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Abstract. Inthis paper, a new special class of splitting iterations for solving linear least squares
problems in finite dimensions is defined and their main properties of strong global convergence
to any problem solution are derived. The investigation results prove the new splitting iterations
to be a generalization of the approximating splitting iterations for solving linear least squares
problems in finite dimensions, suggesting their suitability for the robust approximate solution of

such problems.
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1 Introduction

Linear stationary splitting iterations [4, 7, 13] for solving linear least squares
problems in finite dimensions [3, 6] are commonly used as a sort of sequential
calculation engine for approximating solutions of linear equation systems [2, 7,
12, 13]long since. For thatreason, they are, maybe, the most emblematic special
class of the well-known successive approximations iterations for solving linear
eqguation systems [2, 13] today.
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194 GENERALIZED APPROXIMATING SPLITTING ITERATIONS

Consider the general linear least squares problem in finite dimensions
min || Ax — b||3, (1)
xeRN

wherem e N,n e N, Ae R™" andb € R™.
Thus, the splitting iterations for solving the problem (1) are properly those for
solving the associate normal equation system [3, 6],

A Ax = Ab:; (2)

whose formula looks, after being derived in the usual way from (2), through
Q € R™"with rank(Q) =n[4, 7, 13],

X[k+1] — Q_l(Q _ A/A)X[k] + Q—lA/b,

3
k=0,1,.... )

In accordance with [4], important strohglobaf convergence properties are
guaranteed for those splitting iterations (3), whose splitting m&rimakes the
matrix Q + Q' — A’ Ato be positive definite; that is to sayAXx € R", Ax # 0,

AX'(Q+ Q — AAAX > 0. (4)

Inthis concern, aninteresting special sub-class of splitting iterations for solving
the problem (1) was recently investigated. Those splitting iterations, named
approximating splitting iterationf®, 10], were formulated with a splitting matrix

V 4+ AA

Q=—5—, (5)

where the matri®/, V € R™", is positive definite, what obviously makes (4) to
hold, providing various remarkable convergence properties for such iterations.

In efect, in accordance with [9, 10], every approximating splitting iteration
sequencéx o1 C R" satisfies

vxKl ¢ Arg min | Ax — b||3,
xeRN

IThe iteration converges for any matrix (with arbitrary rank, dimensions, etc.) and any
vectorb.
2The iteration converges from any initial valu!
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k41 2 k 2
| A — b2 < || AX — b3,

6
k=0,12,...; ©)
; Kl _ ; _ [0 [0} o
e V)
and
3P € R™" with rank(P) = n, such thatx™ £ x*,
[P Ot — x5 < P (< = x)3, (8)

k=0,12,...;

VA € R™" vbh e R™andvx[® e R".

So, the approximating splitting iteration convergence to a solution is not merely
strong, but even global and guarantees the objective function descent along the
generated sequence and the monotonous sequential approximation to its limit.

Besides, every approximating splitting iterate continuously depends on the
singular values of the problem matrix at each finite step, as a function of that
matrix [10].

Now, it must be clear enough why approximating splitting iterations were
effectively introduced in the context of the investigation of robust approximations
of linear least squares solutions in finite dimenstaarsd which peculiar role the
positive definiteness of the matrix plays there, concerning the robustness of
those approximate solutions [8, 10-12].

In consequence, the attention here is mainly focused on the positiveness of the
matrix V and on the structure of the splitting iteration formulas [4, 7, 9, 13] to
strengthen further the abovementioned convergence results, already achieved for
the approximating splitting iterations.

2 Convergence properties of certain approximating-like splitting iterati-
ons for solving linear least squares problems in finite dimensions

Let V be now a positive semi-definite matrix [6], # O, such thai + A'Ais
positive definite; that is to sayAx € R", Ax # 0,

AX'VAX >0 9

3The finite-dimension least squares approximation continuously depends on the singular values
of the problem matrix.
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196 GENERALIZED APPROXIMATING SPLITTING ITERATIONS

and
AX'(V + AA)AX > 0. (10)

Obviously, one may properly re-write the main approximating splitting iteration
formulas [9, 10] with such a matriy (9)-(10) instead, because, in accordance
with [6],

rank(V + A'A) =n (11)

So, one has the fixed-point formula
x=(+AA N - AAX+2V+AATAD (12)

of a broader class of splitting iterations (3) for solving the problem (1) with the
new splitting matrixQ (5) and, consequently, the one-step and(ihe 1)-step
calculation formulas respectively

X = (v + AA) TV — AAXM 12V + AA)TTAD,

13
k=0,12,...; (13)
and [k+1] A1 A\ KL [0]
X =((V+AA(V-AA) X
+ <| —((V + ARV - A’A))k+1> A*D, (14)

k=0,1,2,...:

where A" denotes the Moore-Penrose pseudo-inverse matix[@f 3, 6].

2.1 Sequential descent of the objective function

Itis nottoo hard to prove that the approximating-like splitting iterations (12)-(14)
for solving the problem (1) make the objective function to descend along their
generated sequence, as the approximating splitting iterations do.

Indeed, expand the objective functipAx — b||3 in a Taylor series around the
k-th iterate

x& ¢ Arg miﬂg |AX —bl|3, keZ', k< +oo;
Xe

evaluate that expansiondft! £ x| replacing thera*+1 with the right-hand
side of (13).
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Hence, making some equivalent transformations, one has that

[ AXK = b5 = | Ax — b
—4((V+AAIA (A — D))V ((V+ AATA (AXK — b)), (15)
k=0,12,....

Therefore, whereas is a positive semi-definite matrix (9), one has that

[AX* = b]; < | AX ~bf;,

16
k=0,1,2,.... (16)

2.2 Strong global convergence to a solution

At this point, consider, before anything else, the following theorem and its proof.

Theorem [Theorem of the invariance]. Letm € N, n € N, A ¢ R™",
be R"andX € R". If V is a matrixV e R™" such that andvAx € R",
AX # 0O,

AX'VAX >0

and
AX'(V + AA)AX > 0,

then,Va € R,

arg min (X = %)'(V 4+ a?A A (X — %)

xeArg min || Ax—b|3
xeRN

= arg min X—=X)'(V(x—X).
xeArg min || Ax—b|13
xeRN

Proof. Recall that [3, 6]VA € R™" andvb € R™,
. 2
A Ax—b
X € Arg min || Ax = b, # ¢
if and only if

A'Ax = Ab,
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198 GENERALIZED APPROXIMATING SPLITTING ITERATIONS

due to the cor IVGXity of the problem
min ||AXx — b 2
xeRn | ”2

and to the analytical properties of the class of functions involved there.
So,VYa € R, the respective feasible solution set of the goal-attainment bi-level
linear least squares problem [1, 14]

min X = %) (V + a?AA)(X — %)

; 2
x€Arg min || Ax—Dbl|
gxeR” 2

and of the corresponding constrained convex goal-attainment linear-quadratic
programming problem [6]

min  (x —X)(V + A A) X —X)
xeArg{ A’ Ax=A'b}

coincide; that is to say,

Arg min (X —%)'(V + o> A A)(X — X)

xeArg Xrgg;] | Ax—bl|3
= Arg xeArg{r,DLr\]x:A’b}(x —%)'(V+?AA X —X).
If Vis amatrixV € R™", such thave € R andvAx € R", Ax # 0,
AX'VAX >0 and AX(V + AAAX > 0,
then, on the one handlg € R andvVAXx € R", Ax # 0,
AX'(V + o> A A)AX > 0;
and, on the other handAx € R", Ax # 0, such thal’ AAx = 0,
AX'VAX > 0.
HencevVa € R andvVAx € R", Ax # 0, such thatA' AAx = 0,
AX'(V + «®?AA)AX > AX'VAX > 0.
Therefore, the sufficient condition for a minimum of the convex problem [5]

min X =" (V 4+ o?AA) (X — X)
xeArg{A’ Ax=A'b}
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holds for anyw; that is to sayya € R,

arg min (X — %) (V 4+ o2 A A)(X — X)

; 2
x€Arg min ||Ax—bl||
gxe]R” 2

= arg mn (X —X)'(V +a?AA) (X —X).
xeArg{ A’ Ax=A'b}

So, one can determine

arg min (X — %) (V 4+ o?AA)(X — X)

xeArg mﬂi{{r}I | Ax—bl|3
for anya just by finding the saddle point of the associate Lagrange functional [5]
LX,A) = X=XV +a®?AAX—X) +1A(AXx—b).

Hence,
Vi (X, A) = 2(V + ?AA) (X — %) + AAL =0

and
A L(X, L) =AAx— Ab=0.

Whereas the matri¥ + A’ Ais positive definite, after some equivalent trans-
formations of the two latter equationgx € R, one has the following linear
equation system

I ww WV +AAX=X) _ 0
WW 0 WV T AA) (%,\ —1-ad)(x— >~<)) ~ \_wag—b))°

where

W=AWV +AA L

whose minimal-norm solution [7, 3, 6] leads to the one to be found foreany
that is to say,

X* = (WVV+ AR - WW)WV + AR+ (VV + AR WD,
and

V=2V HAAN (A -a®)l = (WW)T)WH(AX — b).

Comp. Appl. Math., Vol. 24, N. 2, 2005
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ThereforeVa € R,

arg min (X —%)'(V + o> AA)(X — %)

xeArg min || Ax—b|13
xeRN

= arg min X=X'VX-=X).
xeArg min || Ax—b|13
xeRN

Now, assume the Singular Value Decomposition (SVD) [3, 6] of the matrix
AV + A'A)~1to yield the factorization

S 0
AWV FAA =L (0 0) R. (17)
Recall that, sinc&/ satisfies (9)-(10),
O<lSl2<1, (18)

here because, in accordance with AV + AA) 71|, < 1.
So, one has that

A=t (§ o) reviam 19)

and, as a consequence,
/ I Sz O /
AA= KV +AAR 5 ol R WV + AA) (20)

and
|- 0
I
After the replacement of the right-hand sides of equalities (19)-(21) whom it
corresponds in both the approximating-like splitting iteration formulas (13) and
(14) and after making some equivalent transformations there, one has that

V=WVT A’A)/R< ) RV + AA) (21)

o
xk+1 — ( N + A’A)flR (I 025 ?) R( N ¥ A/A)X[k]
22
+2(VV + AAIR (i 8) L'b, (22)
k=0,1,2,...;
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and

k+1 — (VAR (I =28kt 0 N T AR
X =wWV+AA TR 0 | R(VV + AA)X

0 0 0 O
k=0,1,2,....

1 oayk+l 1
+<¢m)—lR(' (1 —28% °><g O)L’b, (23)

Here, notice that, since (18) holds, one has that

lim (1 —28%)% =0. (24)

k—+o00

So,

k—+o00

lim x¥ =/V+AATR (8 |O> RV + AA)XO

(25)
1o (St o\,
+ WV +AATR o o L'b.

Hence, after making some equivalent transformations of the right-hand side of
(25) and introducingV,

W =L <§ g) R =AWV +AAT, (26)
where it corresponds there, one has that

lim x™ = W/V + AA I —WW) WV + AA)XD

k—+o0 (27)
+ 'V +AA WD,
Therefore, in accordance with the theorem of the invariance,
lim x™ = arg min (x — XV (x — x[O) = x* (28)
k—-+o0

xeArg min || Ax—b||2
gmin|| 5

what proves the extension of the homologous strong global convergence property
(7) of the approximating splitting iterations to a broader class of approximating-

like splitting iterations (12)-(14), whose formulas are with positive semi-definite
matricesV, such that (9)-(10) hold.
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2.3 Monotonous successive approximation of any solution

Notice that, the approximating-like splitting iterations (12)-(14) with(9)-
(10) also monotonously approximate any solution of the problem (1) along their
generated sequence, as the approximating splitting iterations do.

Indeed, whereas (12) holds for every solutich

X* =V +AA NV - AAX +2V+AAAD. (29)
So, after subtracting (29) from (13),

X = (V + ARV — AR XM - x*)

30
k=0,1,2,... (30)

and replacing in (30) whom it corresponds with the right-hand sides of equalities
(20)-(21), one has that

_ 22
ke — (Vv AA) TR (' 25 0) R(VV +AA) (x[k] - x*) :

0 I
k=0,1,2,....

(31)

Hence,

2
R(VV + AA) (xIHT - x) = (' o f’) ROV AR —x.

k=0,12....

Therefore, since (11) and (18) hoP = (R'(v/V + A’'A)) € R™" with
rank(P) = n, such thak™ = x*,

[P (x4 — )], < [P (=)
k=0,12....

? (33)

2.3.1 Continuous dependence of every finite-step iterate on the singular values

Itis not difficult to prove that every approximating-like splitting iterate (22)-(23)
continuously depends on the singular values of the problem matrix at each finite
step.
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Indeed vVt € Z*, 1 < 400,

-1
(I—(-28)")st=2> (29" (34)

p=0

Hence, from (23), one has that

2\ T
X7l — («/W\)_lR((I _55) ?) R/( N n A/A)X[O]

-1 (35)
2y (29" 0
+ WV +AATR pgo( ) L'b.
0 0

Therefore,

lim xHL, S 0 . R
[diag(S)]p,....ranka)—+0 0O 0
[Si=1p-1 0 (36)
=x"| L, i=1p-1 R,
0 0

wherep € N|p < rank(A).

3 Convergence properties of further approximating-like
splitting iterations

Lety € Randé € R be such that
y2+62+£0 (37)

and
y2=>02. (38)

Besides, lei be a matrix, that satisfies (9)-(10). Hence, in accordance with
[6], V + y2A Alis a positive definite matrix and, consequently,

rank(V + y2A'A) =n (39)

for anyy, that satisfies (37)-(38).
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So, the problem matrid’ A can be properly split [4, 7, 13] this way:

\Yj 2N A V —02AA
wa= () - (k)
y2+62 Y2+ 62

and one may thus write the fixed-point formula
X= (N +y2AANLV - 2N AX + (Y246 (V + y2AAIADb  (40)

of a yet broader class of splitting iterations (3) for solving the problem (1), with

the splitting matrix

V 4+ y2AA

e
Of course, the one- and tljle + 1)-step calculation formulas of such approxi-

mating-like splitting iterations are respectively

Q= (41)

XK = (v + 2 A) LV — 02A AN + (12 4+ 6%V + y2AA)TIAD

© (42
k=0,1,2,...; (42)

and
X — (V4 2 A ALV — 02AA)) X0
+ (l — ((V +y2A AV — ezA/A))"“) Atb,  (43)
k=0,12,....
Since identities

2_92 2+92
2=V +V
2 2

14 (44)

and

y2—02 2442
2 2
hold, then after replacing the right-hand sides of equalities (44) and (45) in both
the formulas (42) and (43), and after making there the equivalent transformations

6% =

(45)

_ 2.1 92
A=Y ;9 A, (46)
_ 2.1 p2
5= /Y JZFQ b (47)
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and X )
- -6
v=v4’

AA, (48)
the approximating-like splitting iterations (42) and (43) look now as follows

I = (V4 A ALV — AR)xM 427 + AA)LAD,

49
k=0,12,...; (49)
and k+1
X = ((V+ ARV - AA)) X
- -~ - ~ -~ \k+1
+(}—QV+NN4N—AA» )Am, (50)

k=012 ...;

where, since the matri¥ satisfies (9) and (10), the matrik (48) also satisfies
them for anyy andé, that satisfy (37)-(38).

Hence, the generated sequer{x@‘]}kzo’lzw C R" of any approximating-
like splitting iteration (42)-(43) satisfies the convergence properties (16), (28)
and (33); specially the one of the global convergence limit; that is to say,

lim x¥ =
k—+00
2 2

. —6 (51)

= arg min (x — x1°) (V +7 A/A) (x —x1) .

xeArg mﬂi{{r}1 | Ax—b]|3
Therefore, following the theorem of the invariance, one has that
lim x' = ar min X — XV (x —x¥) .

k— 400 gxeArg min | Ax—b|2 ( ) ( ) (52)

Now, the definition ofeneralized approximating splitting iterations for solving
linear least squares problems in finite dimensionay be properly stated, as
follows.

Definition. Letm € N andn € N; and letA ¢ R™" andb € R™. Besides, let
y € Randd € R be such that

y2+6%2£0 and y?>62.
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A generalized approximating splitting iteration for solving the linear least
squares problem in finite dimensions is a linear stationary splitting iteration

X[k-‘rl] — Q—l(Q _ A/A)X[k] + Q—lA/b’
k=0,1,...;

for solving the problem
min | AX — b3
whose splitting matrix is
V +y2AA
Q=" i g
whereV is a matrixV € R™", such thavAx € R", Ax # 0,

’

AX'VAX >0

and
AX'(V + AA)AX > 0. O
4 Conclusions

Here, a new special class of splitting iterations for solving linear least squares
problems in finite dimensions, named generalized approximating splitting itera-
tions, has been defined and their main properties of strong global convergence
to any problem solution has been properly derived.

The investigation results proved:

1. The objective function descends along the generated iteration sequence.
2. Every iteration sequence strongly and globally converges to a solution.

3. Every iteration sequence monotonously approximates its convergence li-
mit.

4. Each finite-step iterate continuously depends on the singular values of the
problem matrix.
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The generalized approximating splitting iterations are certainly a generaliza-
tion of the approximating splitting iterations [9], [10], not merely because the
latter ones are a special case of the former ones (when both the coefficients
and6 are equal to the unit and the matNkis positive definite), but specially
because the investigation results proved the generalized approximating splitting
iterations to extend the favorable convergence features of those to a quite broa-
der variety of approximating-like splitting iteration formulas (like, for example,
the one of the iterated Tikhonov regularization with a non-necessarily full-rank
smoothing matrix [7], [12], [9], [10]), what substantiates their suitability for the
robust approximation of linear least squares solutions in finite dimensions [10]
and hints their possible use in solving multi-level problems [1], [14].

Finally, it should be noticed that the requirements to be fulfilled by the matrix
V of generalized approximating splitting iterations are just equivalent to the
well-known sufficient conditions for a minimum of any constrained convex goal-
attainment linear-quadratic programming problem [5].
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