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Abstract. In this research, the Differential Transformation Method (DTM) has been utilized

to solve the hyperbolic Telegraph equation. This method can be used to obtain the exact solutions

of this equation. In the end, some numerical tests are presented to demonstrate the effectiveness

and efficiency of the proposed method.
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1 Introduction

In this paper we focus on the following one-space-dimensional Telegraph

equation:
∂2u

∂t2
+ α

∂u

∂t
+ βu =

∂2u

∂x2
+ ψ(x, t) , (1)

where α, β ∈ R, ψ : R × R → R are known and u : R × R → R is the

unknown function. This equation with initial and boundary conditions is con-

sidered by some authors. Numerical solution of Telegraph equation with variable

coefficient, was discussed in [16]. Mohanty and his coworkers [17, 18], also de-

veloped new three-level alternative direction implicit schemes for the two and

three-space-dimensional linear hyperbolic equations that these are uncondition-

ally stable. Saadatmandi and Dehghan [15], applied a shifted Chebyshev Tau
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method. Gao and Chi [22] solved Eq. (1) by a semi-discretization method. They

transformed Eq. (1) into a system consisting of ordinary differential equations

with respect to time t and then found an exact solution containing an infinite

matrix series. Authors of [22], presented two unconditionally stable numerical

schemes based on C3 quartic splines with accuracy orders of O(k5 + h4) and

O(k7 + h4).

The concept of DTM was first proposed by Zhou [1], who solved linear and

nonlinear problems in electrical circuit problems. Chen and Ho [2] developed

this method for partial differential equations. Ayaz [3] applied it to the system of

differential equations. During recent years, this method has been used for solv-

ing various types of equations by many authors. For example, this method has

been used for differential algebraic equations [8], partial differential equations

[5, 6, 7], fractional differential equations [10, 11], Volterra integral equations

[24] and Difference equations [9]. Shahmorad et al. [19, 20] developed DTM

to fractional-order integro-differential equations with nonlocal boundary condi-

tions and a class of two-dimensional Volterra integral equations. Borhanifar and

Abazari applied this method for Burgers and Schrödinger equations [4, 21, 23].

In [14], this method has been utilized for the Kuramoto-Sivashinsky equation

with an initial condition. There exist similar problem. For example, authors

of [12, 13, 14] presented several matrix formulation method for solving some

equation with a boundary integral condition.

The aim of this paper is to extend the differential transformation method to

solve the hyperbolic Telegraph equation. The method can be used to evaluate the

approximating solution by the finite Taylor series and by an iteration procedure

described by the transformed equations obtained from the original equation using

the operations of differential transformation.

2 The definitions and operations of DT

2.1 The one-dimensional differential transform

The basic definitions and operations of one-dimensional DTM are introduced

in [1, 2, 3] as follows:
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Definition 2.1. If u(t) is analytic in the time domain T then

dku(t)

dtk
= ϕ(t, k), ∀t ∈ T . (2)

For t = ti , ϕ(t, k) = ϕ(ti , k), where k belong to the non-negative integer,

denoted as the K domain. Therefore, Eq. (2) can be rewritten as

Ui (k) = ϕ(ti , k) =
[

dku(t)

dtk

]

t=ti

, ∀t ∈ T, (3)

where Ui (k) is called the spectrum of u(t) at t = ti in the K domain.

Definition 2.2. If u(t) is analytic, then it can be shown as

u(t) =
∞∑

k=0

(t − ti )k

k!
U (k) . (4)

Equation (4) is known as the inverse transformation of U (k). If U (k) is

defined as

U (k) = M(k)
[

dkq(t)u(t)

dtk

]

t=ti

, k = 0, 1, 2, . . . , (5)

then the function u(t) can be described as

u(t) =
1

q(t)

∞∑

k=0

(t − ti )k

k!

U (k)

M(k)
, (6)

where M(k) 6= 0, q(t) 6= 0. M(k) is called the weighting factor and q(t) is

regarded as a kernel corresponding to u(t). If M(k) = 1 and q(t) = 1 then

Eqs. (4) and (6) are equivalent. In this paper, the transformation with M(k) =

1/k! and q(t) = 1 is applied. Thus from Eq. (7), we have

U (k) =
1

k!

[
dku(t)

dtk

]

t=ti

, k = 0, 1, 2, . . . . (7)

Using the differential transform, a differential equation in the domain of interest

can be transformed to be an algebraic equation in the K domain and u(t) can be
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obtained by finite-term Taylor series plus a remainder, as

u(t) =
1

q(t)

n∑

k=0

(t − ti )k

k!

U (k)

M(k)
+ Rn+1(t)

=
n∑

k=0

(t − t0)
kU (k)+ Rn+1(t).

(8)

In order to speed up the convergence rate and improve the accuracy of calcula-

tion, the entire domain of t needs to be split into sub-domains [9, 10].

2.2 The two-dimensional differential transform

Consider a function of two variables w(x, t) : R × R → R, and suppose

that it can be represented as a product of two single-variable functions, i.e.,

w(x, t) = u(x)v(t). Based on the properties of one-dimensional differential

transform, function w(x, t) can be represented as

w(x, t) =
∞∑

i=0

∞∑

j=0

W (i, j)xi t j , (9)

where W (i, j) is called the spectrum of w(x, t). Now we introduce the basic

definitions and operations of two-dimensional DT as follows [10].

Definition 2.3. If w(x, t) is analytic and continuously differentiable with re-

spect to time t in the domain of interest, then

W (h, k) =
1

k!h!

[ ∂k+h

∂xk∂t h
w(x, t)

]

x=x0, t=t0
, (10)

where the spectrum function W (k, h) is the transformed function, which is also

called the T -function. Let w(x, t) as the original function while the uppercase

W (k, h) stands for the transformed function. Now we define the differential

inverse transform of W (k, h) as following:

w(x, t) =
∞∑

k=0

∞∑

h=0

W (k, h)(x − x0)
k(t − t0)

h. (11)
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Using Eq. (10) in (11), we have

w(x, t) =
∞∑

k=0

∞∑

h=0

1

k!h!

[ ∂k+h

∂xk∂t h
w(x, t)

]

x=x0, t=t0
xkth

=
∞∑

k=0

∞∑

h=0

W (k, h)xkth .

(12)

where x0 = 0 and t0 = 0.

Now from the above definitions and Eqs. (11) and (12), we can obtain some

of the fundamental mathematical operations performed by two-dimensional

differential transform in Table 1.

Original function Transformed function

w(x, t) = u(x, t)± v(x, t) W (k, h) = U (k, h)± V (k, h)

w(x, t) = cu(x, t) W (k, h) = cU (k, h)

w(x, t) =
∂

∂x
u(x, t) W (k, h) = (k + 1)U (k + 1, h)

w(x, t) =
∂r+s

∂xr∂t s u(x, t) W (k, h) =
(k + r)!(h + s)!

k!h!
U (k + r, h + s)

w(x, t) = u(x, t)v(x, t) W (k, h) =
k∑

r=0

h∑

s=0
U (r, h − s)V (k − r, s)

w(x, t) =
∂

∂x
u(x, t)

∂

∂t
v(x, t) W (h, k) =

k∑

r=0

h∑

s=0
(k − r + 1)(h − s + 1)

×U (k − r + 1, s)V (r, h − s + 1)

Table 1 – Operations of the two-dimensional differential transform.

3 Application of the DTM

In this section, we apply the DTM to solve the presented Telegraph equation.

Consider the equation (1),

∂2u

∂t2
+ α

∂u

∂t
+ βu =

∂2u

∂x2
+ ψ(x, t), (13)

with the initial conditions

u(x, 0) = f (x), 0 ≤ x ≤ L , (14)
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and
∂u(x, 0)

∂t
= g(x), 0 ≤ x ≤ L , (15)

and boundary conditions

u(0, t) = r(t), 0 ≤ t ≤ T, (16)

and

u(1, t) = s(t), 0 ≤ t ≤ T . (17)

Let U (k, h) as the differential transform of u(x, t). Applying Table 1, Eq. (2)

and Definition 2.3 when x0 = t0 = 0, we get the differential transform version

of Eq. (13) as following:

(h + 1)(h + 2)U (k, h + 2)+ α(h + 1)U (k, h + 1)+ βU (k, h)

= (k + 1)(k + 2)U (k + 2, h)+ ψ(k, h).
(18)

By the first initial condition we get

∞∑

k=0

U (k, 0)xk =
∞∑

k=0

f k(0)

k!
xk, (19)

which implies

U (k, 0) =
f k(0)

k!
, k = 0, 1, 2, . . . , N , (20)

and from the second initial condition and Table 1, we have

∞∑

k=0

U (k, 1)xk =
∞∑

k=0

gk(0)

k!
xk, (21)

which implies

U (k, 1) =
gk(0)

k!
, k = 0, 1, 2, . . . , N . (22)

Similarly, from the boundary conditions, we have

U (0, h) =
rh(0)

h!
, h = 2, 3, . . . , N , (23)

N∑

k=0

U (h, k) =
sh(0)

h!
, h = 2, 3, . . . , N . (24)
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Therefore, the values of U (k, 0), U (k, 1), and for U (0, h) can be obtained from

Eqs. (20), (22) and (23). By using Eqs. (18) and (24), the remainder values of

U can be found as follows:

U (k, h + 2) =
1

(h + 1)(h + 2)

(
− βU (k, h)+ (k + 1)(k + 2)U (k + 2, h)

− α(h + 1)U (k, h + 1)+ ψ(k, h)
)
, k = 0, 1, . . . , N − 2,

h = 0, 1, . . . , N − 2.

(25)

Example 3.1. Consider the Eqs. (13)-(15) with the

f (x) = x, g(x) = −x

r(t) = 0, s(t) = exp(−t)

ψ(x, t) = x . exp(−t)

α = 2, β = 2.

Applying Eqs. (20), (22) and (23) in initial and boundary conditions of this

problem, we get

U (k, 0) =

{
1, for k = 1,

0, otherwise,
and U (k, 1) =

{
−1, for k = 1,

0, otherwise,

and

U (0, h) = 0, h = 2, 3, . . . , N .

From Eqs. (24) and (25), we have

U (0, 2) =
1

1 × 2

(
− 2U (0, 0)+ (1)(2)U (2, 0)− 2(0 + 1)U (0, 1)+ ϕ(0, 0)

)
= 0,

U (1, 2) =
1

1 × 2

(
− 2U (1, 0)+ (2)(3)U (3, 0)− 2(0 + 1)U (1, 1)+ ϕ(1, 0)

)
=

1

2!
,

U (2, 2) = U (3, 2) = ∙ ∙ ∙ = 0,

U (0, 3) =
1

2 × 3

(
− 2U (0, 1)+ (1)(2)U (2, 1)− 2(1 + 1)U (0, 2)+ ϕ(0, 1)

)
= 0,

U (1, 3) =
1

2 × 3

(
− 2U (1, 1)+ (2)(3)U (3, 1)− 2(1 + 1)U (1, 2)+ ϕ(1, 1)

)
= −

1

3!
,

U (2, 3) = U (4, 3) = ∙ ∙ ∙ = 0,
...
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By continuing this process, we obtain

k \ h 0 1 2 3 4 . . .

0 0 0 0 0 0 . . .

1 1 −1
1

2!
−

1

3!

1

4!
. . .

2 0 0 0 0 0 . . .

3 0 0 0 0 0 . . .

4 0 0 0 0 0 . . .

5 0 0 0 0 0 . . .

...
...

...
...

...
...

. . .

Table 2 – Different obtained values of U (k, h).

which implies that

u(x, t) ' x
(

1 − t +
1

2!
t2 −

1

3!
t3 + ∙ ∙ ∙

)

which is the Taylor expansion of the

u(x, t) = x × exp(−t) 0 ≤ x ≤ L ,

which is the exact solution of the Example 3.1. The computational results of

Example 3.1 are presented in Table 3, and the plot of corresponding exact and

approximate functions are shown in Figs. 1 and 2.

(x, t) n = 10 n = 20
(0, 0) 0 0

(0.1, 0.6) 8.654 × 10−12 6.939 × 10−18

(0.2, 0.9) 1.462 × 10−9 1.387 × 10−18

(0.3, 0.2) 1.665 × 10−16 0
(0.4, 0.9) 2.924 × 10−9 2.776 × 10−17

(0.5, 0.3) 2.159 × 10−14 5.551 × 10−17

(0.6, 0.4) 6.100 × 10−13 1.110 × 10−16

(0.7, 0.4) 7.116 × 10−13 1.110 × 10−16

(0.8, 0.6) 6.924 × 10−11 5.551 × 10−17

(0.9, 0.7) 4.212 × 10−10 0
(1.0, 1.0) 2.311 × 10−8 1.110 × 10−16

Table 3 – Numerical results of Example 3.1.
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Figure 1 – Plot of exact function from Example 3.1.
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Figure 2 – Plot of approximate function from Example 3.1 for n = 20.
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Example 3.2. ([11]) Consider the Eqs. (13)-(15) with the

f (x) = sin(x), g(x) = − sin(x)

r(t) = 0, s(t) = sin(1) exp(−t)

ψ(x, t) = 0

α = 1, β = −1.

From the above initial and boundary conditions and Eqs. (20), (22) and (23),

we obtain the corresponding spectra as follows:

U (k, 0) =






0, for k is even,

(−1)
(k−1)

2

k!
, for k is odd,

and

U (k, 1) =






0, for k is even,

(−1)
(k+1)

2

k!
, for k is odd,

and

U (0, h) =
rh(0)

h!
, h = 2, 3, . . . , N .

From Eqs. (24) and (25), we have

U (0, 2) =
1

1 × 2

(
U (0, 0)+ (1)(2)U (2, 0)− 1(0 + 1)U (0, 1)

)
= 0,

U (1, 2) =
1

1 × 2

(
U (1, 0)+ (1)(2)U (3, 0)− 1(0 + 1)U (1, 1)

)
=

1

2!
,

U (2, 2) =
1

1 × 2

(
U (2, 0)+ (1)(2)U (4, 0)− 1(0 + 1)U (2, 1)

)
= 0,

U (3, 2) =
1

1 × 2

(
U (3, 0)+ (1)(2)U (5, 0)− 1(0 + 1)U (3, 1)

)
= −

1

2!3!
,

U (4, 2) =
1

1 × 2

(
U (4, 0)+ (1)(2)U (6, 0)− 1(0 + 1)U (4, 1)

)
= 0,

U (5, 2) =
1

1 × 2

(
U (5, 0)+ (1)(2)U (7, 0)− 1(0 + 1)U (5, 1)

)
=

1

2!5!
,

...
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U (0, 3) =
1

2 × 3

(
− 2U (0, 1)+ (1)(2)U (2, 1)− 2(2)(1)U (0, 2)

)
= 0,

U (1, 3) =
1

2 × 3

(
− 2U (1, 1)+ (1)(2)U (3, 1)− 2(2)(1)U (1, 2)

)
= −

1

3!
,

...

Thus we get

k \ h 0 1 2 3 4 . . .

0 0 0 0 0 0 . . .

1 1 −1
1

2!
−

1

3!

1

4!
. . .

2 0 0 0 0 0 . . .

3 −
1

3!

1

3!
−

1

2!3!

1

3!3!
−

1

4!3!
. . .

4 0 0 0 0 0 . . .

5
1

5!
−

1

5!

1

2!5!
−

1

3!5!

1

4!5!
. . .

...
...

...
...

...
...

. . .

Table 4 – Different obtained values of U (k, h).

which implies that

u(x, t) ' x
(

1 − t +
1

2!
t2 −

1

3!
t3 + ∙ ∙ ∙

)

+ x3

(
−

1

2!
+

1

2!
t −

1

2!3!
t2 +

1

2!5!
t3 + ∙ ∙ ∙

)
+ ∙ ∙ ∙ ,

which is the Taylor expansion of the

u(x, t) = exp(−t) sin(x),

which is the exact solution of the Example 3.2. The computational results of

Example 4.2 are presented in Table 5, and the plot of corresponding exact and

approximate functions are shown in Figs. 3 and 4.

4 Conclusions

In this paper, we solved the Telegraph equation with initial conditions by the

Differential Transformation method. By using this method, Numerical/analyt-

ical results obtained by a simple iterative process. The numerical results prove
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(x, t) n = 10 n = 20

(0, 0) 0 0

(0.1, 0.6) 3.553 × 10−12 1.388 × 10−17

(0.2, 0.9) 1.463 × 10−8 0

(0.3, 0.2) 1.924 × 10−12 0

(0.4, 0.9) 8.512 × 10−8 0

(0.5, 0.3) 1.659 × 10−10 0

(0.6, 0.4) 9.808 × 10−10 1.110 × 10−16

(0.7, 0.4) 2.286 × 10−9 1.110 × 10−16

(0.8, 0.6) 3.088 × 10−9 5.551 × 10−17

(0.9, 0.7) 2.126 × 10−8 0

(1.0, 1.0) 1.945 × 10−8 5.551 × 10−17

Table 5 – Numerical results of Example 3.2.
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Figure 3 – Plot of exact function from Example 3.2.

that this method is a powerful techniques for this case of problems. Con-

sequently, it is seen that this method can be an alternative way for the solution

of partial differential equations that have no analytic solutions.
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Figure 4 – Plot of approximate function from Example 3.2 for n = 20.
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