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Abstract. The unsteady hydromagnetic Couette flow and heat transfer between two parallel
porous plates is studied with Hall effect and temperature dependent properties. The fluid is acted
upon by an exponential decaying pressure gradient and an external uniform magnetic field. Uni-
form suction and injection are applied perpendicularly to the parallel plates. Numerical solutions
for the governing non-linear equations of motion and the energy equation are obtained. The effect
of the Hall term and the temperature dependent viscosity and thermal conductivity on both the

velocity and temperature distributions is examined.
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1 Introduction

The flow between parallel plates is a classical problem that has important ap-
plications in magnetohydrodynamic (MHD) power generators and pumps, ac-
celerators, aerodynamic heating, electrostatic precipitation, polymer technol-
ogy, petroleum industry, purification of crude oil and fluid droplets and sprays.
Hartmann and Lazarus [1] studied the influence of a transverse uniform magnetic

field on the flow of a viscous incompressible electrically conducting fluid between
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196 VELOCITY AND TEMPERATURE DISTRIBUTIONS OF COUETTE FLOW

two infinite parallel stationary and insulating plates. The problem was extended
in numerous ways. Closed form solutions for the velocity fields were obtained
[2-5] under different physical effects. Some exact and numerical solutions for
the heat transfer problem are found in [6, 7]. In the above mentioned cases the
Hall term was ignored in applying Ohm’s law as it has no marked effect for small
and moderate values of the magnetic field. However, the current trend for the
application of magnetohydrodynamics is towards a strong magnetic field, so that
the influence of electromagnetic force is noticeable [5]. Under these conditions,
the Hall current is important and it has a marked effect on the magnitude and
direction of the current density and consequently on the magnetic force. Tani
[8] studied the Hall effect on the steady motion of electrically conducting and
viscous fluids in channels. Soundalgekar et al. [9, 10] studied the effect of Hall
currents on the steady MHD Couette flow with heat transfer. The temperatures
of the two plates were assumed either to be constant [9] or varying linearly along
the plates in the direction of the flow [10]. Abo-El-Dahab [11] studied the effect
of Hall currents on the steady Hartmann flow subject to a uniform suction and
injection at the bounding plates. Attia [12] extended the problem to the unsteady
state with heat transfer.

Most of these studies are based on constant physical properties. It is known
that some physical properties are functions of temperature [13] and assuming
constant properties is a good approximation as long as small differences in tem-
perature are involved. More accurate prediction for the flow and heat transfer
can be achieved by considering the variation of the physical properties with tem-
perature. Klemp et al. [14] studied the effect of temperature dependent viscosity
on the entrance flow in a channel in the hydrodynamic case. Attia and Kotb
[7] studied the steady MHD fully developed flow and heat transfer between two
parallel plates with temperature dependent viscosity in the presence of a uniform
magnetic field. Later Attia [15] extended the problem to the transient state. The
influence of Hall current and variable properties on unsteady Hartmann flow
with heat transfer was given in [16]. The influence of variations in the physical
properties on steady Hartmann flow was studied by Attia without taking the Hall
effect into considerations [17]. The effect of variable properties on Couette flow

in a porous medium was done by Attia [18].
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In the present work, the unsteady Couette flow of a viscous incompressible
electrically conducting fluid is studied with heat transfer. The viscosity and
thermal conductivity of the fluid are assumed to vary with temperature. The
fluid is flowing between two electrically insulating plates and is acted upon by
an exponential decaying pressure gradient while a uniform suction and injection
is applied through the surface of the plates. The upper plate is moving with a
constant velocity while the lower plate is kept stationary. An external uniform
magnetic field is applied perpendicular to the plates and the Hall effect is taken
into consideration. The magnetic Reynolds number is assumed small so that the
induced magnetic field is neglected [4]. The two plates are kept at two constant
but different temperatures. This configuration is a good approximation of some
practical situations such as heat exchangers, flow meters, and pipes that connect
system components. Thus, the coupled set of the equations of motion and the
energy equation including the viscous and Joule dissipation terms becomes non-
linear and is solved numerically using the finite difference approximations to
obtain the velocity and temperature distributions.

2  Formulation of the problem

The fluid is assumed to be flowing between two infinite horizontal plates located
at the y = 4/ planes. The two plates are assumed to be electrically insulating
and kept at two constant temperatures 77 for the lower plate and 75 for the upper
plate with 7, > T;. The upper plate is moving with a constant velocity U, while
the lower plate is kept stationary. The motion is produced by an exponential
decaying pressure gradient d P/dx = —Ge™" in the x-direction, where G and
o are constants. A uniform suction from above and injection from below, with
velocity v,, are applied at ¢ = 0. A uniform magnetic field B, is applied in the
positive y-direction. This is the only magnetic field in the problem as the induced
magnetic field is neglected by assuming a very small magnetic Reynolds number.
The Hall effect is taken into consideration and consequently a z-component for
the velocity is expected to arise. The viscosity of the fluid is assumed to vary
exponentially with temperature while its thermal conductivity is assumed to
depend linearly on temperature. The viscous and Joule dissipations are taken
into consideration. The fluid motion starts from rest at ¢ = 0, and the no-slip

Comp. Appl. Math., Vol. 28, N. 2, 2009
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condition at the plates implies that the fluid velocity has neither a z nor an x-

component at y = £/4. The initial temperature of the fluid is assumed to be equal

to 7;. Since the plates are infinite in the x and z-directions, the physical quantities

do not change in these directions and the problem is essentially one-dimensional.
The flow of the fluid is governed by the Navier-Stokes equation

Dv

pE:_%p—FV(MVB)_{—j/\EO (1)

where p is the density of the fluid, u is the viscosity of the fluid, J is the current
density, and v is the velocity vector of the fluid, which is given by

v =u(y, t)?—i— voj'—i— w(y, t)lz

If the Hall term is retained, the current density J is given by the generalized
Ohm’s law [4]

j:a[ﬁAE,—,B(f/\E,)] ()
where o is the electric conductivity of the fluid and 8 is the Hall factor [4]. Using
Egs. (1) and (2), the two components of the Navier-Stokes equation are

au ou %u A du o B?

o= O—ZG —at /- o 3
Poar TPV, =G Tt ey Tt G
ow dw Pw  Ipdw o B?
v o = 4 T _ 4
T M T M I g A @

where m is the Hall parameter given by m = ofB,. It is assumed that the
pressure gradient is applied at # = 0 and the fluid starts its motion from rest.
Thus

t=0u=w=0 (5a)

For ¢ >0, the no-slip condition at the plates implies that
y=—h:u=w=0 (5b)
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The energy equation describing the temperature distribution for the fluid is
given by [19]

8T+ aT 9 kaT N du 2+ w '\ >
Cp—— CpVo7— = — | hk— — —
Perigr TP = 5y ey ) TGy 3y ©

+ i w? + w?)
u w
1+ m?

where T is the temperature of the fluid, ¢, is the specific heat at constant pres-
sure of the fluid, and £ is thermal conductivity of the fluid. The last two terms
in the right-hand-side of Eq. (6) represent the viscous and Joule dissipations
respectively.

The temperature of the fluid must satisfy the initial and boundary conditions,

t=0:T=T (7a)
t>0:T=T, y=—h (7b)
t>0:T="T, y=h (7¢)

The viscosity of the fluid is assumed to vary with temperature and is defined as,
1 = Wy f1(T). By assuming the viscosity to vary exponentially with temper-
ature, the function f(7') takes the form [7], fi(T) = exp(—a1(T — T1)). In
some cases a; may be negative, i.e. the coefficient of viscosity increases with
temperature [7, 15].

Also the thermal conductivity of the fluid is varying with temperature as k =
k, f2(T). We assume linear dependence for the thermal conductivity upon the
temperature in the form & = k,(1 + b (T — T7)) [19], where the parameter b,
may be positive or negative [19].

The problem is simplified by writing the equations in the non-dimensional
form. To achieve this define the following non-dimensional quantities,

T—-T

hG _ (u,w)
- -1’

y .t A A
P t = R G = 75> )
A h Loz ww =

o

, T=

y=

AT = e~ ™=TDT — g=aT 4 g the viscosity parameter,
AT =1+ bi(Ts — T\)T =1+ bT, b is the thermal conductivity parameter,
Re = pU,h /i, is the Reynolds number,
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S = pv,h/ 1, 1s the suction parameter,
Ha? = chghz/pL(,, Ha is the Hartmann number,
Pr = u,c,/k, is the Prandtl number,
Ec= Uaz/cp(Tz — T) is the Eckert number.
In terms of the above non-dimensional quantities the velocity and energy equa-

tions (3) to (7) read (the hats are dropped for convenience)

8u+ S Ju
dt  Redy
2u 1 8fi(T) du Ha? 8)
= Ge ¥ T)—— _ - -
TR fl( 952 TRe ay ay  Re(l4md) T
8w+ S ow
ot  Re dy
Pw 1 f(T) dw Ha? ©)
=—f1( )— — = (W —mu)
Re 9y dy Re(l+m?)
t=0:u=w=0 (10a)
t>0:y=—1, u=w=0 (10b)
t>0:y=1Lu=w=0 (10¢)
aT S oT 1 T 1 0f,(T)oT
o0 Ll LD
dt Redy Pr ay Pr 09y Oy
cEenm | (* (Y], Eeda? N (D
c — — — W+t w
: 3y 3y Re(1 + m2)
t=0:7T=0 (12a)
t>0:7=0, y=-1 (12b)
t>0:T=1,y=1 (12¢)

Equations (8), (9), and (11) represent a system of coupled non-linear partial
differential equations which can be solved numerically under the initial and
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boundary conditions (10) and (12) using finite difference approximations. The
Crank-Nicolson implicit method is used [20]. Finite difference equations relat-
ing the variables are obtained by writing the equations at the mid point of the
computational cell and then replacing the different terms by their second order
central difference approximations in the y-direction. The diffusion terms are
replaced by the average of the central differences at two successive time levels.
The non-linear terms are first linearized and then an iterative scheme is used at
every time step to solve the linearized system of difference equations. All calcu-
lations have been carried out for G = 5,0 = 1,Pr=1,Re =1, and Ec = 0.2.
Step sides At = 0.001 and Ay = 0.05 for time and space respectively, are cho-
sen and the scheme converges in at most 7 iterations at every time step. Smaller
step sizes do not show any significant change in the results. Convergence of the
scheme is assumed when any one of u, w, T, du/dy, dw/dy and 0T /dy for the
last two approximations differ from unity by less than 10~ for all values of y
in —1 < y < 1 at every time step. Less than 7 approximations are required
to satisfy this convergence criteria for all ranges of the parameters studied here.
The transient results obtained here converges to the steady state solutions given
in [17] in the case m = 0.

3 Results and Discussion

Figure 1 presents the velocity and temperature distributions as functions of y
for various values of time ¢ starting from ¢ = 0 up to steady state. The figure
is evaluated for Ha = 1, m = 3, S = 0,a = 0.5 and b = 0.5. It is clear
that the velocity and temperature distributions do not reaches the steady state
monotonically. They increase with time up till a maximum value and decrease
up to the steady state due to the influence of the decaying pressure gradient.
The velocity component u reaches the steady state faster than w which, in turn,
reaches the steady state faster than 7. This is expected as u is the source of w,
while both u and w are sources of 7.

Figure 2 depicts the variation of the velocity component u at the centre of the
channel (y = 0) with time for various values of the Hall parameter m and the
viscosity parameter a and for » = 0 and Ha = 3. The figure shows that u

increases with m for all values of a¢. This is due to the fact that an increase in

Comp. Appl. Math., Vol. 28, N. 2, 2009



202

Figure 1 — The evolution of the profile of: (a) u; (b) w and (¢) T. (Ha =3, m = 3,

VELOCITY AND TEMPERATURE DISTRIBUTIONS OF COUETTE FLOW

\—o—t=o.5 —at=1 —A—t=2‘

a=0.5,b=0.5).

m decreases the effective conductivity (o/(1 + m?)) and hence the magnetic
damping. The figure shows also how the effect of ¢ on u depends on the param-
eter m. For small and moderate values of a, increasing a decreases u, however,
for higher values of m, increasing a increases u. It is observed also from the
figure that the time at which u reaches its steady state value increases with in-

creasing m while it is not greatly affected by changing a.

Figure 3 presents the variation of the velocity component w at the centre of
the channel (y = 0) with time for various values of m and a and for » = 0,
S = 0and Ha = 3. The figure shows that w increases with increasing m for
all values of a. This is because w, which is the z-component of the velocity is a

result of the Hall effect.
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Figure 2 — The evolution of # at y = 0 for various values of ¢ and m: (a) m = 0;
b)ym=1land(c)m =5. (Ha=3,b=0).

Although the Hall effect is the source for w, a careful study of Figure 3 shows
that, at small times, an increase in m produces a decrease in w. This can be
understood by studying the term (—(w — mu)/(1 + m?)) in Eq. (10), which
is the source term of w. At small times w is very small and this term may be
approximated to (mu/(1 4+ m?)), which decreases with increasing m if m > 1.
Figure 3 shows also that for small values of m the effect of @ on w depends on
t. For small ¢, increasing a increases w, but with time progress, increasing a
decreases w.

Figure 4 presents the evolution of the temperature T at the centre of the channel
for various values of m and @ when b = 0 and Ha = 3. The effect of m on T
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Figure 3 — The evolution of w at y = 0 for various values of @ and m: (a) m = 1 and
b)ym=5.(Ha=3,b=0).

depends on z. When m > 1, increasing m decreases T slightly at small times but
increases 7' at large times. This is because when ¢ is small, # and w are small
and an increase in m results in an increase in # but a decrease in w, so the Joule
dissipation which is proportional also to (1/(1 4+ m?)) decreases. When ¢ is
large, u and w increase with increasing m and so do the Joule and viscous
dissipations. Increasing a increases 7' due to its effect on decreasing the velocities
and the velocity gradients and the function f;.

Figure 5 presents the evolution of T at the centre of the channel for various
values of m and b whena = 0, S = 0 and Ha = 3. The figure indicates that
increasing b increases 7' and the time at which it reaches its steady state for all
m. This occurs because the centre of the channel acquires heat by conduction
from the hot plate. The parameter b has no significant effect on u or w in spite
of the coupling between the momentum and energy equations.

Table 1 shows the dependence of the steady state temperature at the centre of
the channel on @ and m for » = 0 and S = 0. It is observed that 7 decreases
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Figure 4 — The evolution of 7 at y = 0 for various values of @ and m: (a) m = 0;
(bym=1land(c)m =5. (Ha =3,b=0).

with increasing m as a result of decreasing the dissipations. On the other hand,
increasing a decreases T as a consequence of decreasing the dissipations. Table 2
shows the dependence of T at the centre of the channel on m and b for a = 0,
S = 0and Ha = 1. The dependence of T on m is explained by the same
argument used for Table 1. Table 2 shows that increasing b increases 7 since
the centre gains temperature by conduction from hot plate. Table 3 shows the
dependence of 7 on a and b for Ha = 1 and m = 3. Increasing a decreases T’
and increasing b decreases 7.

Figures 6, 7, and 8 present the time development of the velocity components u
and w and the temperature 7', respectively, at the centre of the channel (y = 0) for
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Figure 5 — The evolution of 7" at y = 0 for various values of b and m: (a) m = 0;
b)ym=1and(c)m =5. (Ha =3,a =0).

T m=00|m=05|m=10 | m=3.0|m=5.0
a=-0.5| 05541 0.5511 0.5452 0.5338 0.5314
a=-0.1| 0.5459 0.5439 0.5398 0.5310 0.5291

a=0.0 0.5435 0.5417 0.5382 0.5300 0.5281
a=0.1 0.5412 0.5396 0.5365 0.5289 0.5272
a=0.5 0.5325 0.5318 0.5301 0.5253 0.5240

Table 1 — Variation of the steady state temperature 7 at y = 0 for various values of
manda (Ha =1,b = 0).

Comp. Appl. Math., Vol. 28, N. 2, 2009



HAZEM ALI ATTIA 207

T m=00|m=05|m=10 | m=3.0|m=5.0
a=-0.5| 05541 0.5511 0.5452 0.5338 0.5314
a=-—0.1| 0.5459 0.5439 0.5398 0.5310 0.5291

a=0.0 0.5435 0.5417 0.5382 0.5300 0.5281
a=0.1 0.5412 0.5396 0.5365 0.5289 0.5272
a=0.5 0.5325 0.5318 0.5301 0.5253 0.5240

Table 2 — Variation of the steady state temperature 7 at y = 0 for various values of
mand b (Ha =1,a = 0).

T m=00|m=05|m=10|m=3.0|m=5.0
b=-0.5| 0.4805 0.4781 0.4732 0.4621 0.4596
b=-0.11 0.5329 0.5311 0.5273 0.5187 0.5167

b=0.0 0.5435 0.5417 0.5382 0.5300 0.5281
b=0.1 0.5528 0.5512 0.5478 0.5401 0.5383
b=0.5 0.5795 0.5781 0.5382 0.5690 0.5677

Table 3 — Variation of the steady state temperature 7 at y = 0 for various values of
aandb (Ha =1,m = 3).

various values of the suction parameter S and the viscosity variation parameter
a when Ha = 3, m = 3, and b = 0. Figures 6 and 7 indicate that increasing S
decreases both u and w for all a due to the convection of the fluid from regions
in the lower half to the centre which has higher fluid speed. It is also clear that
the influence of the parameter @ on u and w becomes more pronounced for lower
values of the parameter S. Figure 8 shows that increasing the suction parameter
decreases the temperature 7 for all a as a result of the influence of convection
in pumping the fluid from the cold lower half towards the centre of the channel.

Figure 9 presents the time development of the temperature 7' at the centre
of the channel (y = 0) for various values of the suction parameter S and the
thermal conductivity variation parameter b when Ha = 3, m = 3, and a = 0.
The figure shows that increasing S decreases 7 for all . Figure 9a indicates
that, for S = 0, the variation of T’ with the parameter  depends on time as shown
before in Figure 5Sc for higher values of the Hall parameter m. Figures 9b and 9¢
present an interesting effect for the suction parameter in the suppression of the
crossover points occurred in the 7' — ¢ graph due to changing of the parameter b.
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Figure 6 — The evolution of u at y = 0 for various values of ¢ and S: (a) S = 0;
b)S=1;()S=2.(Ha=3,m=3,b=0).

Note that the influence of increasing the parameter b on 7' is more apparent for

higher values of suction velocity.

4 Conclusions

The transient MHD Couette flow between two parallel plates is studied with the
inclusion of the Hall effect. The viscosity and thermal conductivity of the fluid
are assumed to vary with temperature. The effects of the Hartmann number Ha,
the Hall parameter m, the viscosity parameter ¢ and the thermal conductivity
parameter b on the velocity and temperature fields at the centre of the channel
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Figure 7 — The evolution of w at y = 0 for various values of @ and S: (a) S = 0;
®b®)S=1;()S=2.(Ha=3,m=3,b=0).

are discussed. Introducing the Hall term gives rise to a velocity component
w in the z-direction and affects the main velocity « in the x-direction. It was
found that the parameter a has a marked effect on the velocity components u
and w for all values of m. On the other hand, the parameter b has no significant
effect on u or w.
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