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Abstract. In this paper, the boundary value problems for second order singularly perturbed

delay differential equations are treated. A generic numerical approach based on finite difference

is presented to solve such boundary value problems. The stability and convergence analysis of

the method is studied. The solution of the boundary value problems when delay is zero, exhibits

layer behavior. Here, the study focuses on the effect of delay on the boundary layer behavior of

the solution via numerical approach. The effect of the delay on the boundary layer behavior of

the solution is shown by carrying out some numerical experiments.
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1 Introduction

Delay differential equations play an important role in the mathematical modeling

of various practical phenomena in the biosciences and control theory. Any system

involving a feedback control will almost always involve time delays. These arise

because a finite time is required to sense information and then react to it. A delay

differential equation is of the retarded type if the delay argument does not occur

in the highest order derivative term. If we restrict this class to a class in which
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the highest derivative term is multiplied by a small parameter, then it is said

to be singularly perturbed delay differential equation of the retarded type. The

boundary value problems for such a class of delay differential equations are

ubiquitous in the modeling of several physical and biological phenomena like

first exit time problem in modeling of activation of neuronal variability [8], in the

study of bistable devices [1] and evolutionary biology [14], in a variety of models

for physiological processes or diseases [11, 12, 14], to describe the human pupil-

light reflex [10], variational problems in control theory [4, 5], and in describing

the motion of the sunflower [13].

The literature on delay differential equations is mainly centered on first or-

der initial value problems [3, 7]. But due to the versatility of boundary value

problems for the second order delay differential equation in the mathematical

modeling of processes in various kinds of application fields where they provide

the best and sometimes the only realistic simulation of the observed phenomena,

one cannot neglect this area,e.g., in Stein’s model, the distribution representing

inputs is taken as a Poisson process with exponential decay. If in addition, there

are inputs that can be modeled as a Wiener process with variance parameterσ and

drift parameterμ, then the problem for expected first-exit timey, given initial

membrane potentialx ∈ (x1, x2), can be formulated as a general boundary value

problem for a linear second order differential difference equation(DDE) [9]

σ 2

2
y′′(x) + (μ− x)y′(x) + λE y(x + aE)

+ λI y(x − aI ) − (λE + λI )y(x) = −1,
(1.1)

where the valuesx = x1 and x = x2 correspond to the inhibitory reversal

potential and to the threshold value of membrane potential for action potential

generation, respectively.σ andμ are variance and drift parameters, respecti-

vely, y is the expected first-exit time and the first order derivative term−xy′(x)

corresponds to exponential decay between synaptic inputs. The undifferentia-

ted terms correspond to excitatory and inhibitory synaptic inputs, modeled as

Poisson process with mean ratesλE andλI , respectively, and produce jumps

in the membrane potential of amountsaE andaI , respectively, which are small

quantities and could be dependent on voltage. The boundary condition is

y(x) ≡ 0, x /∈ (x1, x2).
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In this paper, we extend the numerical study of boundary value problems

for second order singularly perturbed delay differential equations which was

initiated in the paper [6] wherein the authors consider the case when delayδ

is o(ε) and use Taylor’s series to tackle the delay argument. But in the case

when the delayδ is of O(ε), the method presented in the paper [6] fails due to

the Taylor’s series approximation for the term containing delay, which may lead

to a bad approximation. To resolve that problem, we present here a numerical

method composed of a standard upwind finite difference scheme on a special

type of mesh to solve the boundary value problem for a singularly perturbed

delay differential equation. To tackle the term containing delay, we construct a

special type of mesh. We choose the mesh parameterh so thath = δ/m, where

m = p.mantissa ofδ, p ≥ 1 is an integer. This method works nicely for either

δ = O(ε) or δ = o(ε).

2 Statement of the problem

Consider a boundary value problem for the linear second order singularly per-

turbed differential equation with retarded argument

ε2y′′(x)+ a(x)y(x − δ)+ b(x)y(x) = f (x) (2.1)

on 0< x < 1, 0< ε � 1 and 0< δ < 1, subject to the interval and boundary

conditions

y(x) = φ(x), − δ ≤ x ≤ 0 (2.2a)

y(1) = γ, (2.2b)

wherea(x), b(x), f (x) andφ(x) are smooth functions andγ is a constant.

For δ = 0, the solution of the boundary problem (2.1), (2.2) exhibits layer

or oscillatory behavior depending on the sign of(a(x) + b(x)). If (a(x) +

b(x)) ≤ −M < 0, whereM is a positive constant, the solution of the problem

(2.1), (2.2) exhibits layer behavior and if(a(x) + b(x)) ≥ M > 0, it exhibits

oscillatory behavior. The boundary value problem considered here is of the

reaction-diffusion type, therefore if the solution exhibits layer behavior, there

will be two boundary layers which will be at both the end points{0, 1}. In this
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paper, we study both the cases,i .e., when the solution of the problem exhibits

layer as well as oscillatory behavior and show the effect of delay on the layer and

oscillatory behavior. In particular, as delay increases then the layer behavior of

the solution is destroyed and the solution begins to exhibit oscillatory behavior

across the interval.

3 Numerical scheme

In this section, we discretize the boundary value problem (2.1), (2.2) using the

method composed of a standard central finite difference operator on a special

type of uniform mesh. To tackle the delay term, we choose the mesh parameter

ash = δ/m, wherem = p.mantissa ofδ, p ≥ 1 is an integer.

The difference scheme for the boundary value problem (2.1), (2.2) is given by

L N yi =

{
ε2D+D−yi + bi yi = fi − aiφi −m, 1 ≤ i ≤ m,

ε2D+D−yi + ai yi −m + bi yi = fi , m + 1 ≤ i ≤ N − 1,
(3.1)

y0 = φ0, φ(0) = φ0, (3.2a)

yN = γ, (3.2b)

whereD+D−yi = (yi −1 − 2yi + yi +1)/h2. A simplification of Eq. (3.1) leads

to a system ofN − 1 difference equations inN − 1 unknowns〈yi 〉
N−1
i =1

L N yi =






Ei yi −1 − Fi yi + Gi yi +1 = Hi ,

1 ≤ i ≤ m

Ei yi −1 − Fi yi + Gi yi +1 + ai yi −m = Hi ,

m + 1 ≤ i ≤ N − 1,

(3.3)

where

Ei =
ε2

h2
,

Fi =
2ε2

h2 − bi
,

Gi =
ε2

h2
,

Hi = fi − aiφi −m, 1 ≤ i ≤ m,

Hi = fi , m + 1 ≤ i ≤ N − 1,

Comp. Appl. Math., Vol. 24, N. 2, 2005
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bi = b(xi ), ai = a(xi ) and f (xi ) = fi for all i = 0, 1, . . . N, andφ(xi ) = φi

for all i = −m,−m + 1, . . . 0.

4 Error estimate

4.1 Case I: Layer behavior

i .e., (a(x)+ b(x)) ≤ −M < 0, x ∈ �.

Lemma 1 [Discrete Minimum Principle]. Suppose90 ≥ 0 and9N ≥ 0.

ThenL N9i ≤ 0 for all i = 1, 2, . . . N − 1 implies that9i ≥ 0 for all i =

0, 1, . . . N.

Proof. Let k be such that9k = min0≤i ≤N 9i and assume that9k < 0. Then

we have9k −9k−1 ≤ 0,9k+1 −9k ≥ 0 and for 1≤ k ≤ m

L N9k =
ε2 (9k−1 − 29k +9k+1)

h2 + bk9k

=
ε2[(9k+1 −9k)− (9k −9k−1)]

h2 + bk9k

> 0, providedbk ≤ 0.

which contradicts the hypothesis thatL N9i ≤ 0 for all i = 1, 2, . . . N − 1.

Therefore our assumption that9k < 0 is wrong; hence9k ≥ 0.We have chosen

k fixed but arbitrary, so9i ≥ 0 for all i , 0 ≤ i ≤ N. �

Theorem 1. Under the assumptions thata(x) ≥ 0and(a(x)+b(x)) ≤ −M <

0, whereM is a positive constant, the solution of the difference scheme given by

Eq. (3.1) with boundary conditions (3.2) exists, is unique, and satisfies

‖y‖h,∞ ≤ M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |), (4.1)

whereC is a positive constant.
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Proof. To prove the uniqueness and existence, suppose〈ui 〉N
i =0 and〈vi 〉N

i =0 be

two solutions to the system of difference equations (3.1) with boundary conditi-

ons (3.2). Then supposezi = ui − vi is a mesh function. Clearlyz0 = 0 = zN

and for 1≤ i ≤ N − 1, we have

L Nzi = L Nui − L Nvi = 0, sinceui andvi satisfy Eq. (3.1).

Thus the mesh functionzi satisfies the hypothesis of Lemma 1. Therefore an

application of Lemma 1 to the mesh functionzi yields

zi = ui − vi ≥ 0, 0 ≤ i ≤ N. (4.2)

Again if we setzi = −(ui − vi ), then once againzi is a mesh function satisfying

z0 = 0 = zN and L Nzi = 0 for all i = 1, 2, . . . N − 1. Thus, again an

application of the discrete minimum principle for the mesh functionzi yields for

i = 0, 1, . . . N,

zi = −(ui − vi ) ≥ 0, i .e., ui − vi ≤ 0. (4.3)

From Eqs. (4.1) and (4.2), we getzi = 0 which implies the uniqueness of the

solution to the difference scheme (3.1), (3.2). For linear equations, the existence

is implied by uniqueness.

Now we shall prove the estimate. For that we introduce two barrier functions

ψ± defined by

9±
i = M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± yi , 0 ≤ i ≤ N,

whereC ≥ 1 is a constant.

9±
0 = M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± y0

= M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± φ0

= M−1‖ f ‖h,∞ + (C‖φ‖h,∞ ± φ0)+ C|γ |

≥ 0, since‖φ‖h,∞ ≥ φ0,

9±
N = M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± yN

= M−1| f ‖h,∞ + C‖φ‖h,∞ + C(|γ | ± γ )

≥ 0, since|γ | ≥ γ.
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Case i) For 1≤ i ≤ m, we have

L N9±
i = ε2D+D−9

±
i + bi9

±
i

= bi (M
−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |))± L N yi

= bi (M
−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |))± ( fi − aiφi −m),

using Eq. (3.1)

≤ −(‖ f ‖h,∞ ± fi )− C M(‖φ‖h,∞ + |γ |))∓ aiφi −m,

sincebi M
−1 ≤ −1

Sincea(x) andφ(x) are bounded, so we choose the positive constantC so that

the sum of the moduli of the first and second terms dominates the modulus of

the third term in the above inequality. We then get

L N9±
i < 0, i = 1, 2, . . . N − 1.

Case ii) For m< i ≤ N − 1, we have

L N9±
i = ε2D+D−9

±
i + ai9

±
i −m + bi9

±
i

= (ai + bi )(M
−1‖ f ‖h,∞ + ‖φ‖h,∞ + |γ |)± L N yi

= (ai + bi )(M
−1‖ f ‖h,∞ + ‖φ‖h,∞ + |γ |)± fi , using Eq. (3.1)

≤ −(‖ f ‖h,∞ ± fi )+ (ai + bi )(‖φ‖h,∞ + |γ |),

since(ai + bi )M
−1 ≤ −1

< 0, sinceai + bi ≤ −M < 0.

Combining both the cases, we obtain

L N9±
i < 0, i = 1, 2, . . . N − 1. (4.4)

An application of Lemma 1 to the mesh functions9±
i yields

9±
i = M−1‖ f ‖h,∞ + C(‖φ‖ + |γ |)± yi ≥ 0, i = 0, 1, . . . N,

which proves the required estimate. �
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4.2 Case II: oscillatory behavior

i .e., (a(x)+ b(x)) ≥ M > 0, x ∈ �

Lemma 2 [Discrete Maximum Principle]. Suppose90 ≥ 0 and9N ≥ 0.

ThenL N9i ≥ 0 for all i = 1, 2, . . . N − 1 implies that9i ≥ 0 for all i =

0, 1, . . . N.

Proof. Let k be such that9k = max0≤i ≤N 9i and assume9k < 0. Then we

have9k −9k−1 ≥ 0,9k+1 −9k ≤ 0 and for 1≤ k ≤ m

L N9k =
ε2 (9k−1 − 29k +9k+1)

h2 + bk9k

=
ε2[(9k+1 −9k)− (9k −9k−1)]

h2 + bk9k

< 0, providedbk ≥ 0.

which contradicts the hypothesis of Lemma 2. Therefore our assumption that

9k < 0 is wrong; hence9k ≥ 0. We have chosenk fixed but arbitrary, so9i ≥ 0

for all i , 0 ≤ i ≤ N. �

Theorem 2. Under the assumptions thata(x) ≥ 0, b(x) ≥ 0 and (a(x) +

b(x)) ≥ M > 0, whereM is a positive constant, the solution of the difference

scheme given by Eq. (3.1), (3.2) exists, is unique, and satisfies

‖y‖h,∞ ≤ M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |), (4.5)

whereC ≥ 1 is a constant.

Proof. To prove the uniqueness and existence, suppose〈ui 〉N
i =0 and〈vi 〉N

i =0 be

two solution to the discrete problem (3.1), (3.2). Supposezi = ui − vi is a mesh

function. Then

z0 = 0 = zN

and for 1≤ i ≤ N − 1, we have

L Nzi = L Nui − L Nvi = 0, sinceui andvi satisfy Eq. (3.1).
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Thus the mesh functionzi satisfies the hypothesis of Lemma 2; therefore an

application of Lemma 2 to the mesh functionzi gives

zi = ui − vi ≥ 0, 0 ≤ i ≤ N. (4.6)

If we setzi = −(ui − vi ), clearlyzi is a mesh function satisfyingz0 = 0 = zN

andL Nzi = 0 for all i = 1, 2, . . . N − 1. So again an application of the discrete

maximum principle for the mesh functionzi yields

zi = −(ui − vi ) ≥ 0, 0 ≤ i ≤ N. (4.7)

From Eqs. (4.6) and (4.7), we getui − vi = 0, i = 0, 1, . . . N which proves

the uniqueness of the solution to the discrete problem (3.3), (3.2). For linear

equations, the existence is implied by uniqueness.

Now the required bound on the solution remains to be proved and to obtain

this, we use the barrier functionsψ± defined by

9±
i = M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± yi , 0 ≤ i ≤ N,

whereC is a constant andC ≥ 1.

9±
0 = M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± y0

= M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± φ0

= M−1‖ f ‖h,∞ + (C‖φ‖h,∞ ± φ0)+ C|γ |

≥ 0, since‖φ‖h,∞ ≥ φ0 andC ≥ 1,

9±
N = M−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)± yN

= M−1| f ‖h,∞ + C‖φ‖h,∞ + C(|γ | ± γ )

≥ 0, since|γ | ≥ γ andC ≥ 1.

Case i) For 1≤ i ≤ m, we have

L N9±
i = ε2D+D−9

±
i + bi9

±
i

= bi (M
−1‖ f ‖h,∞ + ‖φ‖h,∞ + |γ |)± L N yi , using Eq. (3.1)

= bi (M
−1‖ f ‖h,∞ + ‖φ‖h,∞ + |γ |)± ( fi − aiφi −m)

(4.8)

Using the inequalitybi M−1 ≥ 1 in the above inequality (4.8) followed by a

simplification yields

L N9±
i ≥ (‖ f ‖h,∞ ± fi )+ C M−1(‖φ‖h,∞ + |γ |)∓ aiφi −m (4.9)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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In the above inequality (4.9) the first and second terms are positive anda(x) and

φ(x) are bounded so we choose the constantC so that the total of the first two

terms dominates the modulus of the third term which gives

L N9±
i ≥ 0, 1 ≤ i ≤ m.

Case ii) For m< i ≤ N − 1, we have

L N9±
i = ε2D+D−9

±
i + ai9

±
i −m + bi9

±
i

= (ai + bi )[M
−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)] ± L N yi

= (ai + bi )[M
−1‖ f ‖h,∞ + C(‖φ‖h,∞ + |γ |)] ± fi ,

using Eq. (3.1)

≥ (‖ f ‖h,∞ ± fi )+ (ai + bi )C(‖φ‖h,∞ + |γ |),

sinceai + bi ≥ M > 0

≥ 0.

Combining both the cases, we obtain

L N9±
i ≥ 0, 0< i < N. (4.10)

An application of Lemma 2 for9±
i yields

9±
i = M−1‖ f ‖h,∞ + ‖φ‖ + |γ | ± yi ≥ 0, 0 ≤ i ≤ N,

which proves the required estimate. �

Theorems 1 and 2 imply that the solution to the discrete problem (3.1), (3.2)

in both the cases (i .e., either when the solution of the problem exhibits layer or

oscillatory behavior) is uniformly bounded, independently of the mesh parameter

h and the parameterε, which proves that the difference scheme is stable for all

mesh sizes.

Corollary 1. The error ei = y(xi ) − yi between the solutiony(x) of the

continuous problem (2.1), (2.2) and the solution〈yi 〉N
i =0 of the discretized problem

(3.1), (3.2) satisfies the estimates

‖e‖h,∞ ≤ M−1‖T‖h,∞, (4.11)

Comp. Appl. Math., Vol. 24, N. 2, 2005
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whereTi satisfies

Ti ≤ (h2ε2/12)|yi v(x)|.

Proof. The truncation errorTi is given by

Ti = ε2[(yi −1 − 2yi + yi +1 − y′′(xi )].

Now using Taylor’s series and after some simplifications, we obtain

Ti ≤
(

h2ε2

12

)
|yi v(x)|.

We have

L Ne(xi ) = L N y(xi )− L N(yi ) = Ti , i = 1, 2, . . . N − 1

ande0 = 0 = eN . Then by using Theorem 1 and Theorem 2, we obtain the

required error estimate on the error in both the cases (i .e., when the solution

exhibits layer as well as oscillatory behavior). �

5 Computational results

Example 1 (pp. 263, [9])ε2y′′(x) − 2y(x − δ) − y(x) = 1, under the interval

and boundary conditions

y(x) = 1, −δ ≤ x ≤ 0, y(1) = 0.

Example 2 (pp. 265, [9])ε2y′′(x)+0.25y(x − δ)− y(x) = 1, under the interval

and boundary conditions

y(x) = 1, −δ ≤ x ≤ 0, y(1) = 0.

Example 3 (pp. 265, [9])ε2y′′(x)+0.25y(x − δ)+ y(x) = 1, under the interval

and boundary conditions

y(x) = 1, −δ ≤ x ≤ 0, y(1) = 0.

Example 4 (pp. 265, [9])ε2y′′(x) + y(x − δ) + 2y(x) = 1, under the interval

and boundary conditions

y(x) = 1, −δ ≤ x ≤ 0, y(1) = 0.

Comp. Appl. Math., Vol. 24, N. 2, 2005
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Forδ = 0, the solution to the boundary value problem (2.1), (2.2) exhibits layer

or oscillatory behavior according to the sign of the coefficient of the reaction term.

To demonstrate the effect of delay on the layer and oscillatory behavior of the

solution and efficiency of the method, we consider several numerical examples

and solve them using the proposed method. In examples 1 and 4, the coefficient of

the delay term is ofO(1)while that ofo(1) in examples 2 and 3. We have plotted

the graphs of the solutions of the problems forε = 0.01 with different values of

δ to show the effect of delay on the boundary layer or oscillatory behavior of the

solution. The maximum absolute error for the considered examples is calculated

using the double mesh principle [2] (as the exact solutions for the considered

examples are not available), as shown in Tables 1 and 2.

EN = max
1≤i ≤N−1

|yN
i − y2N

2i |.

ε ↓ N → 100 200 300 400 500

Example1
2−1 0.000017 0.000004 0.000002 0.000001 0.000001

2−2 0.000191 0.000048 0.000021 0.000012 0.000008

2−3 0.000809 0.000204 0.000091 0.000051 0.000033

2−4 0.007154 0.001656 0.000724 0.000405 0.000259

2−5 0.060109 0.013683 0.006102 0.003397 0.002172

Example2
2−1 0.000008 0.000002 0.000001 0.000000 0.000000

2−2 0.000158 0.000040 0.000018 0.000010 0.000006

2−3 0.000820 0.000206 0.000092 0.000052 0.000033

2−4 0.004075 0.001036 0.000462 0.000260 0.000166

2−5 0.013863 0.003692 0.001661 0.000938 0.000602

Table 1 – The maximum absolute error forδ = 0.03.

6 Discussion

A numerical study of boundary value problems for second order singularly per-

turbed differential difference equations with delay as well as advance is initiated

Comp. Appl. Math., Vol. 24, N. 2, 2005
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ε ↓ N → 100 200 300 400 500

Example1
0.03 0.000288 0.000072 0.000032 0.000018 0.000012

0.05 0.000327 0.000082 0.000036 0.000020 0.000013

0.09 0.000591 0.000146 0.000065 0.000037 0.000023

Example2
0.03 0.000260 0.000065 0.000029 0.000016 0.000010

0.05 0.000329 0.000082 0.000037 0.000021 0.000013

0.09 0.000403 0.000101 0.000045 0.000025 0.000016

Example3
0.03 0.001966 0.000490 0.000217 0.000122 0.000078

0.05 0.001576 0.000393 0.000175 0.000098 0.000063

0.09 0.001060 0.000265 0.000118 0.000066 0.000042

Table 2 – The maximum absolute error forε = 0.1.
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Figure 1 – The numerical solution of example 1(ε = 0.1).
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Figure 2 – The numerical solution of example 1(ε = 0.01, δ = 0.7ε).
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Figure 3 – The numerical solution of example 1(ε = 0.01, δ = 1.5ε).
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Figure 4 – The numerical solution of example 1(ε = 0.01, δ = 3ε).
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Figure 5 – The numerical solution of example 1(ε = 0.01, δ = 5ε).
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Figure 6 – The numerical solution of example 2(ε = 0.01, δ = 0.7ε).
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Figure 7 – The numerical solution of example 2(ε = 0.01, δ = ε).
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Figure 8 – The numerical solution of example 2(ε = 0.01, δ = 5ε).
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Figure 9 – The numerical solution of example 2(ε = 0.01, δ = 9ε).
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Figure 10 – The numerical solution of example 3(ε = 0.01).
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Figure 11 – The numerical solution of example 3(ε = 0.01).
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Figure 12 – The numerical solution of example 3(ε = 0.01).
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Figure 13 – The numerical solution of example 4(ε = 0.01).
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Figure 14 – The numerical solution of example 4(ε = 0.01).

in paper [6]. In [6], the authors gave a numerical scheme to solve such boundary

value problems in the case when the delay is of small order ofε, i .e., δ = o(ε)

but the method fails in the case when the delay is of capital order ofε, i .e.,

δ = O(ε). In this paper, we present a generic numerical approach to solve the

boundary value problems for second order delay differential equations which

works nicely in both the cases,i .e., whenδ = o(ε) andδ = O(ε).

To show the effect of delay on the boundary layer or oscillatory behavior of

the solution, several numerical experiments are carried out in section 5. We

observe that when the coefficient of the delay term in the equation is ofO(1)

and the delay term is ofO(ε), the layer behavior of the solution is no longer

preserved and the solution exhibits oscillatory behavior. Not only is the layer

behavior destroyed, but also oscillations previously confined to the layer region

are extended throughout the entire interval[0, 1]. As the delay increases, the

amplitude of the oscillations increases as shown in Figures 2-5 for example 1. If

the order of the coefficient of the delay term in the equation is ofo(1), the delay

affects the boundary layer solution but maintains the layer behavior, although
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the delay is ofO(ε) as shown in Figures 6-9 for example 2. From Figure 1,

we observe that when the delay is ofo(ε), the solution maintains layer behavior

although the coefficients in the equation are ofO(1) and as the delay increases,

the thickness of the left boundary layer decreases while that of the right boundary

layer increases.

To demonstrate the effect on the oscillatory behavior, we consider the examples

3 and 4 when the solution of the problem exhibits oscillatory behavior for delay

equal to zero. We observe that if the coefficient of the delay term is ofo(1), the

amplitude of the oscillations increases slowly as the delay increases provided the

delay is ofo(ε) (Figure 10) and increases exponentially as the delay increases if

the delay is ofO(ε) (Figures 11, 12).
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