(I (x) = e1) = p1(x) for i = 1, . . . , k. The relationship between the two

stochastic processes are assumed to be mutual independent, which means that

I (x) is independent (as a process) from Z(x), and vice versa. The process of

Y (x) is defined as,

Y (x) =
k∑

i=1

Yi(x)Ii(x) (1)

Y (x) is a scalar product. This definition of Y (x) generalizes the processes de-

scribed by Rubin [1995] and Zhang [2002], where k = 2.

Under the condition of mutual independence between I and Z, we obtain the

mean of Y in a two-scale heterogeneous formation as

〈Y (x)〉 =
k∑

i=1

〈Yi(x)〉 pi(x) (2)

By definition, the covariance of Y at any two points, x and s, are expressed as

CY (x, s) = 〈[Y (x) − 〈Y (x)〉] [Y (x) − 〈Y (x)〉]〉
= 〈Y (x)Y (s)〉 − 〈Y (x)〉〈Y (x)〉 (3)

Based on (2), 〈Y (x)〉 〈Y (s)〉 can be derived as

〈Y (x)〉 〈Y (x)〉 =
k∑

i=1

〈Yi(x)〉 pi(x)

k∑
j=1

〈Yj (x)〉 pj(s)

=
k∑

i,j=1

〈Yi(x)〉 〈Yj (s)〉 pi(x)pj (s)

(4)

We define two notations,

pij (x, s) = p(I (x) = ei, I (s) = ej ) and

CY,ij (x, s) = 〈[Yi(x) − 〈Yi(x)〉] [Yj (s) − 〈Yj (s)〉]〉.
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Then, 〈Y (x)Y (s)〉 is derived as,

〈Y (x)Y (s)〉 =
k∑

i,j=1

〈Yi(x)Yj (s) | I (x) = ei, I (s) = ej 〉pij (x, s)

=
∑
i �=j

〈Yi(x)Yj (s)〉pij (x, s) +
k∑

i=1

〈Yi(x)Yi(s)〉pii(x, s)

(5)

In the derivation of (5), independence of Y and I is applied. Further, due to the

independence of Y ′
i and Y ′

j , where Y ′
l = Yl − 〈Yl〉(l = i, j), we can obtain

〈Y (x)Y (s)〉 =
∑
i �=j

〈Yi(x)〉〈Yj (s)〉pij (x, s)

+
k∑

i=1

{
CY,ii(x, s) + 〈Yi(x)〉〈Yi(s)〉

}
pii(x, s)

=
k∑

i,j=1

〈Yi(x)〉〈Yj (s)〉pij (x, s) +
k∑

i=1

CY,ii(x, s)pii(x, s)

(6)

From (4) and (6), the expression of CY (x, s) is obtained as

CY (x, s) =
k∑

i,j=1

〈Yi(x)〉〈Yj (s)〉pij (x, s) − pi(x)pj (s)

+
k∑

i=1

CY,ii(x, s)pii(x, s)

(7)

Equation (7) is the general expression of CY (x, s) without any assumption on the

structure of the process I . For a specific field site, we need to obtain the joint

probability, pij (x, s), from field investigations to calculate CY (x, s).
The correlation structure of the process I can be expressed as CI,ij (x, s) =

pij (x, s) − pi(x)pj (s). Equation (7) can be rewritten as

CY (x, s) =
k∑

i,j=1

〈Yi(x)〉〈Yj (s)〉CI,ij (x, s)

+
k∑

i=1

CY,ii(x, s)(CI,ii(x, s) + pi(x)pi(s))

(8)
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Equation (8) is the expression for the covariance function of the composite field

in terms of the covariance of the indicator variables and the properties of the

composite materials.

The expressions of conductivity covariance in two-scale heterogeneous media

in (7) and (8) are equivalent to those derived by Lu and Zhang [2002] and

generalize the previous studies on many specific cases [e.g., Zhang 2002]. By

setting x = s in (7), or (8), the variance of Y (x) is obtained as

σ 2
Y (x) =

k∑
i=1

pi(x)σ 2
Yi

(x) +
k∑

i=1

pi(x)〈Yi(x)〉2

−
k∑

i,j=1

pi(x)pj (x)〈Yi(x)〉〈Yj (x)〉
(9)

It is obvious that the distribution of Y (x) can be highly nonstationary even though

the distribution of Yi(x) in each subunit is stationary. If the two stochastic

processes of I (x) and Yi(x) are both stationary, then σ 2
Y will be a constant.

3 The statistics of hydraulic conductivity in special cases

The general expression of the velocity covariance in a two-scale heterogeneous

medium is very complicated. The expression can be greatly simplified in some

specific cases. Here we will use couple of examples to show to how to sim-

plify the results according to the specific field conditions. A few studies have

been conducted to study a natural medium with bimodal distribution of hy-

draulic conductivity [e.g., Desbarats, 1987, 1991; Rubin and Journel, 1991;

Russo et al., 2001]. The bimodal distribution is a special case of this study. Let

k = 2 in (8), we obtain the covariance of log-hydraulic conductivity in a bimodal

heterogeneous medium as,

CY (x.s) = 〈Y1(x)〉〈Y1(s)〉CI,11(x, s) + 〈Y2(x)〉〈Y1(s)〉CI,22(x, s)

+ 〈Y1(x)〉〈Y2(s)〉CI,12(x, s) + 〈Y2(x)〉〈Y1(s)〉CI,21(x, s)

+ CY,11(x, s)(CI,11(x, s) + p1(x)p1(x))

+ CY,22(x, s)(CI,22(x, s) + p2(x)p2(s))

(10)
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Using the relationships (the derivation is shown in Appendix)

CI,11 + CI,12 = 0, CI,21 + CI,22 = 0 (11)

(10) can be rewritten as

CY (x, s) = CY,11(x, s)(CI,11(x, s) + p1(x)p1(s))

+ CY,22(x, s)(CI,22(x, s) + p2(x)p2(s))

+ 〈Y1(x)〉〈Y1(s)〉CI,11(x, s) + 〈Y2(x)〉〈Y2(s)〉CI,22(x, s)

− 〈Y1(x)〉〈Y2(s)〉CI,11(x, s) − 〈Y2(x)〉〈Y1(s)〉CI,22(x, s)

(12)

By using the relationships in bimodal medium, p2(x) = 1 − p1(x) and p2(s) =
1 − p1(s), and assuming CI,11(x, s) = CI,22(x, s) = CI(x, s), then (12) can be

simplified as

CY (x, s) = CY,11(x, s)[CI(x, s) + p1(x)p1(s)]
+ CY,22(x, s){CI(x, s) + [1 − p1(x)][1 − p1(s)]}
+ CI(x, s)[〈Y1(x)〉 − 〈Y2(x)〉][〈Y1(s)〉 − 〈Y2(s)〉]

(13)

Equation (13) is the same as the result in Zhang [2002].

Setting s = x in (13), we can obtain the variance of Y (x) in the bimodal

medium as

σ 2
Y (x) = p1(x)σ 2

1 (x) + p2(x)σ 2
2 (x) + (〈Y1(x)〉 − 〈Y2(x)〉)2

− 〈Y2(x)〉)2p1(x)p2(x) = p1(x)σ 2
1 (x) + [1 − p1(x)]σ 2

2 (x)

+ (〈Y1(x)〉 − 〈Y2(x)〉)2p1(x)[1 − p1(x)]
(14)

If we further assume that I (x) is also stationary as the case considered by Rubin

and Journel [1991], then Eqs. (2), (13) and (14) become

〈Y 〉 = p1〈Y1〉 + (1 − p1)〈Y2〉 (15)

CY (x, s) = CY (x − s) = CY (r)

= CY,11(r)[CI(r) + p2
1] + CY,22(r){CI(r) + [1 − p1]2} (16)

+ CI(r)[〈Y1〉 − 〈Y2〉]2

σ 2
Y = p1σ

2
1 + (1 − p1)σ

2
2 + (〈Y1〉 − 〈Y2〉)2p1(1 − p1) (17)
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From (15)-(17), one may notice that 〈Y 〉 and σ 2
Y are constant, and CY (x, s) is

stationary. If the difference between the two 〈Y1〉 and 〈Y2〉 is large, then the

third terms in (16) and (17) will be dominant for the covariance and variance,

respectively. For this reason, Desbarats [1987] treated Y1 and Y2 as constants in

a sand-shale formation, only I (x) is assumed to be a stochastic process. In this

special case, (16)-(17) can be further simplified as

CY (r) = CI(r)[〈Y1〉 − 〈Y2〉]2 (18)

σ 2
Y = (〈Y1〉 − 〈Y2〉)2p1(1 − p1) (19)

Therefore, we conclude that the expression of the conductivity covariance de-

veloped in this study generalizes previous study results. The general expression

of the covariance in a multi-scale medium may be significantly simplified in

special cases.

4 Method of moment for groundwater glow and solute transport
in nonstationary heterogeneous media

In the last two sections, the explicit expressions for the mean, variance and

covariance of hydraulic conductivity in a dual-scale medium have been given

in terms of the means, variances of the indicator variable and the hydraulic

conductivity of the every single material in the medium, which can be obtained

through field measurements and geostatistical analysis. The obtained statistics

of the hydraulic conductivity will be used as the input data for the calculations

of flow and transport.

Zhang and Winter [1999] developed a numerical moment approach for ground-

water flow in a stationary conductivity field in a bounded domain. Later, Lu and

Zhang [2002] extended the method to study groundwater flow in a multi-scale

medium. In their study, they also conducted Monte Carlo simulation, and the

study results indicate that the method of moment is consistent with Monte Carlo

simulation even for the total variance of log-conductivity is 4.0. In this study

we apply the method to study groundwater flow in nonstationary conductivity

fields with complex covariance functions and limited boundary conditions. The

resulting velocity moments will be served as the input data for the transport cal-
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culation. In this article, the method which is similar to Lu and Zhang’s [2002]

work will not be presented, but the calculated results for the head and velocity

will be shown in our case studies.

Recently, a numerical method of moment for solute transport in a nonstationary

flow field has been developed. Zhang et al. [2000] and Wu et al. [2003]

applied a perturbation approach to set up an analytical framework for solute

transport in a nonstationary flow field. The method is to predict solute flux in

a two-dimensional flow field through a control plane (CP), which is located at

some distance downstream from the plume source. The mean solute mass flux

component orthogonal to the CP at x, 〈q(t, x)〉, can be expressed as

〈q(t, x)〉 =
∫

A0

∞∫

0

ρ0(a)φ(t − τ)f1[τ(x, a) = t, η(x, a) = y]dτda (20)

where x = (x, y) is the solute predicting point, τ ≡ τ(x; a) is the travel time

of the advective particle from point a to the control plane at x, η(x; a) is the

transverse location of a streamline passing through the CP, A0 is the source

area, ρ0(a) is the density of the source mass, φ(t) is the source release function.

f1[τ(x, a), η(x, a)] denotes the joint probability density function (PDF) of travel

time t for a particle from a to reach x and the corresponding transverse displace-

ment η. The τ and η are random variables and are functions of the underlying

random velocity field.

The variance of the solute flux for the point sampling is evaluated as

σ 2
q (t, x) = 〈q2〉 − 〈q〉2 (21)

where

〈q2(t, x)〉 =
∫

A0

∫

A0

ρ0(a)ρ0(b)φ(t − τ1)φ(t − τ2) · f2[τ1(x, a)

= t, η1(x, a) = y, τ2(x, b) = t, η2(x, b) = y] dadb

(22)

Here f2[τ1(x, a), η1(x, a); τ2(x, b), η2(x, b)] is the two-particle joint PDF of

travel time and transverse displacement. The solute discharge, Q(t, x), defined

as the total solute mass flux over the entire control CP, can be obtained by

integration q(t, x) along the CP.
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The travel time τ(L; a), the time required for a parcel originated at a to cross

the plane x = L, is determined by the Lagrangian velocity, which is related to

the Eulerian velocity. The mean 〈τ 〉 and fluctuation of τ(L; a), τ ′, is expressed,

to the first order, as

〈τ(L; a)〉 =
L∫

ax

dx

U1(x, 〈η〉) (23)

τ ′(L; a) = −
L∫

ax

dx

U 2
1 (x, 〈η〉) [u1(x, 〈η〉) + g(x, 〈η〉)η′] (24)

where

g(x, 〈η〉) = ∂[U1(x, η)]
∂η

|η=〈η〉, η′,

is the fluctuations of η, Ui(x, η) and ui(x, η)(i = 1, 2) are the mean and per-

turbation of the Lagrangian velocity, respectively. If the flow field is stationary,

then g will be zero, and (23) and (24) return to the Dagan’s results [Dagan, 1982;

1984]. From (24), we can obtain the covariance of τ(L; a) as

στ1τ2(L, a; L, b) =
L∫

ax

L∫

bx

dx1dx2

U 2
1 (x1, 〈η1〉)U 2

2 (x2, 〈η2〉)
[〈u1(x1, 〈η1〉) u2(x2, 〈η2〉)〉
+ g(x1, 〈η1〉)〈u1(x2, 〈η2〉)η′

1(x1, 〈η1〉)〉
+ g(x2, 〈η2〉)〈u1(x1, 〈η1〉)η′

2(x2, 〈η2〉)〉
+ b1(x1, 〈η1〉)b1(x2, 〈η2〉)〈η′

1(x1, 〈η1〉)η′
2(x2, 〈η2〉)〉

]

(25)

The statistical moments of η, to the first order, are obtained as

d〈η(x; a)〉
dx

= U2(x, 〈η〉)
U1(x, 〈η〉) (26)

dη′(x; a)

dx
= A(x, 〈η〉)u1(x, 〈η〉) + B(x, 〈η〉)u2(x, 〈η〉)

+ C(x, 〈η〉)η′(x; a) (27)
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where

A(x, 〈η〉) = −U2(x, 〈η〉)
U 2

1 (x, 〈η〉) ,

B(x, 〈η〉 , 〈ξ〉) = 1

U1(x, 〈η〉 , 〈ξ〉) and

C(x, 〈η〉) = ∂U2(x, η)

∂η
|η=〈η〉 − U2(x, 〈η〉)

U1(x, 〈η〉)
∂U1(x, η)

∂η
|η=〈η〉 .

Multiplying (27) by η′(x2; b), we obtain

d〈η′(x1; a)η′(x2; b)〉
dx1

= A(x1, 〈η1〉)〈u1(x1, 〈η1〉)η′(x2; b)〉

+ B(x1, 〈η〉)〈u2(x1〈η〉)η′(x2; b)〉

+ C(x1, 〈η1〉)〈η′(x1; a)η′(x2; b)〉

(28a)

with the initial condition (here we assume the initial positions of parcels are

deterministic)

〈η′(x1; a)η′(x2; b)〉|x1=0 or x2=0 = 0 (28b)

Similarly, we can also obtain the expressions of 〈u1η
′〉 and 〈u2η

′〉. The velocity

correlations, 〈uiuj 〉 =, can be obtained from the flow equations and are treated

as known quantities or input data here. Therefore, there are three differential

equations for the three unknowns, 〈η′η′〉 〈u1η
′〉, and 〈u2η

′〉, so the equations are

solvable. Owing to the complexity of these equations, we solve them numeri-

cally.

From (24), the joint moments 〈τ ′(x1; a)η′(x2; b)〉 is obtained as

〈τ ′(x1; a)η′(x2; b)〉 = −
x1∫

ax

dχ

U 2
1 (χ, 〈η〉) [〈u1(χ, 〈η〉)η′(x2; b)〉

+ g(χ, 〈η〉 , 〈ξ〉)〈η′(χ; a)η′(x2; b)〉]
(29)

From (23) and (26), a parcel’s mean movements in longitudinal and transverse

direction can be calculated through a finite difference numerical method. The

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



132 MODELING GROUNDWATER FLOW AND SOLUTE TRANSPORT

method for computing the first moments is similar to the numerical particle

tracking method [Hassan et al., 1998]. From (25) and (29), 〈τ ′τ ′〉 and 〈τ ′η′〉 can

be obtained based on the calculated results of 〈η′η′〉, 〈u1η
′〉 and 〈u2η

′〉.
We assume that for each parcel, its τ and η obey lognormal and normal distri-

butions, respectively, their joint PDFs f1[τ(x, a), η(x, a)] for one particle and

f2[τ1(x, a), η1(x, a); τ2(x, b), η2(x, b)] for two particles can be directly related

to the covariances of τ ′ and η′. From (20)-(22), one may see that the solute

flux is the summation or integral of all parcels’ distributions. Therefore, even

if one parcel is assumed to satisfy lognormal and normal distributions in the

longitudinal and transverse directions, respectively, the distribution of all plume

(the summation of all parcels) in longitudinal and transverse directions could be

quite abnormal in some cases due to the variations of the mean movements of

the parcels and variances about the means. In the next sections, the methods

introduced in this section will be applied to study groundwater flow and solute

transport in multi-scale media.

5 Illustrative example: flow and solute transport in a bi-model medium

In this section we use a case study to investigate the influences of the two scale

stochastic processes of a multi-scale medium on the prediction of groundwater

flow and solute transport. The study domain is a square with the size 10×10m2,

shown in figure 1. The medium is composed of a lot of small pieces of the two

materials, and the two materials are uniformly distributed with each other, like

many puzzles, which is so-called bimodal medium. The distributions of two

materials are stationary. This phenomenon can be observed in many geological

media, such as the lenses of sand, silt and clay inter-bedded with each other in

the alluvial sediments, or the various lava mixed together in some igneous rocks.

We denote P(x) = p1(x) to represent the possibility of finding material 1 in the

point x. Since the two materials are uniformly distributed, P(x) also represents

the percentage of the material 1 in the whole domain. We use λI to represent the

correlation length of the geometry indicator I (x).

We impose constant heads on the vertical sides of the domain, H = 10.0m on

the left side and H = 0.0m on the right side, and assume the other two sides

are impermeable boundaries. A finite difference method is implemented for the
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Figure 1 – Sketch of the study medium.

various calculations for flow and transport. The whole domain is uniformly

discretized into 40 × 40 square elements with a cell size of 0.25 × 0.25m2. One

unit of solute mass is uniformly distributed in the source line.

Figure 2 shows the covariance of log-hydraulic conductivity with the reference

point at (5.0, 5.0) under P(x) = 0.0, 0.5 and 1.0. In this case, we choose

σ 2
Y1

= 0.4, σ 2
Y2

= 0.6, λ1 = 0.5m, λ2 = 1.0m and λI = 4.0m. It is shown

from the figure that in comparison with a single material, the mixture of the two

materials significantly increases the covariance of the log-hydraulic conductivity

in the whole domain, and the conductivity is correlated in a much longer range.

Figures 3a and 3b present the distribution of the mean hydraulic head and the

variance of the hydraulic head, respectively, along the longitudinal cross-line

x2 = 5.0m with P(x) = 0.0, 0.3, 0.5, 0.7 and 1.0. It is shown from figure

3a that the mean head will not be influenced by the variation of P(x), but the

head variance significantly increase with the mixture of the two materials in
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Figure 2 – Covariance function of log hydraulic conductivity for the longitudinal

cross-section with the reference point (5.0, 5.0) for various degrees of probability

P(x) = 0, 0.5 and 1.

comparison with those of one materials. When P(x) = 0.5, which means the

compositions of two materials are equal, the predicted variance of hydraulic head

reaches its maximum in this case.

Figures 4a,b show the breakthrough curves of expected values and variances

of Q with P(x) = 0.0, 0.3, 0.5, 0.7 and 1.0, respectively. The breakthrough

curves of 〈Q〉 change with the variation of P(x), but bounded in the two one-

scale cases, P(x) = 0.0 and 1.0. In comparison with the results of one-scale

cases, the breakthrough curves in the two-scale cases have longer tails and more

dispersion. The σQ curves have the similar shapes to 〈Q〉’s, but σQ reaches its

maximum when P(x) = 0.5. Figures 5a,b shows the influences of P(x) on q at

the center point of the control line. The influences are similar to those on 〈Q〉
and σQ.

The above studies in this subsection focus on the influences of P(x) on flow

and transport, and other parameters are fixed. In the two-scale heterogeneous

medium, there are other heterogeneities that will also affect the flow and transport

processes. In the small scale, the heterogeneity results from the spatial variation

of conductivity field within each material. This heterogeneity is statistically char-

acterized by the variance, correlation function and correlation length of hydraulic

conductivity of every material in the medium. In the large heterogeneous scale,

the heterogeneity is from the different mean values of hydraulic conductivity of
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Figure 3 – Distribution of (a) the mean hydraulic head, and (b) the standard deviation of

the hydraulic head along the longitudinal cross-section x2 = 5.0m for various degrees

of probability P(x) = 0, 0.3, 0.5, 0.7 and 1.0.

various materials, the compositions of various materials (which is described by

Pi(x)) and the distribution of the materials, which is described by the correla-

tion function and correlation length of the indicate I (x). Here, we use 8 cases,

cases 1-8, with various combinations of parameter values, shown in table 1, to

investigate the influences of the various uncertainty factors on flow and transport.

Since the effects of P(x) on flow and transport have already been studied above,
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Figure 4 – Breakthrough curves of the total solute flux through the control plane for

various degrees of probability P(x) = 0, 0.3, 0.5, 0.7 and 1.0, (a) the expected value

〈Q〉, (b) the standard deviation σQ.

here we fix its value to be 0.5. In these case studies, we also assume that the

log conductivity field in each material and the indicator function I (x) all have

exponential auto-covariances. The parameters in the last two columns, i.e., 〈Y 〉
and σ 2

Y , are the effective means and variances of the log hydraulic conductivity

of the composite medium, which are calculated from Eqs. (2) and (9).

The selection of the eight cases is under the consideration: cases 1, 3 and 5

are used to study the effect of the difference between 〈Y1〉 and 〈Y2〉 on flow and

transport processes; cases 3, 7 and 8 are grouped to investigate the effects of the

various correlation lengths on flow and transport prediction; the three pairs of

case 1 and 2, case 3 and 4, case 5 and case 6 are designed to differentiate the

effects of variances on the two scales on prediction of flow and transport. In all

these case studies, (external) hydraulic boundary conditions and the locations of

the solute source and CP are all same as those shown in figure 1.

Cases 1-6 are grouped to study the influences of the larger-scale heterogeneity,
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Figure 5 – Breakthrough curves of the solute flux through the control plane for various

degrees of probability P(x) = 0.0, 0.3, 0.5, 0.7 and 1.0, (a) the expected value 〈q〉, (b)

the standard deviation σq .

Parameter 〈Y1〉 〈Y2〉 σ 2
Y1

σ 2
Y2

λ1 λ2 λI 〈Y 〉 σ 2
Y

Case 1 1.0 -1.0 1.0 1.0 0.5 1.0 4.0 0.0 2.0

Case 2 1.0 -1.0 0.0 0.0 0.5 1.0 4.0 0.0 1.0

Case 3 2.0 -2.0 1.0 1.0 0.5 1.0 4.0 0.0 5.0

Case 4 2.0 -2.0 0.0 0.0 0.5 1.0 4.0 0.0 4.0

Case 5 3.0 -3.0 1.0 1.0 0.5 1.0 4.0 0.0 10.0

Case 6 3.0 -3.0 0.0 0.0 0.5 1.0 4.0 0.0 9.0

Case 7 2.0 -2.0 1.0 1.0 2.0 2.0 4.0 0.0 5.0

Case 8 2.0 -2.0 1.0 1.0 2.0 2.0 2.0 0.0 5.0

Case 9 0.5 -0.5 0.4 0.2 0.5 0.5 1.5 0.0 0.55

Case 10 1.0 -1.0 0.4 0.2 0.5 0.5 1.5 0.0 1.3

Table 1 – Parameter specifications for all cases P(x) = 0.5.
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Figure 6 – Distribution of (a) the mean hydraulic head, and (b) the standard deviation

of the hydraulic head along the longitudinal cross-section x2 = 5.0m at P(x) = 0.5 for

cases 1, 2, 3, 4, 5 and 6, respectively.

〈Y1〉-〈Y2〉, and small-scale heterogeneity, σ 2
Y1

and σ 2
Y2

, on hydraulic head variance

and solute flux. Figures 6 shows the distribution of σ 2
h along the longitudinal

cross-line x2 = 5.0m for the six cases. Figures 7a,b shows the breakthrough

curves of expected values and variances of total solute flux Q through CP in

the six cases. Figures 8a,b present the breakthrough curves of 〈q〉 and σ 2
1 ,

respectively. It is shown from figures 6-8 that the variations of σ 2
Y1

and σ 2
Y2

hardly affectσ 2
h and 〈Q〉, but influence σQ, 〈q〉 and σ 2

q . However the influences

are secondary to those caused by 〈Y1〉-〈Y2〉. In these cases, the total variance,

σ 2
Y , significantly influence the distribution of head variance, mean and variance

of solute flux, and σ 2
Y is largely contributed from the large-scale heterogeneity.

In the above study, the effects of 〈Y1〉-〈Y2〉, σ 2
Y1

, σ 2
Y2

and σ 2
Y on flow and transport

have been studies. Here, we would like to group cases 3, 7 and 8 to analyze the

effects ?1, ?2 and ?I on the flow and transport. Figures 9 shows the distribution of

σ 2
h along the longitudinal cross-line x2 = 5.0m for the three cases. In comparison

of cases 3 and 7, it is shown that σ 2
h increases with the increases of ?1 and ?2.
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Figure 7 – Breakthrough curves of the total solute flux through the control plane at

P(x) = 0.5 for cases 1, 2, 3, 4, 5 and 6, respectively, (a) the expected value 〈Q〉, (b) the

standard deviation σQ.
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Figure 8 – Breakthrough curves of the total solute flux through the control plane at

P(x) = 0.5 for cases 1, 2, 3, 4, 5 and 6, respectively, (a) the expected value 〈q〉, (b) the

standard deviation σq .
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Figure 9 – Distribution of the standard deviation of the hydraulic head along the longi-

tudinal cross-section x2 = 5.0m at P(x) = 0.5 for cases 3, 7 and 8, respectively.

Similarly, from the results of case 7 and 8, one case see that σ 2
h increase with the

increase of λI .

Figures 10a,b shows the breakthrough curves of expected values and variances

of total solute flux Q through CP for the three cases. It is shown from the figures

that with the increases of ?1, ?2 and λI , 〈Q〉 curve has an earlier breakthrough

and the high peak, but the tail does not change. The increases of ?1, ?2 and ?I

also lead to the increase of σ 2
Q. Figures 11a,b present the breakthrough curves

of 〈q〉 and σ 2
q , respectively. 〈q〉 and σ 2

q curves are quite different from their

counterparts of 〈Q〉 and σ 2
Q, which is caused by the transverse dispersion.

6 Comparison of NMM and Monte Carlo simulation results

In the above study, the NMM has been developed to study the groundwater flow

and solute transport in multi-scale, heterogeneous porous media. The newly

developed method needs to compare with a well-developed method to verify
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P(x) = 0.5 for cases 3, 7 and 8, respectively, (a) the expected value 〈Q〉, (b) the

standard deviation σQ.
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Figure 11 – Breakthrough curves of the total solute flux through the control plane at

P(x) = 0.5 for cases 3, 7 and 8, respectively, (a) the expected value 〈q〉, (b) the standard

deviation σq .
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the calculation results. In this section, a Monte Carlo numerical simulation

method is applied to check the results obtained by the NMM. This kind of study

has been conducted for flow in multi-scale media [Winter et al., 2002; Lu and

Zhang, 2002]. In this study, we only compare the transport results in a bimodal

medium.

6.1 Generation of multi-realizations of hydraulic conductivity field

The study domain is the same as the one shown in figure 1. The study domain

is discretized into 100 × 100 square elements with a size of 0.1 × 0.1λ2. Two

cases, cases 9 and 10 in table 1, are chosen in this section. The assumptions

for the bi-model conductivity field made here are the same as those made in

section 2. A three-step method is used to generate the bi-model conductivity

field. First, according to the conductivity parameters provided in table 1 for Y1

and Y2, 3,000 realizations of the conductivity field are generated for each of the

two media with a Fast Fourier Transform method. Secondly, a Gaussian random

field generator sisim from GSLIB [Deutsch, C. V., A. G. Journel, 1998] is applied

to generate 3,000 realizations of the geometry indicator field with λI = 1.5 λ

and p1 = p2 = 0.5. Third, each indicator field is combined with one realization

of Y1 and Y2 to form one realization of the bi-modal conductivity field. As an

example, one conductivity realization for case 9 is shown in figure 12.

Figures 13a,b show the histograms of the log hydraulic conductivity realiza-

tions for cases 9 and 10. It is shown from the two figures that the bi-model

distribution appears only when the difference between 〈Y1〉 and 〈Y2〉 is large

enough in comparison with σ 2
Y1

and/or σ 2
Y2

.

6.2 Groundwater flow and solute transport simulations

The hydraulic boundary conditions are the same as those shown in figure 1, except

H1 = 1.0. The locations of source line and CP are the same as those shown in

figure 1. For each realization of hydraulic conductivity field, a two-dimensional

flow simulator based on the finite-difference method is used to obtain hydraulic

head and groundwater velocity distributions in the study domain subjected to the

boundary conditions. Then, a streamline, particle-tracking approach is applied
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Figure 12 – One realization of bimodal conductivity field.

to simulate the movement of solute by a large number of particles. Therefore, the

calculation of solute flux across the CP becomes the calculation of arrival times

of individual particles reaching the CP. The obtained multi-realizations of the

solute flux curve are averaged over realizations to obtain the mean and variance

of the solute flux.

Figures 14 and 15 show the results of the Monte Carlo simulation and NMM

for two cases. Since the local dispersivity is not considered in the Monte Carlo

simulation, the breakthrough curve is not smooth. For case 9, the calculation

results of the two methods are almost identical. With the increase of the difference

between 〈Y1〉 and 〈Y2〉, the NMM results will deviate from those of the Monte

Carlo simulation, which are shown in Figure 10. In comparison with Monte Carlo

results, the NMM method overestimate the peak value of 〈Q〉, but underestimate

the extension of the tail. For the calculation of σ 2
Q, NMM curve is shifted

right around peak value area in comparison with Monte Carlo simulation. This

difference between NMM and Monte Carlo results may be due to the first-order

accuracy of NMM, or/and insufficient realizations of Monte Carlo simulations.
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Figure 13 – Histogram of the log hydraulic conductivity, (a) case 9, (b) case 10.
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This issue needs to be addressed in future study. Generally speaking, NMM

captures the dominate characteristics of the breakthrough curves as shown in

Figure 14 for case 9, and Figure 15 for case 10.
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Figure 14 – Comparison of calculation results between Monte Carlo simulation and

NMM method for case 9.

7 Summary and conclusions

In this article, we study groundwater flow and solute transport in a multi-scale

heterogeneous medium. The medium is composed of various materials, each

of which may have its own mean, variance and correlation length of hydraulic

conductivity. The distribution of materials in the medium is characterized by

an indicator function. In this study, we first derived explicit expressions for

the covariance function of the composite field in terms of the covariance of the

indicator variables and the properties of the different composite materials. The

expression is so general that many previous study results become the specific

cases of the expression.
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Figure 15 – Comparison of calculation results between Monte Carlo simulation and

NMM method for case 10.

For the case study, we used a bimodal heterogeneous formation, which com-

posed of two different materials, as an example to show how to apply the general

theory to analyze the conductivity correlation in a specific case. Based on this

analysis, we applied a numerical method of moment developed recently [Zhang

et al., 2000; Wu et al., 2003] to investigate the influences of the two stochastic

processes of heterogeneity on groundwater flow and transport. One specific case

was chosen in this study, bimodal medium. We used the case study to investi-

gate the influences of various uncertain factors on flow and transport predictions

under different scenarios. We first investigate the influence of compositions of

the two materials, P(x), on flow and transport processes. It is shown from the

study results that the variation of the P(x) value has no effect on the mean head,
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but dramatically changes the head variance, mean and variance of solute flux.

Based on this study, we propose 8 cases to study effects of other uncertainty

parameters, which include the small-scale parameters, such as the variances and

correlation lengths of log conductivity of the two materials, and large-scale pa-

rameters, such as the differences of mean log conductivity values of the two

materials and the correlation length of the indicator function. The large-scale

and small-scale heterogeneities will both significantly influence the flow and

solute transport processes.

The NMM results are compared with those of the Monte Carlo simulation for

the bi-model medium. The calculation results of the two methods are consistent

with each other for small total variance of log-conductivity (less than 1.3 accord-

ing to case 10), but will derivate with each other with the increase of the total

variance.
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9 Appendix

For k = 2, p2(x) = 1 − p1(x). Then we have

p11(x, s) = CI,11(x, s) + p1(x)p1(s) (A1)

p12(x, s) = CI,12(x, s) + p1(x)p2(s)

= CI,12(x, s) + p1(x) − p1(x)p1(s) (A2)

p21(x, s) = CI,21(x, s) + p2(x)p1(s)

= CI,21(x, s) + p1(s) − p1(x)p1(s) (A3)

p22(x, s) = CI,22(x, s) + p2(x)p2(s)

= CI,22(x, s) + 1 − p1(x) − p1(s) + p1(x)p1(s) (A4)

Since p11(x, s) + p12(x, s) = p1(x) and p22(x, s) + p21(x, s) = 1 − p1(x).

Therefore, we can obtain equation (11).
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