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1 Introduction

Hamilton’s canonical equations (HCEs) are key objects in optimal control theory

when convexity is present. If the problem concerning an n -dimensional con-

trol system and an additive cost objective is regular, i.e. when the Hamiltonian

H(t, x, λ, u) of the problem is smooth enough and can be uniquely optimized

with respect to u at a control value u0(t, x, λ) (depending on the remaining vari-

ables), then HCEs appear as a set of 2n first-order ordinary differential equations

whose solutions are the optimal state-costate time-trajectories.

In the general nonlinear finite-horizon optimization set-up, allowing for a free

final state, the cost penalty K (x) imposed on the final deviation generates a two-

point boundary-value situation. This often leads to a rather difficult numerical

problem. In the linear-quadratic regulator (LQR) case there exist well-known

methods (see for instance [3, 19]) to transform the boundary-value into a final-

value problem, giving rise to the differential Riccati equation (DRE).

For a quadratic K (x), in this paper it will always be K (x) = s‖x‖2, the ex-

tension to a general positive-semidefinite matrix S can be worked out along the

lines of [10], where the problem has been imbedded into a whole (T, s)-family

(see [5, 6, 11]). As a result two first-order, quasilinear, uncoupled PDEs with

classical initial conditions were discovered, where the dependent variables are

the missing boundary conditions x(T ) and λ(0) of the HCEs. This approach is

completely disjoint from Riccati equations, but more in the line of the early ideas

on ‘invariant imbedding’ introduced by Bellman [2]. An analogous approach

was reformulated for the multidimensional case, in the light of the symplectic

properties inherent to Hamiltonian dynamics (see [6]). More involved PDEs

appear in this case, called ‘the variational PDEs’. They were solved numeri-

cally for linear, bilinear, and other nonlinear systems, but their complexity had

impeded analytical confirmation till recently. In [12] such an analytical check-

ing is developed for a nonlinear version of a well-known case-study, namely the

time-variant LQR problem. It has been found that, in the general nonlinear case,

additional relevant information can be recovered from the variational PDEs. For

instance, the initial condition P̃(0) for the DRE associated with the linearizared

HCEs, can be calculated from the derivative of the Hamiltonian flow, which is

part of the solution to the variational PDEs. This is of particular importance in
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implementing two-degrees-of-freedom (2DOF) control in the Hamiltonian con-

text (see [15]), because the P̃(t) enters the compensation gain of the control

scheme, and it can be obtained on-line from knowledge of P̃(0) (see [4, 9]).

When the variational PDEs were solved using standard software as MAT-

LABr or MATHEMATICAr, some inaccuracies have appeared, which has

made it necessary to develop robust integration methods. In this work, a novel

iterative scheme based on Picard’s approach to ODEs’ initial-value problems

is proposed to numerically integrate these variational PDEs. This convergent

iterative method actually applies to general first-order quasilinear PDEs of the

form
n∑

i=1

ai (x, z)
∂z

∂xi
= b(x, z), (1)

where x ∈ Rn, z is the unknown real function of x , and the {ai , i = 1, . . . , n; b}

are C1 functions. The ‘Cauchy problem’ is to find the C1 function (denoted for

simplicity z(x)) that satisfies Eq. (1) in a neighborhood of a given C1 ‘initial

hypersurface’ S ⊂ Rn where the ‘initial data’ are prescribed, i.e.

z(x) = g(x) ∀x ∈ S, (2)

for a given C1 function g : S → R.

Very few results are known concerning the numerical treatment of first-order

PDEs. In [17], it is proved that the Picard method can be used to generate the

Taylor series solution to any ODE in Rn with polynomial generator. Lately, in

[16] the result was extended to PDEs with polynomial generators and analytic

initial conditions, showing that the power-series solution to that PDE can be

generated to an arbitrary degree of approximation by Picard iteration method.

Such a method can be applied to a large class of PDEs through polynomial pro-

jections. From the proof of the main theorem in [16] an algorithm to find the

solution follows. A similar result for nonlinear PDEs, based on the ‘Adomian

Decomposition Method’, has recently been reported [1], although the procedure

to find the appropriate Adomian polynomials is somewhat involved. In [20], a

variant of the dressing method for solving matrix quasilinear PDEs, more of a

theoretical content is advanced. In the present article the objective is to approx-

imate the solution via a convergent iterative procedure, no matter the degree of
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the McLaurin series reached in each iteration. It is shown that this new method

actually applies to first-order quasilinear PDEs with matrix-valued unknowns.

As illustrations the iterative method is checked against: (i) the analytical so-

lutions to examples in dimension one and higher, some arising from optimal

control problems for nonlinear systems and regular Lagrangians, and (ii) the

numerical solution obtained from straightforward use of standard mathematical

software. An application to the (n + 1)-dimensional variational PDEs associ-

ated with the n-dimensional finite-horizon time-variant linear-quadratic problem

is specially discussed due to its relation to 2DOF control strategies for non-

linear systems with generalized costs.

The paper is organized as follows: In Section 2, the proposed method for

solving quasilinear PDEs is substantiated. The PDEs for boundary conditions

of the Hamilton canonical equations are introduced in Section 3. A solution to

these equations by means of the proposed iterative scheme is also included. In

Section 4 some examples are discussed and illustrated. Finally, the conclusions

are presented.

2 An iterative method for first-order quasilinear PDEs

Let us consider first-order quasilinear PDEs of the form given in Eq. (1) and its

related Cauchy problem. Under the usual hypothesis that S is non-characteristic,

i.e., the vector (a1(x, g(x)), a2(x, g(x)) . . . , an(x, g(x)) is not tangential to S

at any x ∈ S, there exists a unique C1 solution z(x) of Eq. (1), defined on a

neighborhood of S (see [13] for details). The graph of z(x) is the union of the

parametric family of integral curves of

∂xi

∂t
(v, t) = ai (x, y) , xi (v, 0) = hi (v) (3)

∂y

∂t
(v, t) = b(x, y) , y(v, 0) = g (h(v)) (4)

where v is a vector-parameter running along S, i.e. S is assumed to be given in

parametric form

x ∈ S ⇒ x = h(v) , (5)

with v ∈ O, for O some bounded open set in Rn−1 and h a valid ‘parametriza-

tion’ of S.
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For each value of v the Eqs. (3-4) are actually ODEs with independent variable

t . Then the Cauchy problem for the original quasilinear PDEs is basically an-

swered by the theorem on existence and uniqueness of solutions for ODEs (see

[14]), which in the positive case anticipates a unique C1 solution (x(v, t), y(v, t))

for small |t |. The C1 dependence of the ODE solutions in a bounded set O of

parameters v, guarantees that the solution curves are defined for |t | ≤ t0 for some

positive t0, i.e. uniformly, for all v ∈ O. In addition, since S is non-characteristic,

by the inverse-function theorem the function (v, t) → x(v, t) can be inverted in

a neighborhood � of S to obtain v and t as C1 functions of x in � so as to meet

the initial condition

t (x) = 0 , h(v(x)) = x , ∀x ∈ S .

Therefore the desired solution to the original problem will be

z(x) = y(v(x), t (x)) , (6)

as can be checked by taking derivatives, using the chain rule and the matrix

equality (see [13])
∂ (v, t)

∂x
=

[
∂x

∂ (v, t)

]−1

.

The problem remains formally the same when the ai , i = 1, . . . , n are n × n-

matrix-valued, and z, b are n-vector-valued mappings.

For a fixed v, Eqs. (3-4) can be solved by using the Picard method for auto-

nomous ODEs [14]. The extension of the Picard algorithm to treat Eqs. (3-4) as

PDEs reads as follows.

For each v0 ∈ Owhere the function x(v, t) is invertible, the ODE system (3-4)

can be written

dY

dt
= Ẏ = F(Y ); (7)

Yv0(0) = Y0(v0) = (h1(v0), h2(v0), . . . , hn(v0), g(h(v0))), (8)

where Y
def
= (x1, x2, . . . , xn, y) , F

def
= (a1, a2, . . . , an, b), and F : Rn+1 →

Rn+1 is C1.

If Mv0 is an upper bound for F in the compact set

B(v0)
def
= {|Y − Y0(v0)| ≤ 1} ,
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then the Picard sequence, for all t ∈ Jv0

def
= (−εv0, εv0) and v0 fixed, is denoted

by {Yn(v0, ∙), n = 0, 1, . . .}, and

Yn(v0, t) = (x1(v0, t), . . . , y(v0, t))n = Y0 +
∫

0

t

F(Yn−1(v0, s))ds, (9)

where εv0 can be chosen εv0 < min
{

1
Mv0

, 1
Kv0

}
, where Kv0 is a Lipschitz con-

stant for F in B (v0) .

It is well-known that Picard iterations converge to the solution Y in some

neighborhood of t = 0 whenever the solution to Eq. (7) exists and is unique,

then by choosing a compact (as big as possible) set O0 ⊂ O, and using the

fact that Y0 is continuous, it follows that W
def
=

⋃
v0∈O0

B(v0) is bounded, and

therefore there will exist a Lipschitz constant K , and a bound M for F in the

closure of W , with

K ≥ Kv0, M ≥ Mv0 ∀v0 ∈ O0 . (10)

Then, it turns possible to choose an ε < min
{

1
M , 1

K

}
ensuring that Eq. (9)

will be valid for all t ∈ J
def
= [−ε, ε] and for all v0 ∈ O0. Therefore, in the

compact set O0 × J , the Picard sequence Yn(v0, ∙) will converge uniformly to

Y (v0, ∙), the solution of the ODE (7), implying that the last coordinate yn(v0, t)

of Yn(v0, ∙) will converge (uniformly) to y(v0, t) = z(x(v0, t)). By calling

�0
def
= x(O0 × J ), the following proposition becomes true.

Proposition 2.1. Let consider a first-order PDE

n∑

i=1

ai (x, z)
∂z

∂xi
= b(x, z) (11)

z(x) = g(x) x ∈ S (12)

where x ∈ Rn and S is an hypersurface in Rn, parameterized by the smooth

function h defined on an open setO ∈ Rn−1. Suppose that ai , g are C1 functions

and S is non characteristic for (1). Let z(x) be the unique solution to (11) and

zn(x) be a sequence of functions generated by the application of the Picard

iterative method to (3)-(4) for v ∈ O0. Then if x ∈ �0, the sequence zn(x) =

yn(v(x), t (x)) converges uniformly to z(x).
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Proposition 2.1 states that the sequence yn(v, t) generated by the proposed

iterative scheme converge uniformly to y(v, t) for (v, t) ∈ O0 × J . In addition,

for each x ∈ �0 there is a unique (v, t) ∈ O0 × J such that x = x(v, t). Then

yn(v, t) = zn(x) converges uniformly on �0 to the solution z(x) = y(v, t) of

the PDE, i.e., ∀ε > 0, ∃ n0 such that n ≥ n0 ⇒ |yn(v(x), t (x)) − z(x)| < ε,

∀x ∈ �0 (i.e., ∀(v, t) ∈ O0 × J ).

Since the convergence is uniform, this means that the graphs surfaces of the

iterated yn(x) uniformly approximate the graph (surface) of the solution z(x)

to the PDE. Thus, the difference |zn − z(x)| for each n is uniformly bounded

for every x ∈ �0, i.e. the accuracy of the approximated values for z(x) can be

controlled.

Figure 1 illustrates some of the objects appearing in the proof of Propo-

sition 2.1 for n = 2. The label Sz denotes the graph of the unique solu-

tion z(x) to (1) defined on �, i.e. Sz = {(x, z(x)), x ∈ �}. The initial data

S∗ def
= {(x, z(x)), x ∈ S} ⊂ Sz can be described by means of the parametrization

of S as S∗ = {(x, g(x)) : x ∈ S}. The left subplot in Figure 1 shows the set

(x1, x2, z(x1, x2)). The initial point P0 ∈ S∗ of the curve Cx , and a typical point

P = (x1, x2, z(x1, x2)) ∈ Sz , can be observed. On the right, the corresponding

surface solution Sy = {(v, t, y(v, t)) : v ∈ O, t ≥ 0}, in the (v, t) space is pre-

sented. We show the points P, P0 ∈ Sy where P = (ν, t, y(ν, t)) corresponds

to P , i.e. y(ν, t) = z(x, y)).

Concerning the rate of convergence of Picard’s sequences in the first-order

PDEs’ context, the following inequality can be advanced for all (v, t) inO0 × J :

∣
∣Yn(v, t) − Y (v, t)

∣
∣

∙ ∙ ∙ =
∣
∣Y0 +

∫

0

t

F(Yn−1(v, s))ds − (Y0 +
∫

0

t

F(Y (v, s))ds)
∣
∣ (13)

≤
∫

0

t

K
∣
∣Yn−1(v, s) − Y (v, s)

∣
∣ds ≤ K |t |mn−1(v) ≤ K εmn−1(v),

where mn(v)
def
= maxt∈J0 |Yn(v, t) − Y (v, t)|. Then, by induction

|yn(v, t) − y(v, t)| ≤ |Yn(v, t) − Y (v, t)| ≤ (K ε)n−1m1(v) ≤ (K ε)n, (14)

revealing that iterations converge to the solution at a geometrical rate.
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Figure 1 – Surface solution and integral curves.

3 Application to PDEs for boundary values of the Hamilton canonical

equations

This section relates first-order PDEs to optimal control problems defined by

autonomous, nonlinear systems

ẋ = f (x, u) ; x(0) = x0 ∈ Rn ; u : [0, T ] → Rm ; (15)

coupled to cost functionals of the form

J(T, 0, x0, u(∙)) =

T∫

0

L(x(τ ), u(τ ))dτ + s ‖x(T )‖2 , (16)

with smooth Lagrangians L and piecewise continuous admissible control strate-

gies u(∙).

The problems will be assumed regular and smooth, i.e. that the value (or

Bellman) function

V (t, x) , inf
u

{J(T, t, x, u(∙))} , (17)
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satisfies the Hamilton-Jacobi-Bellman (HJB) equation with boundary condition

∂V

∂t
(t, x) +H 0

(
x,

[
∂V

∂x

]′

(t, x)

)
= 0 (18)

V (T, x) = s‖x‖2 (19)

where H 0 is the minimized Hamiltonian defined as

H 0(x, λ) , H(x, λ, u0(t, x, λ)) , (20)

H being the usual Hamiltonian of the problem, namely

H(x, λ, u) , L(x, u) + λ′ f (x, u) , (21)

and u0 is the unique H -minimal control satisfying

u0(x, λ) , arg min
u

H(x, λ, u) , (22)

or equivalently,

H(x, λ, u0 (x, λ)) ≤ H(x, λ, u) ∀u ∈ U = Rm . (23)

Under these conditions, the optimal costate variable λ∗ results in

λ∗(t) =
[
∂V

∂x

]′

(t, x∗(t)) , (24)

and the optimal state and costate trajectories are solutions to the Hamiltonian

Canonical Equations (HCE)

ẋ =
(

∂H 0

∂λ

)′

, F(x, λ); x(0) = x0, (25)

λ̇ = −
(

∂H 0

∂x

)′

, −G(x, λ); λ(T ) = 2sx(T ), (26)

which in concise form read as one 2n-dimensional ODE

v̇ = X (v) , (27)

v(t) ,

(
x(t)

λ(t)

)

, X (v) ,

(
F(v)

−G(v)

)

(28)
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with two-point mixed boundary conditions

x(0) = x0 , λ(T ) = 2sx(T ) . (29)

When the problem is not completely smooth, i.e. when the resulting value func-

tion V is not differentiable, it is still possible to generalize the interpretation

of the costate (in Eq. 24) in terms of ‘viscosity’ solutions (see discussion and

references quoted in [19], pages 394, 443); but those cases will not be explored

here.

The following notation for the missing boundary conditions will be used in

what follows:

ρ(T, s) , x∗(T ) , (30)

σ(T, s) , λ∗(0) . (31)

The introduction of the variational PDEs is done through the following objects.

First of all φ : [0, T ] × Rn ×Rn → Rn ×Rn will denote the flow of the Hamil-

tonian equations (25-26), i.e.
(

x(t)

λ(t)

)

= φ(t, x0, σ ) ∀t ∈ [0, T ] ; φ(0, x, λ) =

(
x

λ

)

, (32)

and φt is the t-advance map defined for each t as

φt(x, λ) , φ(t, x, λ) . (33)

The flow must verify the ODEs of Hamiltonian dynamics, i.e.:

D1φ(t, x, λ) =
∂φ

∂t
(t, x, λ) = X(φt(x, λ)) . (34)

Let us denote then, for a fixed s,

V (t, s) , Dφt(x0, σ (T, s)) . (35)

It can be shown, by deriving ODE condition in Eq. (34) with respect to the

(x, λ)-variables, that the following ‘variational (ODE) equation’ (see [14])

applies:

V̇ (t, s) = A(t, s)V (t, s) , V (0, s) = I , (36)
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where

A(t, s) , DX ◦ φt (x0, σ (T, s)) = DX(ρ(T, s), 2sρ(T, s)) , (37)

and V̇ (t, s) stands for ∂V
∂t (t, s). Now it should be noted that V (t, s) is the

fundamental matrix 8(t, 0) of the linear system

ẏ = A(t, s) ∙ y , (38)

i.e. its solution is y(t) = 8(t, τ )y(τ ), 8(τ, τ ) = I , and it can be shown (see

[19]) that the matrix V (T, s) = 8(T, 0) verifies

VT = A(T, s) V , V (0, s) = I , (39)

a first-order PDE which, given the form of Eq. (37), must be solved together

with a pair of equations for ρ(T, s), σ (T, s). It turns out that several equivalent

equations may play this role, for instance [6]

V ′
1(2sρT + G) + V ′

3(F − ρT ) = σT (40)

V ′
1(2ρ + 2sρs) − V ′

3ρs = σs (41)

where the Vi , i = 1, . . . 4 are the partitions into n × n submatrices of

V =

(
V1 V2

V3 V4

)

,

and

F(ρ, s) , F(ρ, 2sρ), G(ρ, s) , G(ρ, 2sρ) . (42)

In the one-dimensional case Eqs. (39, 40, 41) can be replaced [5] by

ρρT −
(

s F(ρ, s) +
G(ρ, s)

2

)
ρs = ρF(ρ, s), ρ(0, s) = x0 (43)

ρσT −
(

s F(ρ, s) +
G(ρ, s)

2

)
σs = 0, σ (0, s) = 2sx0. (44)

It is possible first to calculate ρ(T, s) by solving Eq. (43), and afterwards

σ(T, s) from the solution of Eq. (43) inserted in Eq. (44).
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Now, the iterative method proposed in Section 2 will be applied to solve

Eq. (43). The Picard scheme uses an arbitrary guess ρ0(T, s) for the solution

and attempts to solve

ρT −
(

s F(ρ0, s)

ρ0
+

G(ρ0, s)

2ρ0

)
ρs = F(ρ0, s) , (45)

where only the variable ρ is replaced by ρ0(T, s) the derivatives of ρ remain-

ing unknown. It is enough to search for the integral curves of the vector field

C(T, s) = (1, 0(ρ0, s), F(ρ0, s)), where

0(ρ0, s) , −
(

s F(ρ0, s)

ρ0
+

G(ρ0, s)

2ρ0

)
, (46)

i.e. to solve the system of ODEs

dT

dt
= 1 ,

ds

dt
= 0(ρ0, s) ,

dy

dt
= F(ρ0, s). (47)

The first equation implies T = t , then

ds

dt
= 0(ρ0(t, s), s) , s(0) = s0 (48)

can be solved alone, to find s(t, s0), and finally the ODE for y takes the form

dy

dt
= F(ρ0(t, s(t, s0)), s(t, s0)) , y(0) = x0 . (49)

A grid (Ti , sk) can be constructed on the (T, s) space but with s(Ti ) = sk .

Afterwards Eq. (49) can be numerically solved and the value y(Ti , s(Ti )) is

picked up. According to (6)

ρ(Ti , sk) = y(Ti , s(Ti )) . (50)

Finally an interpolation is made to obtain an approximation of ρ(T, s). The

result of this interpolation is ρ1, and so on. Were the calculations exact, the

constructed sequence of functions {ρn} should then converge to ρ.

In the multidimensional case, the same approach can be pursued after writing

the equations in component-by-component form.
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4 Numerical examples

Three examples are treated in this section. One of them is just an abstract PDE

whose analytical solution is known. The remaining examples come from optimal

control problems (regularity and smoothness properties hold, as can be checked

in the references quoted for each case).

4.1 Case-study 1: a one-dimensional nonlinear control system with a quad-

ratic cost

The results of the previous sections will be applied here to the following initial-

ized dynamics

ẋ = −x3 + u ; x(0) = x0 = 1 , (51)

subject to the quadratic optimality criterion

J(u) =

T∫

0

[
x(t)2 + u2(t)

]
dt + Sx(T )2. (52)

The problem presented in this subsection has been treated in [18] as a hyper-

sensitive boundary value problem (HSBP), since small perturbations seriously

affect its numerical solution for long time-horizons T . The corresponding vari-

ational PDEs were posed in [11] and they were solved numerically by using the

MATHEMATICAr software package (specifically, the command “NDSolve”)

and MATLABr (using the command “pdepe”). For the regulation case they read

as follows

ρT = (−4sρ2 − s2 + 1) ρs − (ρ3 + sρ); ρ(0, s) = 1 (53)

σT = (−4sρ2 − s2 + 1) σs; σ(0, s) = 2sx0 = 2s (54)

In Figure 2 the approximate solutions obtained by the proposed Picard scheme

and the one-step numerical solution provided by Mathemtica are shown. In this

case the solution obtained by standard software is acceptable.
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Figure 2 – Picard scheme applied to a one-dimensional case for which standard software

is acceptable.

4.2 Case-study 2: a one-dimensional PDE with analytical solution

This is an example that can be solved analytically. The PDE and its initial

condition are the following:

rt + rs(s(t − 1) + r − 1) = −2s, r(0, s) = 1 ∀s ,

whose exact solution reads

r(t, s) = 1 + s
(

1 − t −
1

1 − t

)
.

In Figure 3 the solutions obtained by the fourth (in brown) and fifth (in blue)

iterations of the proposed Picard scheme are compared against the solution pro-

vided by MATHEMATICAr. It can be noted that the behavior of Picard’s itera-

tions converge monotonically to the analytical solution (in yellow), significantly

improving in this case the numerical response of MATHEMATICAr (in orange).

The validity of the geometrical rate of convergence for Picard iterations devel-

oped in Section 2 can be analytically checked in this example. For a fixed v0 the
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Figure 3 – Several Picard iterations converging to the analytical solution (yellow) vs.

numerical solution using the command “NDSolve”.

system (3-4) takes the form

∂T

∂t
(v0, t) = 1, T (v0, 0) = 0

∂s

∂t
(v0, t) = s(T − 1) + r − 1, s(v0, 0) = v0 (55)

∂r

∂t
(v0, t) = −2s, r(v0, 0) = 1

and, in the notation of Section 2

Y (t) = (T (t), s(t), r(t)),

F(Y (t)) = F(T (t), s(t), r(t)) = (1, s(T − 1) + r − 1, −2s),

Y0 = (0, v0, 1).
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For T ∈ [0, 1], v ∈ [1, 2], r ∈ [0, 1], the Lipschitz constant can be chosen as

the upper bound for the derivative. The values K =
√

10, M =
√

26, are found

admissible, and therefore

|yn(v, t) − y(v, t)| ≤ mn(v) ≤ (
√

10ε)n.

From the exact solution Y (v, t) = (t, v(1 − t), 1 − v + v(1 − t)2) and using

ε < 1/
√

26 < 1/
√

10, the analytical expressions of the iterations allow to

check, for increasing n,

Y1(v, t) = (t, v(1 − t), 1 − 2vt), |Y1 − Y | = v2t2 < 4ε2 �
√

10ε;

Y2(v, t) = (t, v(1 − t) − vt3/3, 1 − 2vt + vt2),

|Y2 − Y | = vt3/3 < 2ε3/3 �
(√

10ε
)2

;

Y3(v, t) = (t, v(1 − t) − vt5/15 − vt4/12, (1 − vt)2 + vt4/6),

|Y3 − Y | = vt4/6 < 2ε4/6 �
(√

10ε
)3

.

4.3 Case-study 3: a two-dimensional nonlinear control system with a quad-

ratic cost

The well-known time-variant Linear-Quadratic-Regulator (LQR) problem is

here revisited (see [12] for related results). Such a problem is defined by

ẋ = −x + e−t u , f (t, x, u) , (56)

L(t, x, u) = u2 , A(t) ≡ −1, B(t) = e−t , (57)

Q(t) ≡ 0, R(t) ≡ 1, S = s I, s ≥ 0, (58)

K (x) = s [x(T )]2 . (59)

The problem is transformed into an autonomous one through the usual change

of variables

x → x1 , t → x2 , (60)

and for simplicity the old symbol x will be maintained for the new state, i.e., in

what follows,

x = (x1, x2)
′ , (61)
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and, in the new set-up the (autonomous) dynamics will read

ẋ = fa(x, u) , ( f (t, x1, u), 1)′ ,

ẋ1 = −x1 + e−x2u , x1(0) = x0 , (62)

ẋ2 = 1 , x2(0) = 0 . (63)

The transformed cost functional, Lagrangian, and final penalty will then be

Ja(T, 0, (x0, 0)′ , u(∙)) ,

T∫

0

La(x(τ ), u(τ ))dτ + Ka(x) , (64)

La(x, u) , u2 = L(t, x1, u) , (65)

Ka(x) , sx2
1 =

[
diag (s, 0)

]
x = K (x1) . (66)

It is clear that the optimal control for both (the time-variant and the auto-

nomous) problems will be the same, since

Ja(T, 0, (x0, 0)′ , u(∙)) = J(T, 0, x0, u(∙)) , (67)

however the new dynamics is nonlinear (actually, Eq. (62) having an exponen-

tial, implies that all powers of x1 are present, and they are multiplied by the

control). New expressions for the Hamiltonian Ha , the H -minimal control u0
a ,

and the minimized (or control) Hamiltonian H 0
a will apply, namely

Ha(x, λ, u) , La(x, u) + λ′ fa(x, u) (68)

= Ru2 + λ1(−x1 + e−x2u) + λ2 , (69)

u0
a(x, λ) , arg min

u
H(x, λ, u) = −

1

2R
e−x2λ1 , (70)

H 0
a (x, λ) , Ha(x, λ, u0(x, λ)) = −x1λ1 −

1

4R
e−2x2λ2

1 + λ2 , (71)

and the HCE for this case will read in component-by-component form

ẋ1 = −x1 −
1

2
e−2x2λ1, x1(0) = x0 , (72)

ẋ2 = 1, x2(0) = t0 = 0 , (73)

λ̇1 = λ1, λ1(T ) = 2sx1(T ) , (74)

λ̇2 = −
1

2
e−2x2λ2

1, λ2(T ) = 0, (75)
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This ODEs can be solved analytically, to obtain

x1(t) = e−t

(
x0 −

t

2
c1

)
, (76)

x2(t) = t − t0 = t, (77)

λ1(t) = c1et , c1 =
2s

e2T + sT
, (78)

λ2(t) = c3 −
1

2
c2

1t, c3 =
T

2
c2

1 . (79)

X(x, λ) =








−x1 − 1
2 e−2x2λ1

1

λ1

− 1
2 e−2x2λ2

1








(80)

DX(x, λ) = A(t, s) =








−1 c1e−t − 1
2 e−2t 0

0 0 0 0

0 0 1 0

0 c2
1 −c1e−t 0








. (81)

Then, the linear time-variant variational equation (36) can also be integrated

analytically, and its solution results

V (t, s) =








e−t c1te−t − 1
2 te−t 0

0 1 0 0

0 0 et 0

0 c2
1t −c1t 1








. (82)

The PDEs (39)-(41) were solved numerically by using MATHEMATICAr, and

their solutions compared against the following analytical expressions

V (T, s) =









e−T 2sT e−T

e2T +sT
− 1

2 T e−T 0

0 1 0 0

0 0 eT 0

0 4s2T

(e2T +sT)
2 − 2sT

e2T +sT
1









, (83)
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ρ1(T, s) = x1(T ) =
eT

e2T + sT
+ e−T (x0 − 1), (84)

ρ2(T, s) = x2(T ) = T, (85)

σ1(T, s) = λ1(0) = c1 =
2s

e2T + sT
, (86)

σ2(T, s) = λ2(0) = c3 =
T

2
c2

1 (87)

In Figure 4 the results of applying the new method to Eq. (39-41) are

illustrated. The relative error of the seventh Picard iteration with respect to the

analytical solution is shown in Figure 5. It is of the same order than the one

reached through standard software calculations.

Figure 4 – Picard scheme applied to the two-dimensional (nonlinear) version of the

time-variant LQR problem, for which standard software’s solution is acceptable.

5 Conclusions

A novel numerical scheme to integrate first-order quasilinear PDEs has been

developed, and its application has been illustrated through several examples. The

method, based on Picard’s iterations, has provided accurate solutions. Although
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Figure 5 – Relative error between the seventh Picard iteration and the analytical solu-

tion to the LQR.

no systematic comparisons against specialized numerical approaches (like ad-

vanced finite differences and finite elements schemes) have been attempted in

the paper, at least the method proposed here has worked better than standard

mathematical software like MATHEMATICAr and MATLABr in all cases.

The fact that the Picard’s method always converge in the ODE context (assum-

ing the existence of a unique solution and precise calculations at each iteration

step) was used to prove convergence of the scheme for the PDEs under study.

The solution surfaces corresponding to each Picard step uniformly converge to

the solution surface to the original PDE. This convergence guarantees that the

accuracy of results can be improved with respect to non-iterative methods (like

finite differences in their different versions). Analytical bounds for the rate of

convergence have been found, and checked in a case-study whose explicit solu-

tion is known.

The variational PDEs associated with the Hamiltonian formulation of the
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optimal control problem for nonlinear systems have been solved numerically

in a satisfactory way by the new method. This application is particularly use-

ful given the hyper-sensitivity of Hamilton Canonical Equations (HCEs), whose

boundary values are obtained from the variational PDEs’ solutions, and there-

fore need to be highly accurate.
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