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Steam injection into water-saturated porous rock
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Abstract. We formulate conservation laws governing steam injection in a linear porous medium

containing water. Heat losses to the outside are neglected.

We find a complete and systematic description of all solutions of the Riemann problem for the

injection of a mixture of steam and water into a water-saturated porous medium. For ambient

pressure, there are three kinds of solutions, depending on injection and reservoir conditions. We

show that the solution is unique for each initial data.
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Introduction

Steam injection is an effective technique to restore groundwater aquifers contam-

inated with non-aqueous phase liquids (NAPL’s) such as hydrocarbon fuels and

halogenated hydrocarbons [15]. It is also one of the most effective methods to
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recover oil from medium to heavy oil reservoirs [13]. The main feature of steam

injection is the steam condensation front (SCF ), which marks the boundary be-

tween the upstream zone at boiling temperature and the downstream liquid zone

below the boiling temperature. Depending on the situation there may exist an

isothermal steam-water shock at the boiling temperature (HISW ) instead of the

SCF . The main result of this work is a complete and systematic classification

of the structure of all possible cases of Riemann solutions. As a first step we

have ignored the presence of NAPL’s in our model. The model has also appli-

cations outside the use of steam for oil recovery or pollutant product recovery,

for example in chemical engineering.

There is an extensive literature on models of steam drive. Their main focus is

the internal structure of the steam condensation front and they are reviewed in

[4], [5].

In this article we limit ourselves to the simple case of steam displacing water.

Our aim is to investigate a unique well posed solution of the Riemann problem for

all possible values of the model parameters, providing mathematical validation of

our model. This is the first step towards solving the full problem of groundwater

NAPL removal.

In Section 1, the physical model is presented. It is described mathematically

by balance equations of mass and thermal energy, which are rewritten into a form

suitable for analysis.

Section 2 presents the basic waves arising in the model; the main concern is to

identify their speeds, so as to be able to find the order in which they may appear

in a linear steam injection experiment. In Section 3, we see that for certain

values of initial and boundary data, some of these speeds coincide, giving rise

to bifurcation and structural change in the Riemann solution. All solutions of

the Riemann problem are in Section 4. Section 5 verifies that the SCF satisfies

Lax’s shock inequalities, but not strictly. Section 6 summarizes our results and

conclusions.

Appendix A describes notation and values for the physical quantities appearing

in the model.
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1 Physical and mathematical model

1.1 Physical model

We consider linear steam displacement in a homogeneous reservoir of constant

permeability and porosity. The reservoir is initially saturated with water. The

pressure gradients ∂pw/∂x, ∂pg/∂x driving the fluids are small with respect to

the prevailing system pressure p divided by the length of the reservoir. In partic-

ular, within the short steam condensation zone pressure variations are negligible.

Hence we disregard the effect of pressure variation on the density of the fluids and

on their thermodynamic properties. The reservoir is horizontal, so gravitational

effects vanish.

A steam-water mixture is injected at constant rate uinj and constant steam/water

injection ratio. Transverse heat losses are disregarded. We neglect capillary

forces after steam breakthrough at the production end of the reservoir to avoid

problems with the capillary end effect, which is outside the present scope of our

interest.

The effects of temperature on the fluid properties, e.g. water viscosity µw,

steam viscosity µg, water density ρw and steam density ρg are taken into account.

Darcy’s Law determines the fluid motion. The temperature dependence of heat

capacities and of the evaporation heat are also taken into account. Capillary

pressure as well as an effective longitudinal heat conduction term are included.

We have chosen to describe condensation in terms of a steam mass conden-

sation rate equation. The mass condensation rate q is always positive when the

temperature drops below the boiling temperature T b as long as not all steam has

condensed, that is Sw < 1.

The stated conditions can be considered representative of steam injection in

the subsurface for remediation of contaminated sites. As steam is injected the

reservoir is heated. Depending on the proportions of steam and water in the

injected mixture, we can distinguish three regimes, which differ in the structure

of Riemann solutions. When pure steam is injected, there will be a decrease

of the steam saturation in the hot zone away from the injection point, described

as a rarefaction wave, and then a SCF to the cold water, described as a shock

with a concentrated source term. This is called situation I. As the water injection
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rate is increased further a zone in which the steam saturation is constant will

develop preceding the rarefaction wave until the steam saturation in the hot zone

is constant. After this constant state there is a SCF and a cold water region.

This will be called situation II. Finally when the water–steam injection ratio is

increased further, the steam bank will not be fast enough to reach the cooling

front separating the hot and cold water zones; thus there is no SCF . This and

higher ratios originate in situation III. In all regimes, there is a hot zone and a

cool zone, whose boundary moves with constant speed, as shown in Fig. 1.

t

x

steam/ water

water

A B

C

HOT ZONE

COLD ZONE

Figure 1 – B: Condensation front or cooling front.

Each of the enthalpies per unit volume Hw(T ), Hr(T ), Hg(T ) ([J/m3]) is

defined with respect to the enthalpy at the initial reservoir temperature T 0 at the

standard state. This means that they are all zero at the initial temperature T 0.

The enthalpy of steam is subdivided in a sensible part Hs
g (T ) and a latent part

Hl
g(T

0), i.e. Hg(T ) = Hs
g (T ) + Hl

g(T
0). The sensible heat Hs

g (T 0) is zero at

the initial reservoir temperature. The evaporation heat or the latent heat per unit

mass at the initial reservoir temperature T 0 is denoted by

�0 = �(T 0) = Hl
g(T

0)/ρg(T
0). (1)

In general �(T ) is the evaporation heat per unit mass at temperature T . The

enthalpies as a function of temperature are summarized in Appendix A for con-

venience.
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We assume Darcy’s law for two-phase flow, water and steam respectively,

without gravity terms:

uw = −kkrw

µw

∂pw

∂x
, ug = −kkrg

µg

∂pg

∂x
. (2)

The liquid water viscosity and the steam viscosity are temperature-dependent

functions (see Appendix A).

As discussed in [4], the water mass source term is taken as

q =

qb(T − T b)(Sw − 1) for T ≤ T b , 0 ≤ Sw ≤ 1;

0 otherwise.
(3)

This term is motivated by the idea that the condensation rate is determined by a

‘‘driving force’’ which is proportional to its departure from equilibrium Sw = 1

and T = T b ( see also reference [11]). The value of qb is considered very large.

1.2 The model equations

The mass balance equation of liquid water and steam read as follows:

∂(ϕρwSw)

∂t
+ ∂(ρwuw)

∂x
= q, (4)

∂(ϕρgSg)

∂t
+ ∂(ρgug)

∂x
= −q. (5)

The rock porosity ϕ is assumed to be constant. We include longitudinal heat

conduction, but neglect heat losses to the surrounding rock, in the energy balance

equation given below. By our assumption of almost constant pressure we ignore

adiabatic compression and decompression effects. Thus the energy balance is

(See reference [2], Table 10.4-1):

∂

∂t

(
Hr + ϕSwHw + ϕSgHg

)+ ∂

∂x

(
uwHw + ugHg

) = ∂

∂x

(
κ

∂T

∂x

)
. (6)

Here κ is the composite conductivity of the rock–fluid system [1]:

κ = κr + ϕ
(
Swκw + Sgκg

)
. (7)

Equations (4), (5), and (6) are the basic governing equations for the flow.
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Equations (4) and (5) are combined with the heat balance equation (6), where

we also use separation in sensible and latent quantities, to obtain:

∂

∂t

(
Hr + ϕSwHw + ϕSgH

s
g

)+ ∂

∂x

(
uwHw + ugH

s
g

)− ∂

∂x

(
κ

∂T

∂x

)

= − ∂

∂t

(
ϕSgH

l
g

)− ∂

∂x

(
ugH

l
g

) = − ∂

∂t

(
ϕSgρg�

0
)− ∂

∂x

(
ugρg�

0
)

= −�0

(
∂

∂t

(
ϕSgρg

)+ ∂

∂x

(
ugρg

))
.

Using Eq. (5), this yields

∂

∂t

(
Hr + ϕSwHw + ϕSgH

s
g

)+ ∂

∂x

(
uwHw + ugH

s
g

)
= q�0 + ∂

∂x

(
κ

∂T

∂x

)
.

(8)

Let us define the fractional flow functions for water and steam:

fw = krw/µw

krw/µw + krg/µg

, fg = krg/µg

krw/µw + krg/µg

. (9)

The capillary pressure

Pc = Pc(Sw) = pg − pw (10)

which is given by Equation (83), is a strictly monotone decreasing function; it

appears in the definition of the capillary diffusion coefficient �:

� = −fw

kkrg

µg

dPc

dSw

≥ 0. (11)

We notice that � vanishes precisely at water saturations Sw = Swc and Sw = 1.

Using Darcy’s law (2) (in the absence of gravitational effects) and the definition

of Pc given in Eq. 10, one can easily show from Eqs. (2) and (11) that:

uw = ufw − �
∂Sw

∂x
, ug = ufg − �

∂Sg

∂x
, (12)

where

u = uw + ug (13)
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is the total or Darcy velocity and � acts as a saturation-dependent capillary

diffusion coefficient.

Substituting (12) into Equations (4), (5) and (8) leads to

ϕ
∂ (ρwSw)

∂t
+ ∂ (ρwufw)

∂x
= q + ∂

∂x

(
ρw�

∂Sw

∂x

)
, (14)

ϕ
∂
(
ρgSg

)
∂t

+ ∂
(
ρgufg

)
∂x

= −q + ∂

∂x

(
ρg�

∂Sg

∂x

)
, (15)

∂

∂t

(
Hr + ϕHwSw + ϕHs

gSg

)+ ∂

∂x

(
u
(
Hwfw + Hs

gfg

) )

= q�0 + ∂

∂x

((
Hw − Hs

g

)
�

∂Sw

∂x

)
+ ∂

∂x

(
κ

∂T

∂x

)
.

(16)

The governing system of equations is (14)–(16).

As to initial conditions, we assume that the reservoir is filled with water at

saturation Sw(x, t = 0) = S0
w = 1 with constant temperature T (x, t = 0) = T 0.

As to boundary conditions, the total injection rate uinj is specified and constant

(see Appendix A). The constant steam-water injection ratio is specified in terms

of the water saturation Sinj
w at the injection side.

Lemma 1. In a region where the temperature is constant (and noncritical),

q = 0.

Proof. If the temperature is constant, the enthalpies are constant, so Eq. (8)

becomes

ϕHw

∂Sw

∂t
+ ϕHs

g

∂Sg

∂t
+ Hw

∂uw

∂x
+ Hs

g

∂ug

∂x
= q�0. (17)

We regroup Eq. (17) and use the mass balance equations (4) and (5). Since

the temperature is constant the densities are constant too, so Eq. (17) becomes

Hw

(
ϕ

∂Sw

∂t
+ ∂uw

∂x

)
+ Hs

g

(
ϕ

∂Sg

∂t
+ ∂ug

∂x

)
= q�0,

Hw

ρw

q − Hs
g

ρg

q = q�0,

(
Hw

ρw

− Hs
g

ρg

− �0

)
q = 0.

(18)
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The term in parenthesis in Eq. (18) is minus the enthalpy per unit mass required

to convert water into steam and is therefore non-zero. Consequently we must

have that q = 0. Summarizing, we can say that if the temperature is constant in

space and time then there is no source term. �

Remark 1. It is easy to see that the source term q vanishes in regions where

either (i) the temperature is constant, (ii) the gas saturation is zero, (iii) the water

saturation is zero.

2 The hyperbolic framework

By ignoring capillary pressure and heat conduction diffusive effects, we are in the

framework of first order hyperbolic conservation laws; this framework is useful

to study the basic waves of the model. Throughout this section we assume that

all fluids are in thermodynamic equilibrium. Equations (14) and (15), the mass

balance equation of liquid water and steam combined with Darcy’s law read as

follows:

∂(ϕρwSw)

∂t
+ ∂(ρwufw)

∂x
= q, (19)

∂(ϕρgSg)

∂t
+ ∂(ρgufg)

∂x
= −q. (20)

When we add these equations, we obtain the total water conservation:

ϕ
∂

∂t

(
ρwSw + ρgSg

)+ ∂

∂x

(
u(ρwfw + ρgfg)

)
= 0. (21)

Eq. (16) becomes

∂

∂t

(
Hr + ϕHwSw + ϕHs

gSg

)+ ∂

∂x

(
u(Hwfw + Hs

gfg)

)
= q�0, (22)

or equivalently, as in Eq. (6)

∂

∂t

(
Hr + ϕHwSw + ϕHgSg

)+ ∂

∂x

(
u(Hwfw + Hgfg)

)
= 0. (23)

Eqs. (21) and (22) will be used for most of the analysis in this section.
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Remark 2. Notice that all speeds defined by Equations (21) and (22) are

proportional to u. Thus we can choose any speed to parameterize all the other

ones.

Let us consider all regions where the mass transfer term vanishes. The mass

transfer can vanish because of several reasons. Based on these reasons, we

classify the regions in the following table. Because the mass source term vanishes

(Eq. (3)), we have the following zones in the reservoir:

Sw\T T = T b T < T b

Sw < 1 hot steam zone xxxxxxxxxxxxx

Sw = 1 hot water zone cold water zone

Table 1 – Classification according to mass source term.

We call ‘‘hot steam-water region’’, or ‘‘hot region’’, the hot steam zone to-

gether with hot water zone, where T = T b. We call ‘‘liquid water region’’ the

hot water zone together with the cold water zone.

These regions overlap on the hot water zone.

Remark 3. There is no ‘‘cold steam zone’’ in Table 1 because at thermody-

namical equilibrium steam cannot exist at a temperature lower than T b.

As we will see, a configuration composed by sequential zones of hot steam,

hot water and cold water is possible, counting away from the injection point. At

the first interface Sw = 1 is reached, while at the second one T = T 0 is reached.

A configuration containing only the hot steam zone and the cold water zone is

possible if we interpose the so calledSCF , where both saturation and temperature

change abruptly.

Lemma 2. The source term in the hot region and in the liquid water region is

zero. That the source term is zero in the hot region follows from Remark 1. That

the source term is zero in the liquid region follows from the existence of a single

phase and consequent absence of mass and energy transfer between phases.

Comp. Appl. Math., Vol. 22, N. 3, 2003
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2.1 The hot region

This region starts with the hot steam zone, where steam is injected at boiling

temperature T b. We claim that the Darcy velocity u (given by Eq. (13)) in

the hot region is independent of position. To prove this fact we use equations

(19), (20). As the temperature is T b, the source term (such as given in Eq. (3))

vanishes and the densities are constant. We can divide Eqs. (19), (20) by the

densities and add the resulting equations and obtain our claim.

Since the Darcy velocity u is a constant in space in the hot region and since in

this work we also take that uinj is constant in time, the temperature T b and the

Darcy velocity ub are constant in this region. Thus Eq. (22) is satisfied trivially,

and both Eqs. (19) and (20) reduce to any of the two equivalent forms of the

Buckley-Leverett problem for steam and water that follows:

ϕ
∂Sw

∂t
+ ub ∂fw

∂x
= 0, ϕ

∂Sg

∂t
+ ub ∂fg

∂x
= 0. (24)

This equation governs propagation in the hot steam zone, as long as steam and

water are both present. The classical Oleı̆nik construction [10], or equivalently,

the fractional flow theory [12] describe waves in this zone.

We will denote by vb
s the speed of propagation of saturation waves in the hot

steam zone. It is obtained from Eq. (24) as the characteristic speed:

vb
s = vb

s (Sw; ub) = ub

ϕ

∂f b
w

∂Sw

(Sw), (25)

where T = T b and we use the nomenclature f b
w(Sw) = fw(Sw, Tb).

A particular Buckley-Leverett shock for (24) turns out to play a relevant role,

separating a mixture of steam and water from pure water, both at boiling temper-

ature. We call it the hot isothermal steam-water shock or HISW shock between

the (−) state (Sb
w, T b, ub) containing steam and the (+) state (1, T b, ub) con-

taining water at boiling temperature. It has speed vb
g,w given by

vb
g,w = vb

g,w(Sb
w; ub) = ub

ϕ

f b
g (Sb

g)

Sb
g

= ub

ϕ

1 − f b
w(Sb

w)

1 − Sb
w

. (26)

Notice that, because fg(Sg = 0) = 0 and (∂fg/∂Sg)(Sg = 0) = 0 from Eq.

(9) and from the quadratic behavior of the steam relative permeabilities in the
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saturation given in Eq. (82), with ng = 2 we obtain:

vb
g,w(Sw = 1; ub) = 0. (27)

Similarly, for Sb
w ≤ Swc from Eqs. (82) and (9),

vb
g,w = ub

ϕ(1 − Sb
w)

> 0. (28)

Remark 4. It is easy to verify that vb
s in Eq. (25) is monotonously increasing

in Sb
w when Sb

w is less than Sinf l , the inflection abscissa of fw, and monotonously

decreasing when Sb
w is larger than Sinf l .

2.2 Liquid water region

We recall that the liquid water zone consists of the hot region, which is also part

of the hot region examined in Section 2.1, and of the cold water zone.

In the liquid water zone there is no steam, so there is no mass transfer between

steam and water. So q = 0. Also, in the liquid region Sw = 1, so Eqs. (21) and

(22) reduce to

ϕ
∂ρw

∂t
+ ∂(uρw)

∂x
= 0, (29)

∂

∂t

(
Hr + ϕHw

)+ ∂(uHw)

∂x
= 0. (30)

2.2.1 Cooling contact discontinuity

We will assume that ρw and Cp
w are essentially constant in the pressure and

temperature region of interest. A more complete discussion can be found in [5].

Let us consider a temperature discontinuity from T b to T 0, with speed vb,0
w in

the liquid water between the hot left (or upstream) state (Sw = 1, T = T b, ub)

and the cold right (or downstream) state (Sw = 1, T = T 0, u0). For such

a cooling contact discontinuity, from Eqs. (29) and (30) one can obtain the

following Rankine-Hugoniot relation, where we denote by ub and u0 the Darcy

velocities at the discontinuity sides corresponding to T b and T 0:

vb,0
w = u0ρ0

w − ubρb
w

ϕ(ρ0
w − ρb

w)
= u0H 0

w − ubHb
w

(H 0
r + ϕH 0

w) − (Hb
r + ϕHb

w)
, (31)
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where

Hb
w = Hw(T b), Hb

r = Hr(T
b), ρb

w = ρw(T b). (32)

We recall that our convention is that enthalpies vanish at T 0; then the Rankine-

Hugoniot condition can be rewritten as

vb,0
w = u0ρ0

w − ubρb
w

ϕ(ρ0
w − ρb

w)
= ub Hb

w

Hb
r + ϕHb

w

. (33)

From the second equality in Eq. (33), we obtain that

ub = Hb
r + ϕHb

w

Hb
r ρb

w/ρ0
w + ϕHb

w

u0, (34)

which expresses the conservation of water mass.

From the last term in Eq. (33) and from Eq. (34):

vb,0
w = Hb

w

Hb
r ρb

w/ρ0
w + ϕHb

w

u0. (35)

Remark 5. Notice that the dependence of ρw on temperature is often small.

If ρw were independent of temperature (constant), then Eq. (34) would imply

that ub = u0.

Remark 6. Since all speeds in this problem scale with u, and uinj is constant

in time, u0 and ub are constant in time.

Remark 7. In the hot water zone, both Sw = 1 and T = T b, so q = 0. Since

the temperature is constant, so is ρw, thus Eq. (29) says that u is a constant,

which has already been called ub in Section 2.1. Equation (30) says that the

characteristic speed (of temperature waves) in the hot water zone is

vb
w = Cp

w(T b)

C
p
r (T b) + ϕC

p
w(T b)

ub. (36)

This is the propagation speed of small temperature perturbations near T = T b

in the hot water zone.
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Remark 8. Under the assumptions that ρw and Cp
w are constant in pressure and

temperature, the characteristic speeds (36) evaluated at T b, and evaluated at T 0

coincide with the discontinuity speed (31). In gas dynamics, discontinuities with

this coincidence property are called contact discontinuities. Hence the name we

gave to this wave.

2.3 Steam condensation front

This is a discontinuity joining a state (−) containing steam and water at temper-

ature T b to pure water at temperature T 0, a state (+); that is, it separates the hot

steam zone from the cold water zone. It satisfies the following Rankine-Hugoniot

conditions with speed vSCF for Eqs. (21), (23) between states (Sb
w, T b, ub) and

(S0
w = 1, T 0, u0). From the water balance (21) we obtain:

ub
(
ρwfw + fgρg

)− − ϕvSCF
(
ρwSw + Sgρg

)−
= u0

(
ρwfw + fgρg

)+ − ϕvSCF
(
ρwSw + Sgρg

)+ (37)

and from the energy balance (23) we obtain:

ub
(
Hwfw + Hgfg

)− − vSCF
(
Hr + ϕHwSw + ϕHgSg

)−
= u0

(
Hwfw + Hgfg

)+ − vSCF
(
Hr + ϕHwSg + ϕHgSg

)+
.

(38)

As no steam exists on the right of the SCF , we can say that S0
w = f 0

w = 1 and

S0
g = f 0

g = 0 and thus Eq. (37) becomes

ub
(
ρwfw + ρgfg

)− − ϕvSCF
(
ρwSw + ρgSg

)− = ρ0
w

(
u0 − ϕvSCF

)
. (39)

Under the same conditions we obtain for the heat balance equation (38):

ub
(
Hwfw + Hgfg

)− − vSCF
(
Hr + ϕHwSw + ϕHgSg

)−
= u0H 0

w − vSCF
(
H 0

r + ϕH 0
w

) = 0.
(40)

The RHS term of Eq. (40) vanishes in the absence of steam because of our

convention for enthalpies, as far as rock and water are concerned. For the SCF

Comp. Appl. Math., Vol. 22, N. 3, 2003



372 STEAM INJECTION INTO WATER-SATURATED POROUS ROCK

velocity it follows from Eqs. (39), (40) that

u0 = ub

(
ρb

g

ρ0
w

f b
g + ρb

w

ρ0
w

f b
w

)
− ϕvSCF

(
ρb

g

ρ0
w

Sb
g + ρb

w

ρ0
w

Sb
w − 1

)
, (41)

vSCF = ub
Hb

wf b
w + HB

g f b
g

Hb
r + ϕHb

wSb
w + ϕHB

g Sb
g

, (42)

where we used the nomenclature that follows from Eq. (1):

HB
g ≡ Hg(T

b) = Hs
g (T b) + Hl

g = Hb
g + �0ρ0

g . (43)

Because Sb
g = 1−Sb

w, f b
g = 1−f b

w and f b
w depends only on the water saturation

in the constant temperature steam zone, we observe that u0 depends only on the

water saturation and the Darcy velocity at the left of the SCF as well as on the

velocity of the SCF .

From Eqs. (41) and (42), we can write u0 in terms of ub:

u0

ub
=
(

ρb
w

ρ0
w

f b
w + ρb

g

ρ0
w

f b
g

)

− ϕ

(
ρb

w

ρ0
w

Sb
w + ρb

g

ρ0
w

Sb
g − 1

)
Hb

wf b
w + HB

g f b
g

Hb
r + ϕHb

wSb
w + ϕHB

g Sb
g

.

(44)

Eqs. (42) and (44) represent the speeds vSCF and u0 in terms of ub. Eq. (44)

easily allows to read ub in terms of u0 (see Figure 2). We can use the expression

of
[

u0

ub

]
given by Eq. (44) in Eq. (42) to obtain vSCF in terms of u0:

vSCF = u0

[
u0

ub

]−1 Hb
wf b

w + HB
g f b

g

Hb
r + ϕHb

wSb
w + ϕHB

g Sb
g

. (45)

Finally, we replace HB
g in Eq. (45) by its definition given in Eq. (43).

Remark 9. In principle, (+) states with temperature T different from T 0 could

be considered, but because Cp
w was assumed to be constant such condensation

discontinuities do not appear in the Riemann solution.
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S S
* wS

1

I II III

u 0

u b

b

Figure 2 – Speed ub versus Sb
w for fixed T 0, u0, obtained from Eq. (44). The curve is

almost horizontal at S∗; if ρg and HB
g could be neglected, and ρw were independent of

temperature, tangency of the left and right curves at S∗ would be exact (using Eq. (47)).

2.4 Cold water zone

In the cold water zone, Sw = 1, so q = 0. Since T = T 0 is constant, so is ρw.

Thus Eq. (29) says that u is a constant that has been called u0. Equation (30)

says that the characteristic speed (of temperature waves) in the cold water zone

is

v0 = Cp
w(T 0)

C
p
r (T 0) + ϕC

p
w(T 0)

u0. (46)

3 Wave bifurcation analysis

Let us consider the situation where the hot steam zone is followed by a cold

water zone. For such a situation to occur, there must be a steam condensation

discontinuity in between. Let us first examine the critical case (∗) when the

speed of the condensation discontinuity is the same as the characteristic speed

in the cold water zone.

3.1 The hot-cold bifurcation

Because speed equality of different waves typically represents resonance and

generates bifurcations, let us consider the case when the SCF speed is so large

that it equals the cooling contact discontinuity speed. We expect this bifurcation
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to represent the boundary between configurations containing either SCF shocks

or cooling discontinuities. Equating the cooling discontinuity speed vb,0
w (from

Eq. (33) or equivalently from (35)) with vSCF given by Eq. (45). Using Eq. (26),

we conclude that we have the following remarkable speed equalities.

Theorem 1. Fix T 0 and T b (or equivalently T 0 and the reservoir pressure).

Consider the following three shocks: HISW shock between (Sb
w, T b, ub),

(1, T b, ub), cooling shock between (1, T b, ub), (1, T 0, u0), SCF between

(Sb
w, T b, ub), (S0

w, T 0, u0), with speeds vb
gw, vb0

w and vSCF respectively. If any

two of their wave speeds coincide at a certain Sb
w = S∗, then their three speeds

coincide at this S∗.

Proof. The proof consists of three parts. The velocities are given in Eqs. (26),

(35) and (42).

(1) Assume that at Sb
w = S∗ we have vb

g,w = vb,0
w .

From the equality in speeds, Eqs. (26) and Eqs. (33) we have for Sb
g = 1−S∗:

ub

ϕ

f b
g

Sb
g

= ub

ϕ

1 − f b
w

1 − Sb
w

= ub Hb
w

Hb
r + ϕHb

w

. (47)

Multiplying numerator and denominator of the second fraction in Eq. (47) by

Hb
w and subtracting the results to the corresponding terms in the third fraction,

we obtain:

ub

ϕ

f b
g

Sb
g

= ub Hb
wf b

w

Hb
r + ϕHb

wSb
w

. (48)

Multiplying numerator and denominator of the first fraction in Eq. (48) by

HB
g and adding the results to the corresponding terms in the second equation, we

obtain:

ub

ϕ

f b
g

Sb
g

= ub
Hb

wf b
w + HB

g f b
g

Hb
r + ϕHb

wSb
w + ϕHB

g Sb
g

. (49)

From Eqs. (26) and (42), we see that vb
g,w = vSCF .
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(2) Performing the above calculation in reverse order, we can prove that vb
g,w =

vSCF implies vb
g,w = vSCF = vb,0

w .

(3) Assume that at S∗ we have vb,0
w = vSCF .

From Eqs. (35) and (42), and assuming that ρb
w = ρ0

w, i.e. the density of water

is independent of temperature,

vb,0
w = ub Hb

w

Hb
r + ϕHb

w

= ub
Hb

wf b
w + HB

g f b
g

Hb
r + ϕHb

wSb
w + ϕHB

g Sb
g

. (50)

Substituting f b
w = 1 − f b

g , Sb
w = 1 − Sb

g in the numerator and denominator of

the last fraction in Eq. (50) we obtain:

vb,0
w = ub Hb

w

Hb
r + ϕHb

w

= ub
Hb

w − Hb
wf b

g + HB
g f b

g

Hb
r + ϕHb

w − ϕHb
wSb

g + ϕHB
g Sb

g

. (51)

Subtracting the numerator and denominator of the first fraction from the corre-

sponding terms in the last fraction we obtain:

vb,0
w = ub

ϕ

f b
g (−Hb

w + HB
g )

Sb
g(−Hb

w + HB
g )

, (52)

or, from Eq. (26), vb,0
w = vb

g,w, and the proof is complete. �

The speed vb
g,w is the Buckley-Leverett speed of propagation of a hot steam

shock from Sb
w to Sw = 1 (pure hot water, or no steam) governed by Eq.

(24). Thus, each pair of states of this one-parameter family of discontinuities

(S∗, T b, ub), (1, T 0, u0) acts as an organizing center in the space of all solutions

of the Riemann problem; the first member (S∗, T b, ub) of each such pair is de-

noted by ∗. This family of discontinuities is parameterized by u0 for instance,

as explained in Remark 2.

Theorem 1 provides information related to the structure at the left of the tem-

perature discontinuities. In Figure 3, S∗ corresponds to the saturation of a state

∗. See also Figure 4. The ∗ state separates two different configurations; in one

of them, there is a hot steam zone and a cold water zone separated by a SCF ,

while in the other there is a hot steam zone, a hot water zone and a cold water

zone.
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speed

v

water saturation

cold water zone

s
*

v SCF

*
hot steam−water zone

hot water
   zone

s b1
w

s

v b, 0
w

v
g
b
,w

Figure 3 – Schematic bifurcation diagram near S∗ (for fixed u0, T 0) versus Sb
w, the

saturation on the left of the HISW shock or of the SCF .

3.2 The steam-water bifurcation

Let us fix T 0 and T b (or equivalently T 0 and the reservoir pressure). Let us

now examine the critical case (†) when the speed of the steam condensation

discontinuity is so high that it becomes the same as the characteristic speed of

saturation waves in the hot region given in Eq. (25), so the SCF overtakes the

cooling discontinuity. One can expect that the SCF cannot exist with higher

speed. At S†, the SCF becomes a left-contact. At such a state (S, T , u) =
(S†, T

b, ub), we have:

vb
s (S†; ub) ≡ ub

ϕ

∂f b
w

∂Sw

(S†) = vSCF . (53)

It is easy to find numerically or graphically (see Fig. 5) the solution of Eq. (53)

using Eq. (42) and solve for S†. Notice that ub cancels out. Subsequently we

can use Equation (44) to calculate the downstream velocity u0 in terms of vSCF .

Equivalently, we can use Eqs. (44), (45) to obtain ub and vSCF in terms of u0.

Remark 10. If Figure 5 were drawn to scale for the actual data nothing would

be visible. The drawing is for illustrative purposes. In the numerical example

studied in detail, we find the following values: S† = −1.32449, f † = −0.00471,

Sinf l = 0.884747, S† = 0.308042, S†† = 0.991435, and S∗ = 0.983167.
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1
wSS

*

f
*

S
*

Figure 4 – Finding S∗ from second equality in Eq. (47), by a solid line with slope

ϕHb
w/(Hb

r + ϕHb
w); dashed bounding lines through (0, 0) and (S∗†, 0).

fw

1

1
wS(S  , f  ) SS S infl

f
b

f b

S
*

Figure 5 – Graphical solution of Eqs. (53) and (42) for steam-water bifurcation. See

Eq. (54). The solid line represents the SCF shock.

Equating vSCF given by Eq. (53) with Eq. (42), making f b
g = 1 − f b

w,

Sg = 1 − Sw, we obtain

∂f b
w

∂Sw

(S†) = f b
w(S†) − f †

S† − S†
, (54)
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where

S† = Hb
r /ϕ + HB

g

HB
g − Hb

w

, f † = HB
g

HB
g − Hb

w

, (55)

and all quantities are evaluated at the boiling temperature T b. The physics of

water at normal pressure dictates that at the boiling temperature, HB
g < Hb

w, thus

S† < 0 and

f † < 0. (56)

Remark 11. Since for steam–water (S†, T †) satisfies the inequalities (56),

there is another solution point (S††, f
b
††) for Eq. (53) closer to (1,1) as shown in

Fig. 5. However, it does not play any role in the Riemann solution of the current

problem because it exceeds S∗, according to Remark 10.

The contact bifurcation S† separates different wave structures in the steam-

water zone as can be seen in Fig. 6.

speed

s
*

v SCF

s1
w
inj

constant

constant  +
rarefaction

v b
s

v SCF
T

s

v
g
b
,w

I II III

Figure 6 – Structure of the steam-water zone below solid curve marked by vb
s , vSCF

T ,

vSCF , vb
g,w given in Eqs. (25), (42) with Sw=S†, Eq. (42) with S† < S

inj
w < S∗, and Eq.

(26) respectively. The figure is not drawn to scale.

In Figures 11 and 2, we show the characteristic speed vSCF and ub for each

Sb
w, at temperature T b for fixed u0. As we shall see in Section 4.2, the diagram

in Fig. 11 determines the structure of the Riemann solution in the steam zone.
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Remark 12. By inspection of Figure 5, we see that slightly above S† there

exist S+ and slightly below S† there exist S−, such that in the limit as S+ = S−
we have vSCF (S+) = vSCF (S−) larger than vSCF (S†), satisfying as well

(S+ − S†)v
SCF (S+) = ub

ϕ
(f b

w(S+) − f†)

(S− − S†)v
SCF (S−) = ub

ϕ
(f b

w(S−) − f†)

Subtracting these two equations, dividing by (S+ −S−) and taking the limit as

S+, S− → S† we recover that

ub

ϕ

∂f b
w

∂Sw

(S†) = vSCF , (59)

and obtain that S† maximizes vSCF , as illustrated in Figures 3, 6 and 11. An

analogous argument holds at S††.

Remark 13. The SCF shocks are represented in Figure 5 as segments with

slope (vSCF /ub) between (S†, f †) and (S, f ) for 0 ≤ S ≤ S†. We see that as S

increases vSCF decreases and the shock amplitude S − S† increases.

Remark 14. We have shown that (vSCF /ub) has an extremum at S†; the Figure

5 shows that this slope has an extremum at S††. Thus (vSCF /ub) also has an

extremum at S††.

3.3 Waves in the liquid water region

Because the initial reservoir temperature is T 0, the liquid water region must

always contain a cold water zone at temperature T 0 far away from the place where

hot steam is injected. If the liquid water region receives water at temperature

T b from the steam zone, the liquid water region consists of a hot liquid water

zone at temperature T b and a cold water zone at temperature T 0, separated by a

cooling discontinuity that moves with speed vb,0
w given by Eq. (35). This cooling

discontinuity exists provided vb,0
w > vb

g,w from Eq. (26) i.e. the hot isothermal

steam-water shock velocity (HISW ). In this case the HISW shock at which
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the steam saturation becomes zero and the cooling shock where the temperature

jumps to the ambient temperature are separated. See region S > S∗ in Fig. 3.

On the other hand, if vb,0
w > vb

g,w were to be violated, there would be no hot

water zone and no cooling discontinuity. See region S < S∗ in Fig. 3, where

there is a steam condensation front instead of a cooling discontinuity.

3.4 Waves in the hot steam zone

The waves in this zone can be found by a pure Buckley-Leverett or Oleı̆nik

analysis of Eq. (24), with one caveat. In the sequence of zones starting at the

injection well, the first zone is a steam zone, and the last one is a cold water zone,

with heat flow governed by the system (29)–(30). The cold water zone is reached

either via a steam condensation shock or via a cooling shock. In the latter case,

if there is no other shock between the steam zone and the cold water zone, all

waves in the steam zone must have speeds that do not exceed the cooling shock

speed vb,0
w given by Eq. (34). In particular, if there is a HISW shock with speed

given by vb
g,w in Eq. (26), we must have vb

g,w ≤ vb,0
w . Similarly, if there is a

saturation rarefaction wave with speed given by vb
s in Eq. (25), we must have

vb
s ≤ vb,0

w , the cooling contact discontinuity velocity.

Because of Theorem 1, we see that the restrictions above are satisfied precisely

for saturation Sb
w in the hot water zone with values between [S∗, 1], see Figure

11. For steam–water at the conditions considered in this work, one can verify

that the steam water bifurcation water saturation S† is smaller than S∗ in Fig. 5.

Because S† < S∗, there are no Buckley-Leverett shocks between [Swc, S∗]. This

is so because below S† there are no shocks as rarefaction wave velocities increase

monotonically from Swc to S†. At S† the velocity is equal to the SCF velocity.

Between S† and S∗ there are no shocks as the rarefaction wave velocities are

larger than the SCF velocity.

Another case of interest occurs if pure steam is injected, i.e. Sw = Swc, the

connate water saturation. In this case, a saturation rarefaction wave starts at

x = 0 in the steam zone. A mixture of steam and water can also be injected.

As long as Sinj
w < S†, at x = 0 there is a constant state followed by a saturation

rarefaction wave. Of course, in the Buckley-Leverett solution for the steam zone

the rarefaction wave containing a saturation value Sw satisfies the geometric
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compatibility condition:

uinj

ϕ

∂f b
w(Sw)

∂Sw

≤ vSCF . (60)

4 Construction of the Riemann solution

Here we describe a systematic way of constructing the Riemann solution through

a wave curve. Then we summarize the resulting Riemann solution.

S S
* wS

1

I II III

u b

u 0

b

Figure 7 – Speed u0 for fixed T b, uinj , obtained from Eq. (7) and Fig. 2.

4.1 The wave curve

Let us fix the initial state of the reservoir as S0
w = 1, T = T 0, u = u0, which is

necessarily the rightmost constant state in the Riemann solution. It turns out to

be convenient for the discussion to imagine that an arbitrary value for u0 has been

specified. Let us decrease the injection saturationSinj
w (at the boiling temperature)

from Sw = 1 to Sw = Swc; in our case this corresponds to changing Sb
w, the water

saturation at the HISW shock with speed given in Eq. (26). For each Sinj
w , we

construct the sequence of elementary waves (and constant states) with decreasing

speeds from right to left, that is from S0
w to Sb

w. There is a constant state to the

left of Sb
w, so there is no other wave to the left of Sb

w, the steam shock. For each

Sb
w, we mark its wave speed, forming the solid curves in Fig. 11. This sequence,

parameterized by Sb
w, is called a backward wave curve from (Sw = 1, T 0, u0).

It combines all information needed for describing the structure of the Riemann

solution, and for verifying necessary speed relations for the admissibility of the
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Figure 8 – Two cases of steam injection: at connate water saturation Swc or at a low water

saturation. With injection at Swc there is a rarefaction wave and a SCF . With injection

of low water saturation above Swc there is a constant state before the rarefaction.

shocks involved. On rarefaction segments of this backward wave curve, the

characteristic speed decreases, while on shock segments of this wave curve, the

shock speed increases [8], [14]. We refer to Fig. 11.

When Sinj
w lies between S∗ and 1, the wave with fastest possible speed is the

cooling shock in the liquid water region (see Section 3.4), so the backward wave

curve corresponds to such a shock wave, with speed given by vb,0
w in Eq. (35).

There is a hot steam-water region and a cold water zone. In the hot steam-water

region, generically there is a Buckley-Leverett rarefaction-shock and a constant

state. The hot steam-water region terminates with the HISW shock.

The analysis from now on relies on the fact that for steam–water in the actual

reservoir, Sinf l < S∗. For Sinj
w within (S†, S∗), the wave with slowest speed is the

SCF , with speed vSCF . At the left of the SCF , characteristic speed vb
s exceeds
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Figure 9 – Steam injection at intermediate water saturation. We get a constant state

upstream and the steam condensation front. The SCF moves faster than in Figure 8.

vSCF , so there can be no rarefactions nor shocks to the left of the SCF . Thus,

for Sinj
w in such range, the solution (from left to right) consists of a constant state

of steam and water at temperature T b, a SCF jumping from Sinj
w to 1.0, and a

constant cold water zone.

Recall that S† < Sinf l . Therefore, from Sinj
w within (Swc, S†), the slowest

speed is a hot steam–water rarefaction speed vb
s , which is smaller than vSCF (vb

s

and vSCF coincide at the left state S†), so there are rarefactions to the left of the

SCF . Thus the solution consists of a constant state with saturation Sinj
w as in the

previous case (this constant state disappears if Sinj
w = Swc), a rarefaction wave

from Sinj
w to S†, a SCF from S† to 1, and a constant cold water zone.

Let us explain how the Darcy velocity ub is constructed for each value of Sinj
w .

If Sinj
w lies in the interval (S∗, 1), ub is given by Eq. (34), and the speed vb,0

w

of the cooling shock is given by Eq. (35) (Case III). (As explained in Section

2.1, the velocity u is constant in the hot region and equals ub.) If Sinj
w lies in the
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Figure 10 – Steam injection at a high water saturation. We get a constant state upstream,

the Buckley-Leverett-saturation shock and the cooling discontinuity. These two waves

have distinct speeds; they are both faster than the SCF in Figure 9.

interval S† and S∗, ub is given by Eq. (44). The speed of the SCF is given by

Eq. (45), (Case II).

If Sinj
w lies in the interval (Swc, S†) (Case I, since ub has to match at the boundary

of Cases I and II, ub is given by Eq. (45) with Sw replaced by S†. Thus ub is

independent of Sinj
w in Case I.

A summary of the behavior of ub(Sinj
w ) is presented in Fig. 2. Here ub(Sinj

w ) is

the value of ub calculated in the previous paragraphs for a fixed u0.

We are ready to abandon the assumption that u0 is known. This is impractical,

since normally one specifies uinj rather than u0. We take advantage of the fact

that all speeds are proportional to find the actual speed in the cold water zone
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S SS
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S infl
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vs

v SCF

b

b

v b, 0

v b, 0

w

w

Figure 11 – Wave speed diagram for left states (Sb
w, T b, ub) reachable from the right

state (1, T 0, u0); for this right state the curve marked vSCF is the Rankine-Hugoniot

curve projected onto the (Sw, v) plane. The velocity of the SCF is vSCF (Eq. (42)), vb
s

is the hot region saturation characteristic speed (Eq. (25)), and vb,0
w is the velocity of the

cooling contact discontinuity (Eq. (35)).

u0(Sinj
w ) for specified uinj , as follows:

ub(Sinj
w )

u0
= uinj

u0(S
inj
w )

. (61)

From this equation we recover u0(Sinj
w ), essentially by inverting the variable

represented in the ordinate in Fig. 2. Thus we obtain Fig. 7.

4.2 Summary of the Riemann solution

The solution consists of three parts, viz. a hot region (A) at constant boiling

temperature, an infinitesimally thin cooling front (B) or discontinuity, where all

possible steam condensation occurs, and a cold liquid water region downstream

(C). See Figure 1.

As we have seen, the nature of the solution changes and there are three possible

cases (I), (II), and (III), depending on the injected steam quality S
inj
g = 1−Sinj

w .

Cases (II) and (III) are separated by the hot-cold bifurcation, while Cases (I)

and (II) are separated by the steam-water bifurcation.
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Case (I) occurs when the saturation wave velocity vb
s (S

inj
w ; uinj ) ≤ vSCF (see

Eq. (25)); it consists of a sequence of a constant state at the injection end,

a rarefaction wave in the hot steam zone (A) ending with saturation S† at the

SCF (B) with speed vSCF defined by saturations S† and Sw = 1, and a cold

water constant state in (C). The constant state in (A) disappears if the injection

saturation is Swc, that is, pure steam is injected. See Fig. 8. The rarefaction

disappears for vb
s (S

inj
w ; uinj ) = vSCF , as in this case Sinj

w = S†.

Case (II) occurs for vb
g,w(Sinj

w , uinj ) < vSCF < vb
s (S

inj
w ; uinj ); see Eqs. (25),

(26) and (27). This case consists of a hot constant steam–water state in (A), the

SCF (B) with speed vSCF defined by left and right saturations Sinj
w and 1 (see

Eq. (45)), and a constant cold water state in (C). See Fig. 9.

Case (III) occurs for a typically small region for the cooling contact disconti-

nuity velocity vb,0
w (given in Eq. (35)) with vb,0

w > vb
g,w(Sinj

w , uinj ) (see Eq. (26)),

i.e. the hot isothermal steam-water shock velocity. In this case, there is no SCF .

In the hot region (A) there is a constant state with steam-water, then another

constant state of pure hot water at the same boiling temperature, separated by a

Buckley-Leverett shock. Then there is a cooling shock with speed vb,0
w , where

the saturation of water is constant (Sw = 1) and the temperature changes from

T b to the reservoir temperature T 0. (See Fig. 10.)

Figure 6 illustrates the saturation dependence of the various velocities that are

the basis of the steam-water zone structure, for Cases (I), (II), (III).

5 Lax conditions for the steam condensation front

Despite the fact that our system does not satisfy Lax’s theorem hypotheses, we

will compare the SCF speed to the left and right characteristic speeds. We will

conclude that from the point of view of Lax’s inequalities, the SCF is a 2-shock

or a limit of such shocks.

We introduce the heat capacities Cp(T ) as the temperature derivatives of the

enthalpies [J/m3] at constant pressure, i.e. Cp
w(T ) is the heat capacity of water

and C
p
g (T ) is the heat capacity of steam. In the same way we define the thermal

expansivity of water and steam αw(T ) and αg(T ) as minus the temperature

derivative of the density divided by the density (see Appendix A).
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Eqs. (21)–(22) may be written in quasilinear form as:

− ∂u

∂x
(ρwfw + ρgfg) = −ϕ

[
(Swρwαw + Sgρgαg)

∂T

∂t

+ (
ρg − ρw

)∂Sw

∂t

]
− u

[(
fwρwαw + fgρgαg

+ (
ρg − ρw

)
∂fw/∂T

)∂T

∂x
−
(

(ρw − ρg)
∂fw

∂Sw

)
∂Sw

∂x

]
,

(62)

q�0 − ∂u

∂x
(Hwfw + Hs

gfg) = ϕ

[(
C

p
r

ϕ
+ SwCp

w + SgC
p
g

)
∂T

∂t

+ (
Hw − Hs

g

)∂Sw

∂t

]
+ u

[(
fwCp

w + fgC
p
g

+ (Hw − Hs
g )∂fw/∂T

)∂T

∂x
+
(

(Hw − Hs
g )

∂fw

∂Sw

)
∂Sw

∂x

]
.

(63)

We restrict our attention to regions where ∂u/∂x = 0 and q = 0, that is, away

from any kind of shocks. Thus, the LHS terms of Eqs. (62), (63) vanish.

We let

AI = C
p
r

ϕ
+ SwCp

w + SgC
p
g ,

AII = fwCp
w + fgC

p
g + (Hw − Hs

g )∂fw/∂T .

(64)

Multiplying the RHS of Eq. (62) by −(Hw −Hs
g ) and of Eq. (63) by (ρw −ρg)

and adding leads to a new equation, which will be used instead of Eq. (63):

ϕ

[
(Hw − Hs

g )(Swρwαw + Sgρgαg) + (
ρw − ρg

)
AI

]
∂T

∂t

+ u

[
(Hw − Hs

g )

(
fwρwαw + fgρgαg + (ρg − ρw)∂fw/∂T

)

+ (ρw − ρg)AII

]
∂T

∂x
= 0.

(65)

We let

AIII = (
Hw − Hs

g

)
(Swρwαw + Sgρgαg) + (

ρw − ρg

)
AI , (66)
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AIV =
( (

Hw − Hs
g

)
(fwρwαw + fgρgαg + (ρg − ρw)∂fw/∂T )

+ (
ρw − ρg

)
AII

)
.

(67)

Thus in regions where ∂u/∂x = 0 and q = 0, that is, away from any kind of

shocks (see Remarks 1 and 2), Eqs. (62)–(65) may be written in matrix form as:

(
A

∂

∂t
+ B

∂

∂x

)(
S

T

)
= 0. (68)

Let µ be a characteristic speed. Then the determinant of the following matrix

must vanish:

−µϕ

((
ρg − ρw

)
(Swρwαw + Sgρgαg)

0 AIII

)

+u

((
ρg − ρw

)
∂fw/∂Sw fwρwαw + fgρgαg + (ρg − ρw)(∂fw/∂T )

0 AIV

)
.

(69)

Since the matrix above is upper triangular, the characteristic speeds are easily

read from the diagonals:

µ = u

ϕ

∂fw

∂Sw

and µ = u

ϕ

AIV

AIII

. (70)

(It is easy to check that AIII never vanishes.)

Now, in the liquid water region on the right of the SCF , Sg = 0, fg = 0,
∂fw

∂Sw
= 0, the characteristic speeds are

µ = 0 and v0 = Cp
w(T 0)

C
p
r (T 0) + ϕC

p
w(T 0)

u0. (71)

The latter speed has already been calculated in Eq. (46).

On the other hand, in the hot steam zone the characteristic speeds are

vb
s = ub

ϕ

∂f b
w

∂Sw

, and vb
T = ub

ϕ

AIV (T b)

AIII (T b)
. (72)

The first speed has already been calculated in Eq. (45). The second speed of

thermal waves is shown in Figure 11 as a function of Sw at T = T b.
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For a (−) state for the SCF with Sw in (S∗, S†) we have that the thermal char-

acteristic speed in the steam zone satisfies 0 < v0 < vSCF , and the steamfront

velocity satisfies vb
T < vSCF < vb

s , so the SCF would be called a 2-shock in

Lax’s classification scheme. However, Lax’s theorem only applies to shocks

with small amplitude, while the SCF is a large shock, and only if the governing

equations were a system of conservation laws satisfying appropriate technical

hypotheses, such as genuine nonlinearity, which is actually violated at the in-

flection Sinf l . Moreover, even the Lax inequalities are violated starting at the

steam-water bifurcation; there is no conclusive mathematical evidence that the

SCF shock needed to complete the Riemann solution is physically admissible.

This is the issue left open.

6 Summary and conclusions

A complete and systematic description of all possible solutions of the Riemann

problem for the injection of a mixture of steam and water into a water-saturated

porous medium, for all possible reservoir temperatures and pressures below the

water critical point. For each Riemann data, we found a unique solution.

As determined by the dissipative effects of capillary porous forces combined

with the mass source term given in Eq. 3, the internal structure of the SCF is

consistent with the Riemann solution in this work. This fact is demonstrated in

a companion paper [4].
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Appendix A – Physical quantities; symbols and values

In this Appendix we summarize the values and units of the various quantities

used in the computation and empirical expressions for the various parameter
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Physical quantity Symbol Value Unit

Water, steam fractional

functions fw, fg Eq. (9). [m3/m3]

Water-steam frac. flow,

hot region f b
w , f b

g [m3/(m2s)]

Porous rock permeability k 1.0 × 10−12 [m2]

Water, steam relative

permeabilities krw, krg Eq. (82), (82). [-]

Pressure p 1.0135 × 105 [Pa]

Mass condensation rate q Eq. (3). [kg /(m3s)]

Mass condensation

rate coefficient qb 0.01 [kg /(m3sK)]

Steam injection rate uinj 9.52 × 10−4 [m3/(m2s)]

Water, steam phase velocity uw, ug Eq. (2). [m3/(m2s)]

Total Darcy velocity u uw + ug , Eq. (13). [m3/(m2s)]

Flow rate in hot region ub Eq. (24), (34). [m3/(m2s)]

Flow rate in cold water zone u0 Eq. (31). [m3/(m2s)]

SCF velocity vSCF Eq. (42). [m/s]

Cooling contact disc. speed,

hot water zone vb
w Eq. (36). [m/s]

Thermal characteristic speed,

cold water zone v0 Eq. (46). [m/s]

Saturation characteristic speed,

hot region vb
s Eq. (25). [m/s]

Hot isothermal steam-water

shock velocity vb
g,w Eq. (26). [m/s]

Cooling contact

discontinuity velocity v
b,0
w Eq. (35). [m/s]

Water, steam heat capacity ∗ C
p
w, C

p
g dHw/dT , dHs

g/dT [J/(m3K)]

Effective rock heat capacity C
p
r 2.029 × 106 [J/(m3K)]

Steam enthalpy Hg ρg(T )
(
hg(T ) − hw(T 0)

)
[J/m3]

Steam sensible heat Hs
g Eq. (77). [J/m3]

Steam latent heat Hl
g ρg(T )�0 [J/m3]

Rock enthalpy Hr ρrC
p
r (T − T 0) [J/m3]

Water enthalpy Hw ρw(T )
(
hw(T ) − hw(T 0)

)
[J/m3]

Water, rock enthalpy

at boiling temperature Hb
w , Hb

r Hw(T b), Hr(T
b) [J/m3]

Steam total, sensible enthalpy

at boil. temp. HB
g , Hb

g Eq. 43. [J/m3]

Table 2 – Summary of physical input parameters and variables.
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Physical quantity Symbol Value Unit

Water, rock enthalpy,

reservoir temperature H 0
w , H 0

r Hw(T 0), Hr(T
0) [J/m3]

Water, steam saturations Sw, Sg Dependent variables. [m3/m3]

Connate water saturation Swc 0.15 [m3/m3]

Water injection saturation S
inj
w See Section 4. [m3/m3]

Hot-cold bifurcation

water saturation S∗ Theorem 1. [m3/m3]

Steam-water bifurcation

water saturation S† Eq. (53). [m3/m3]

Steam-water bifurcation

ghost saturation S†† See Remark 11. [m3/m3]

Water saturation at inflection Sinf l Frac. flow infl. sat. [m3/m3]

Temperature T Dependent variable. [K]

Reservoir temperature T 0 293. [K]

Boiling point of water–steam T b Eq. (73). [K]

Steam thermal expansion coefficient ∗ αg −(1/ρg)(∂ρg/∂T )p [/K]

Water thermal expansion coefficient αw −(1/ρw)(∂ρw/∂T )p [/K]

Water, steam thermal conductivity κw , κg 0.652, 0.0208 [W/(mK)]

Rock, composite thermal conductivity κr , κ 1.83, Eq. (7). [W/(mK)]

Saturation exponent for Pc λs 0.5, Eq. (83) [-]

Water, steam viscosity µw , µg Eq. (79), Eq. (78). [Pa s]

Water, steam densities ρw , ρg Eq. (81), Eq. (80). [kg/m3]

Water, steam, rock densities

– boiling temp. ρb
w , ρb

g , ρb
r Eq. (32) [kg/m3]

Water, steam, rock densities

– reservoir temp. ρ0
w , ρ0

g , ρ0
r [kg/m3]

Interfacial tension σwg 58 × 10−3 [N/m]

Rock porosity ϕ 0.38 [m3/m3]

Water evaporation heat

at reservoir temperature �0 Eq. 1. [J/kg]

Capillary diffusion coefficient � Eqs. (11), (12). [m3/m3]

Table 2 – (continuation)
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functions. For convenience we express the heat capacity of the rock C
p
r in terms

of energy per unit volume of porous medium per unit temperature i.e. the factor

1 − ϕ is already included in the rock density. All other densities are expressed

in terms of mass per unit volume of the phase.

A.1 Temperature dependent properties of steam and water

We use reference [16] to obtain all the temperature dependent properties below.

The water and steam densities used to obtain the enthalpies are defined at the

bottom. First we obtain the boiling point T b at the given pressure p, i.e.

T b = 280.034 + 
(14.0856 + 
(1.38075 + 
(−0.101806 + 0.019017
))), (73)

where 
 = log(p) and p is the pressure in [k Pa]. The evaporation heat [J/kg]

is given as a function of the temperature T at which the evaporation occurs. We

use atmospheric pressure (p = 101.325 [k Pa]) in our computations, to make the

example representative of subsurface contaminant cleaning.

The liquid water enthalpy hw(T ) [J/kg] as a function of temperature is approx-

imated by

hw(T ) = 2.36652 × 107 − 3.66232 × 105T + 2.26952 × 103T 2

− 7.30365T 3 + 1.30241 × 10−2T 4 − 1.22103 × 10−5T 5

+ 4.70878 × 10−9T 6.

(74)

The steam enthalpy hg [J/kg] as a function of temperature is approximated by

hg = − 2.20269 × 107 + 3.65317 × 105T − 2.25837 × 103T 2

+ 7.3742T 3 − 1.33437 × 10−2T 4 + 1.26913 × 10−5T 5

− 4.9688 × 10−9T 6.

(75)

For the latent heat hl
g [J/kg] or evaporation heat �(T ) we obtain

hl
g = (

7.1845 × 1012 + 1.10486 × 1010T − 8.8405 × 107T 2

+ 1.6256 × 105T 3 − 121.377T 4
) 1

2 .
(76)

The sensible heat of steam Hs
g (T ) in [J/m3] is given as

Hs
g (T ) = ρg

(
hg (T ) − hw

(
T 0
)− �

(
T 0
))

. (77)
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We also use the temperature dependent steam viscosity

µg = − 5.46807 × 10−4 + 6.89490 × 10−6T − 3.39999 × 10−8T 2

+ 8.29842 × 10−11T 3 − 9.97060 × 10−14T 4

+ 4.71914 × 10−17T 5.

(78)

The temperature dependent water viscosity µw is approximated by

µw = − 0.0123274 + 27.1038

T
− 23527.5

T 2
+ 1.01425 × 107

T 3

− 2.17342 × 109

T 4
+ 1.86935 × 1011

T 5
.

(79)

For the steam density as a function of temperature T [K] we use a different

expression than [16] because our interest is a steam density at constant pressure,

which is not necessarily in equilibrium with liquid water.

ρg(T ) = p
MH2O

ZRT
(80)

where p is the total pressure at which the steam displacement is carried out,

R=8.31 [J/mol K] and Z is the Z-factor (see e.g. Dake [6]) and MH2O =
0.018 kg/mole is the molar weight of water. For the atmospheric pressures

of interest here the Z-factor is close to unity. The liquid water density as a

function of the temperature T [K] is given as

ρw(T ) = 3786.31 − 37.2487T + 0.196246T 2 − 5.04708 × 10−4T 3

+ 6.29368 × 10−7T 4 − 3.08480 × 10−10T 5.
(81)

A.2 Constitutive relations

We use a porosity ϕ that is representative for unconsolidated sand. The relative

permeability functions krw and krg are considered to be power functions of their

respective effective saturations [7], i.e.

Swe = (Sw − Swc)/(1 − Swc), Sge = Sg/(1 − Swc).

The effective saturations require knowing the connate water saturation Swc. In

all our examples we use a fourth power of the effective saturation for the relative

Comp. Appl. Math., Vol. 22, N. 3, 2003



394 STEAM INJECTION INTO WATER-SATURATED POROUS ROCK

water permeability and a quadratic dependence for the steam relative permeabil-

ity.

The relative permeability functions krw and krg are considered to be power

functions of their respective saturations [7], i.e.

krw =



(

Sw − Swc

1 − Swc

)nw

for Sw ≥ Swc ,

0 for 0 ≤ Sw ≤ Swc,

krg =
(

Sg

1 − Swc

)ng

.

(82)

For the computations we take nw = 4, ng = 2. The connate water saturation

Swc is given in the table.

The capillary pressure is of the Brooks-Corey type based on the dimensionless

capillary pressure from Pc(Sw = 0.5)/
(
σwg

√
ϕ/k

) = 0.5. The capillary pres-

sure between steam and water is given by the empirical expression which com-

bines Leverett’s approach to non-dimensionalize the capillary pressure [9] with

the semi-empirically determined saturation dependence suggested by Brooks [3]:

Pc = σwgγ

√
ϕ

k

(
1
2 − Swc

1 − Swc

) 1
λs
(

Sw − Swc

1 − Swc

)− 1
λs

, (83)

where γ is a parameter that in many cases assumes values between 0.3 and 0.7.

We use γ = 0.5 and λs = 1
2 . Finally σwg = 0.058 N/m is the water-vapor

interfacial tension. We disregard its temperature dependence and use the value

at the boiling point (see [17], p. F-45).
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