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Abstract. Westudied a one-dimensional free boundary problemarising in the polymer industry,

which solution has an interesting asymptotic behavior when a convective boundary condition is

imposed. We show the asymptotic behavior of the free boundary and of the concentration of the

solvent in the domain, for large t . Exact estimates and numerical results are obtained.
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1 Introduction

In this paper we consider a free boundary problem arising from a model for

sorption of solvents into glassy polymers.

This model was proposed in [1] by Astarita and Sarti. They assumed that the
sorption process can be described using a free boundarymodel to simulate a sharp

morphological discontinuity observed in the material between a penetrated zone,

with a relatively high solvent content, and an glassy region where the solvent

concentration is negligibly small (and actually taken to be zero in the model).

The solvent is supposed to diffuse in the penetrated zone according to Fick’s

law. Moreover the penetrating zone moves into the glassy zone driven by chemi-

cal andmechanical effects that are taken into account by an empirical law relating

the speed of penetration to the concentration of solvent near the front. This law
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must account for two main facts observed in the penetration experiences: (i)

there exists a threshold value for the solvent concentration under which no pen-

etration occurs; (ii) above such value the speed of the front increases with the

concentration near the front itself. A typical form is v = α|u − q|m where v

is the front speed, u is the value of the concentration at the front, q > 0 is the

threshold value and α and m are positive constants ([1]).
An additional condition on the free boundary is obtained imposing mass con-

servation, i.e., equating the mass density current to the product of solvent con-

centration and the velocity of the free boundary.

This model has been the object of a number of papers. In [2], it has been

studied with the condition of constant concentration at the boundary. In [3],

it has been investigated assuming that the polymer is in perfect contact with a

well-stirred bath. In [4], its authors were interested in the case of a slab of non-

homogeneous polymer. In [5], it has been studied assuming aflux condition at the

fixed boundary. Here we are interested in a convective case, where it is supposed

that there is a flux of solvent through the left side of a slab proportional to the

difference between the solvent concentration at x = 0 and a given function

of the time which represents an external solvent concentration (h > 0 is the

proportionality constant). Denoting by c(x, t) the normalized concentration and
by x = s(t) the location of the front in the slab the mathematical problem can
be stated as follows:

Problem PS. Find a triple (T, s, c) such that: T > 0, s ∈ C1[0, T ], c ∈
C2,1(DT ) ∩ C(D̄T ), where DT = {(x, t) : 0 < t < T, 0 < x < s(t)}, and
satisfying

cxx − ct = 0 in DT , (1.1)

cx(0, t) = h
[
c(0, t) − g(t)], g(0) = 1, 0 ≤ t ≤ T (1.2)

ṡ(t) = f (c(s(t), t)), 0 ≤ t ≤ T (1.3)

cx(s(t), t) = −ṡ(t)[c(s(t), t) + q], 0 ≤ t ≤ T (1.4)

s(0) = 0. (1.5)

The function g(t) is positive and the quantity q + g(t) represents the external
concentration. In order to assure a stable process we suppose that g ∈ C1[0, T ],
Comp. Appl. Math., Vol. 26, N. 3, 2007
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∀T > 0, g′(t) ≤ 0 and G ≡ ∫∞
0 g(t) dt < ∞. Throughout the paper the

function f will be supposed to satisfy f ∈ C1(0, 1], f ′(c) > 0 for c ∈ (0, 1]
and f (0) = 0 (empirically, the function f is observed to be a power law). We
note that there exists � = f −1 which has the same properties as f .

2 Existence and some global estimates

Equating (1.2) to (1.4) for t = 0, we have that c∗ .= c(0, 0) is the unique solution
of f (c∗)(c∗ + q) = −h(c∗ − 1). The solution satisfies 0 < c∗ < 1.

The existence for PS is accomplished as follows: Let r ∈ C1[0, T ]∩C2(0, T )

be such that

r(0) = 0, (2.6)

ṙ(0) = f (c∗), (2.7)

0 ≤ ṙ(t) ≤ f (c∗) in [0, T ], (2.8)

|r̈(t)| ≤ K in (0, T ), (2.9)

and consider the problem (PA) of finding c ∈ C2,1(D) ∩ C(D̄), cx continuous
up to x = r(t), t ∈ (0, T ), such that

cxx − ct = 0 in D = {
(x, t) : 0 < t < T, 0 < x < r(t)

}
, (2.10)

cx(0, t) = h
[
c(0, t) − g(t)], g(0) = 1, 0 ≤ t ≤ T , (2.11)

cx(r(t), t) = −ṙ(t)[�(ṙ(t)) + q], 0 ≤ t ≤ T . (2.12)

Thus, we note that PA differs from PS by the fact that the curve r(t) is given.
In [7], it is shown that the transformation

r(t) →
∫ t

0
f (c(r(t), t)), 0 < t < T, (2.13)

has a unique fixed point for T > 0 small enough, which is actually the desired

curve s(t) of PS. The global existence and uniqueness for PS is also established
in [7]. Now we prove:

Proposition 2.1. Assume s, c solve problem PS for a given T < +∞. Then
0 < c(x, t) < 1 0 ≤ x ≤ s(t), t ≥ 0, (2.14)

h(c∗ − 1) < cx(x, t) < h(1− g(t)) 0 ≤ x ≤ s(t), t > 0, (2.15)
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Proof. Using the Hopf’s lemma we can assume that c attains its maximum
value on x = 0 since cx = − f (c)(�(ṡ) + q) ≤ 0 on x = s(t). Let be
c(0, t0) = maxDT c. If t0 = 0, then maxDT c = c∗ < 1. Otherwise we have

0 > cx(0, t0) = h(c(0, t0) − g(t0)), which implies maxDT c < g(t0) ≤ 1. Let

be c(x1, t1) = minDT c. If x1 = 0 then there occurs either minDT c = c∗ > 0

or minDT c = g(t1) + 1/(h)cx(0, t1) ≥ g(t1) > 0. Moreover, if minDT c =
c(s(t1), t1) = 0 (with t1 > 0) then cx(s(t1), t1) = 0, contradicting the boundary

point principle. Thus, (2.14) holds and cx(0, t) < h(1− g(t)) for all t . Finally,
let us suppose that minDT cx = cx(s(t2), t2) with t2 ≥ 0. If t2 > 0 then

0 ≥ d
dt
cx(s(t), t)|t=t2, i.e.

0 ≤ − [
f ′(c(s(t2), t2))(c(s(t2), t2) + q) + f (c(s(t2, t2)))

]
[
cx(s(t2), t2)ṡ(t2) + cxx(s(t2), t2)

]
> 0,

which is a contradiction. Then minDT cx = cx(0, 0) = h(c∗ − 1). �

Proposition 2.2. Under the assumptions above, the following estimate holds

|ct(x, t)| ≤ BT , ∀(x, t) ∈ DT , (2.16)

with
BT = max

{
max
[0,T ]

|g′|, f (1)2(1+ q), |ct(0, 0)|
}

. (2.17)

Proof. Note from (1.2) that

ct(0, t) = g′(t) + 1

h
ctx(0, t), 0 < t ≤ T . (2.18)

Moreover, from (1.3) and (1.4) we have cx = − f (c)(c + q) at x = s(t) and
deriving with respect to t we get

ct f (c) + ctx = − [ f ′(c)(c + q) + f (c)
] (
cx f (c) + ct

)
at x = s(t) (2.19)

ct(s(t), t) =
([
f ′(c)(c + q) + f (c)

]
f 2(c)(c + q) − ctx

2 f (c) + f ′(c)(c + q)

)
x=s(t)

(2.20)

The proposition follows by using the Hopf’s lemma. �
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3 The numerical method

In this sectionwill be shown a numerical scheme based on themethod introduced

in [6] for one-dimensional parabolic free boundary problems with arbitrary im-
plicit or explicit free boundary conditions.

In this method the continuous problem is time discretized and solved at succes-

sive time levels as a sequence of free boundary problems for ordinary differential

equations. Specifically, at time level t = tn with tn − tn−1 = �t the solution
{Cn(x), Sn} is computed as the exact solution of the discretized equations

C ′′
n − Cn − Cn−1

�t
= 0 0 < x < Sn, (3.21)

C ′
n(0) = h (Cn(0) − g(tn)) , (3.22)

Sn − Sn−1
�t

= f (Cn(Sn)), S0 = 0, (3.23)

C ′
n(Sn) = − Sn − Sn−1

�t
(q + Cn(Sn)). (3.24)

In (3.21) the function Cn−1(x) is supposed to be defined over [0, +∞), and

Sn−1 supposed to be known as well. We write (3.21) as a first order system over

(0, Sn)

C ′
n = Vn, (3.25)

V ′
n = 1

�t
(Cn − Cn−1) (3.26)

and exploit the observation that Cn and Vn are related through the Riccati trans-
formation

Cn(x) = R(x)Vn(x) +Wn(x), (3.27)

where

R(x) =
√

�t

tanh
(
x+K√

�t

) , K = √
�t tanh−1(h

√
�t) (3.28)

W ′
n = − R(x)

�t
(Wn − Cn−1(x)) , Wn(0) = g(tn). (3.29)

The function Wn is solution of well defined initial value problem and may be
considered available. The free boundary Sn is determined such that the triple Cn ,
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Vn , Sn simultaneously satisfies (3.23), (3.24) and (3.27). Elimination of Cn and
Vn from (3.24) and (3.27) shows that Sn must be a root of the scalar equation

σn(x)
.= x − Sn−1

�t
− f

(
Wn(x) − qR(x)(x − Sn−1)/�t
1+ R(x)(x − Sn−1)/�t

)
= 0. (3.30)

Given Sn , we set

Cn(Sn) = Wn(Sn) − R(Sn)Ṡnq
1+ R(Sn)Ṡn

, (3.31)

so that

Ṡn
.= Sn − Sn−1

�t
= f (Cn(Sn)) , (3.32)

and

C ′
n(Sn) = Vn(Sn) = −Ṡn Wn(Sn) + q

1+ R(Sn)Ṡn
. (3.33)

Thus, the triple {Cn(Sn), Vn(Sn), Sn} is an exact solution of (3.23), (3.24) and
(3.27). We remark that depending on �t the functional σn(x) may have a root
smaller than Sn−1. Such a root would correspond to a negative concentration
Cn(Sn) and is not admissible. We shall therefore agree to choose for Sn the
smallest root of σn(x) = 0 on (Sn−1, ∞). Such a root will be soon to exist.

Once Sn has been determined, one can find Vn by integrating backward over
[0, Sn) the equation

V ′
n = 1

�t
(
R(x)Vn +Wn(x) − Cn−1(x)

)
, (3.34)

with Vn(Sn) given by (3.33). The concentrationCn(x) at time level tn is obtained
from (3.27). Finally, Cn(x) is extended over [Sn, ∞) as C1 linear function,
because Cn+1(x) will be computed in [0, Sn+1], with Sn+1 > Sn, as the solution
of an ODE depending on Cn. For the initial concentration we shall use

C0(x) = −h(1− c∗)x + c∗.

Lemma 3.1. There exists a solution Sn of (3.30) on (Sn−1, ∞) and Sn−Sn−1 <

f (1)�t . The functionCn satisfies 0 < Cn < 1 on [0, Sn] andC ′
n < 0 on [Sn, ∞).
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Proof. We note that C0(S0) = c∗ ∈ (0, 1) and C ′
0 = −h(1 − c∗) < 0. Let us

proceed by induction and assume the result valid for n − 1. Integrating (3.29)
we have

Wn(x) = 1

sinh
(
x+K√

�t

) [g(tn) sinh
(
K√
�t

)
+ 1√

�t

∫ x

0
cosh

(
r + K√

�t

)
Cn−1(r) dr

]
,

since Cn−1 < 1 by assumption, we get

Wn(x) ≤ 1

sinh
(
x+K√

�t

) [g(tn) sinh
(
K√
�t

)
+ 1√

�t

∫ x

0
cosh

(
r + K√

�t

)
dr
]

,

= 1

sinh
(
x+K√

�t

) [g(tn) sinh
(
K√
�t

)
+
(
sinh

(
x + K√

�t

)
− sinh

(
K√
�t

))]

≤ 1
moreover Wn(Sn−1) > 0. Hence the function

Wn(x) − qR(x)(x − Sn−1)/�t
1+ R(x)(x − Sn−1)/�t

is less than one and positive on some interval (Sn−1, x0), vanishing on x0. Then,

σn(x0) = x0 − Sn−1
�t

− f (0) > 0,

what is more

σn(Sn−1) = − f (Wn(Sn−1)) < 0,

thus there must be a point Sn ∈ (Sn−1, x0) where σn(Sn) = 0, 0 < Cn(Sn) < 1
and C ′

n(Sn) < 0. Integrating (3.27) we obtain:

0 < Cn(x)

= cosh

(
x + K√

�t

) Cn(Sn)

cosh
(
Sn+K√

�t

) − 1√
�t

∫ x

Sn

sinh
(
r+K√

�t

)
cosh2

(
r+K√

�t

)Wn(r) dr



≤ cosh
(
x + K√

�t

) Cn(Sn)

cosh
(
Sn+K√

�t

) − 1√
�t

∫ x

Sn

sinh
(
r+K√

�t

)
cosh2

(
r+K√

�t

) dr



= Cn(Sn)
cosh

(
x+K√

�t

)
cosh

(
Sn+K√

�t

) + 1−
cosh

(
x+K√

�t

)
cosh

(
Sn+K√

�t

) < 1 ∀x ∈ [0, Sn].
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Finally, from (3.31) and (3.32) we conclude that Sn − Sn−1 = f (Cn(Sn))�t <

f (1)�t . �

Remark. Sn−1 can not be an accumulation point of the set of points that satisfy
σn(x) = 0 since σn is a continuous function and σn(Sn−1) < 0.

4 Asymptotic behavior

In this section we show some results about the behavior of the free boundary s(t)
when t goes to infinity.
Let s(t), c(x, t) solve problem PS. Using Green’s identity we get:

0 =
∮

∂Dt
c(x, t)v(x, t) dx + (v(x, t)cx (x, t) − c(x, t)vx (x, t)) dt t > 0, (4.35)

which holds for every solution v = v(x, t) of vxx + vt = 0 in Dt . Thus, taking
v(x, t) = 1 we obtain

0 =
∮

∂Dt
c(x, t) dx + cx(x, t) dt t > 0,

which gives

0 =
∫ t

0
c(s(τ ), τ )ṡ(τ ) dτ −

∫ t

0
ṡ(τ ) (c(s(τ ), τ ) + q) dτ

−
∫ s(t)

0
c(x, t) dx −

∫ t

0
cx(0, τ ) dτ

and then

qs(t) = −
∫ s(t)

0
c(x, t) dx −

∫ t

0
cx(0, τ ) dτ (4.36)

= −
∫ s(t)

0
c(x, t) dx − h

∫ t

0
c(0, τ ) dτ + h

∫ t

0
g(τ ) dτ (4.37)

so

s(t) ≤ h
q

∫ t

0
g(τ ) dτ ≤ h

q
G. (4.38)

This upper bound is independent of f , and since ṡ(t) = f (c(s(t), t)) > 0 there

exists

s∞
.= lim
t→∞ s(t). (4.39)
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The following numerical result shows these facts for the case q = .3, h = 10,

g(t) = e−2t and several functions f
( h
q G = 16.7

)
. We solved the equations

(3.29) and (3.34) using Runge-Kutta method implemented inMatlab as ODE45,

with the step size and tolerance established by default.

0 1 2 3 4 5 6
0

0.2
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0.6

0.8

1

1.2

1.4

1.6

1.8

2
Asymptotic behavior.

t

s( t ) 

1.6

f( c ) = α cm

h
q=16.7 G

Figure 1 – Plot of the free boundaries and their asymptotic behaviors for several func-

tion f (c) = αcm , α > 0, m > 0.

The Figure 1 shows that all the free boundaries are bounded nearly by 1.6, so
h
q G appears to be a very large bound, and we can look for a better one. In order
to do it, we will obtain two additional equations for s and c ( (4.40) and (4.41)

below). First, taking v(x, t) = x in (4.35) we have

0 =
∮

∂Dt
c(x, t)x dx + (xcx(x, t) − c(x, t)) dt,

it gives

0 =
∫ t

0
c(s(τ ), τ )s(τ )ṡ(τ ) dτ

+
∫ t

0

[− (q + c(s(τ ), τ ))ṡ(τ )s(τ ) − c(s(τ ), τ )
]
dτ

−
∫ s(t)

0
c(x, t)x dx +

∫ t

0
c(0, τ ) dτ,
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318 DIFFUSION OF A SOLVENT INTO A POLYMER

q
2
s2(t) +

∫ t

0
c(s(τ ), τ ) dτ = −

∫ s(t)

0
c(x, t)x dx +

∫ t

0
c(0, τ ) dτ. (4.40)

Similarly, taking v(x, t) = t − x2
2 we get:

0 =
∮

∂Dt
c(x, t)

(
t − x2

2

)
dx +

[(
t − x2

2

)
cx(x, t) + xc(x, t)

]
dt,

thus

0 =
∫ 0

t
τcx(0, τ ) dτ +

∫ t

0

[
c(s(τ ), τ )

(
τ − s2(τ )

2

)
ṡ(τ )

+
(

τ − s2(τ )

2

)
cx(s(τ ), τ ) + c(s(τ ), τ )s(τ )

]
dτ

+
∫ 0

s(t)
c(x, t)

(
t − x2

2

)
dx,

and so

0 = −
∫ t

0
τcx(0, τ ) dτ − q

6
s3(t) − q

∫ t

0
τ ṡ(τ ) dτ

+
∫ t

0
c(s(τ ), τ )s(τ ) dτ + 1

2

∫ s(t)

0
x2c(x, t) dx

− t
∫ s(t)

0
c(x, t) dx .

(4.41)

Lemma 4.1. The following equation holds:

lim
t→∞

∫ s(t)

0
c(x, t) dx = 0. (4.42)

Proof. From (4.41) we have∫ s(t)

0
c(x, t) dx = −1

t

∫ t

0
τcx(0, τ ) dτ − q

6t
s3(t) − q

t

∫ t

0
τ ṡ(τ ) dτ

+ 1

t

∫ t

0
c(s(τ ), τ )s(τ ) dτ + 1

2t

∫ s(t)

0
x2c(x, t) dx

≤ −1
t

∫ t

0
τcx(0, τ ) dτ + 1

t

∫ t

0
c(s(τ ), τ )s(τ ) dτ + s3∞

2t
.
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To prove the lemma it is enough that all these terms go to zero as t → ∞. In
order to do it, note that from (4.37),∫ t

0
c(0, τ ) dτ ≤

∫ t

0
g(τ ) dτ ≤ G,

then, using (4.40)∫ t

0
c(s(τ ), τ )s(τ ) dτ ≤ s∞

∫ t

0
c(s(τ ), τ ) dτ ≤ s∞G,

thus

lim
t→∞

1

t

∫ t

0
c(s(τ ), τ )s(τ ) dτ = 0.

On the other hand, from (4.36)

−
∫ t

0
cx(0, τ ) dτ =

∫ s(t)

0

[
q + c(x, t)] dx > 0 (4.43)

and from (1.2)

−
∫ ∞

0
cx(0, τ ) dτ = h

(
G −

∫ ∞

0
c(0, τ ) dτ

)
< ∞. (4.44)

And integration by parts gives

lim
t→∞

1

t

∫ t

0
τcx(0, τ ) dτ

= lim
t→∞

[∫ t

0
cx(0, τ ) dτ − 1

t

∫ t

0

(∫ τ

0
cx(0, τ ′) dτ ′

)
dτ
]

= 0.

Where in the last equality we have used (4.43), (4.44) and the L’Hôpital’s rule.�

Lemma 4.2. Assume that f (c) = αc, α > 0. Then the explicit formula holds:

s∞ =
√(

1

h
+ 1

αq

)2
+ 2

q
G −

(
1

h
+ 1

αq

)
. (4.45)
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Proof. Cancelling
∫ t
0 c(0, τ ) dτ from (4.37) and (4.40) we obtain

q
2
s2(t) + q

h
s(t) = −

∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx

+
∫ t

0
g(τ ) dτ −

∫ t

0
c(s(τ ), τ ) dτ,

(4.46)

and since c(s(τ ), τ ) = 1
α
ṡ(τ ), we get

q
2
s2(t) +

(
1

α
+ q
h

)
s(t) =

∫ t

0
g(τ ) dτ −

∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx,

observe that∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx ≤

(
1

h
+ s∞

)∫ s(t)

0
c(x, t) dx,

and then by (4.42) we get

q
2
s2∞ +

(
1

α
+ q
h

)
s∞ = G. �

Theorem 4.1. The following statement is true

sup
f
s∞ =

√
1

h2
+ 2

q
G − 1

h
. (4.47)

The supremum is taken on the set of the functions f belonging to C1(0, 1]
satisfying f ′(c) > 0 in (0, 1] and f (0) = 0.

Proof. Proceeding as in (4.46), we have

s2(t) + 2

h
s(t) − 2

q

∫ t

0
g(τ ) dτ = − 2

q

∫ s(t)

0

(
1

h
+ x

)
c(x, t) dx

−
∫ t

0
c(s(τ ), τ ) dτ ≤ 0,

as t → ∞ we get

s2∞ + 2

h
s∞ − 2

q
G ≤ 0

thus

s∞ ≤
√
1

h2
+ 2

q
G − 1

h
,

and (4.47) follows taking α → ∞ in (4.45). �
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5 Conclusions and final comment

In this paper the main result is the asymptotic behavior of the free boundary. We

remark that the upper bound (4.47) should be very useful for real applications,

where the function f is a priori unknown and a estimate of s∞ is needed. From
the physical point of view we emphasize that the bound of the free boundary

does not depend on the function f . That means that this behavior of the free
boundary holds for all kind of homogeneous polymers with constant diffusivity.

For the case of two dimensional space variable we expect to have bounds for the

free boundary that do not depend on f. This will be the subject of future work.
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