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Abstract. In this paper we suggest a fast numerical approach to treat problems of the hered-

itary linear viscoelasticity, which results in the system of elliptic partial differential equations in

space variables, who’s coefficients are Volterra integral operators of the second kind in time. We

propose to approximate the relaxation kernels by the product of purely time- and space-dependent

terms, which is achieved by their piecewise-polynomial space-interpolation. A priori error esti-

mate was obtained and it was shown, that such approximation does not decrease the convergence

order, when an interpolation polynomial is chosen of the same order as the shape functions for

the spatial finite element approximation, while the computational effort is significantly reduced.
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1 Introduction

Our task is to develop an approach for the numerical treatment of mathematical

problems, which arise from considering the behavior of hereditary viscoelastic

solids. These result in a system of elliptic partial differential equations in space

variables, whose coefficients are Volterra integral operators of the second kind

in time, which allow for weak-singular kernels, i.e.,

∂

∂x

(
a0(x, t)

∂u(x, t)

∂x

)
+

∫ t

0

∂

∂x

(
a(x, t, τ )

∂u(x, τ )

∂x

)
dτ = f (x, t). (1.1)
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In Sections 2 and 3 a general mathematical model of the boundary value prob-

lem of the inhomogeneous hereditary ageing viscoelasticity is given in classical

and weak formulations. The solvability of such a Volterra integral equation in

Sobolev spaces and the stability of the solution with respect to the right-hand

side is recalled here in Theorem 3.2 and proven in [3], [6], [5]. It will be used

for the proof of Lemmas 6.1, 6.2, therefore is recalled here.

Our basic idea for the numerical solution of such a problem, was to treat

the space and time dependence of the solution separately, with Finite Elements

technique in x and with spline collocation in t, τ . Similar idea is presented

in [13] with only difference that we allow for the non-convolutional and weakly

singular relaxation kernels, i.e., our kernels must be only integrable and continu-

ous after the integration and not necessary essentially bounded in the integrating

time-variable as in [13].

The separate numerical space-time treatment of the problem can be performed

trivially, if the time and space dependence in the instantaneous elastic coeffi-

cients a0(x, t), relaxation kernels a(x, t, τ ) and the external forces f (x, t) can

be separated in a straightforward manner.

In Section 5 we suggest to approximate the integral kernels, out-of-integral

terms and right-hand side in space by polynomial interpolation, possibly with

the same shape functions that we use in the FE approximation of the solution,

thus representing them by a product of purely time- and space-dependent terms.

The idea of the kernel approximation by interpolation allows us to reduce the

calculation time. It is widely used in spatial boundary integral equations of the

kind

λu(x)+
∫

0

k(x, y)u(y)dy = f (x), ∀x ∈ 0 ⊂ Rn,

see, e.g., works of Hackbusch [21], [20].

Our next innovation is employing suitable quadrature formulas for the weakly

singular kernel approximation in the well-known [7] collocation method for

Volterra integral equations. Like in [25], where finite dimensional integral equa-

tions with weakly singular kernels are treated, we suggested to approximate the

kernels by interpolation in singular points with the Lagrange canonical poly-

nomials. This allows to avoid the singularity and analytically pre-calculate the

weights in quadrature formulas.
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We also use the fine property of the Volterra integral here, that if split the full

integration interval on many subintervals and start the solution from the first

subinterval, we are able to solve the problem on each subinterval separately and

get a recurrent formula containing solution on all previous subintervals in the

right-hand side.

∂

∂x

(
a0(x, t)

∂un(x, t)

∂x

)
+

∫ t

tn1−1

∂

∂x

(
a(x, t, τ )

∂un(x, τ )

∂x

)
dτ

= f̂ (x, t, {ui }i=1,...,n1−1), f̂ (x, t, {ui }i=1,...,n1−1)

:= f (x, t)−
n1−1∑

i=1

∫ ti

ti−1

∂

∂x

(
a(x, t, τ )

∂ui (x, τ )

∂x

)
dτ.

(1.2)

In Section 6 the errors, introduced by the approximation of kernels, out-of-

integral coefficients and external loads as well as the total error due to the nu-

merical treatment are estimated. It is shown, that choosing an interpolation

polynomial of the same or even one order less compared to the shape functions

in the finite element approximation of the solution, we do not decrease the con-

vergence order. Therefore we suggest the analyst to use the kernel approximation

method, even though it requires more effort in preliminary work.

For the software realization of our numerical method we have chosen ANSYS

as the basic simulation tool due to its extensive modeling capabilities and con-

venient user interface. The operations, that are not standard for ANSYS, like,

for example, spline collocation in time or kernel approximation in space, were

coded in separate procedures and integrated into the ANSYS environment as

User Predefined Routines. A corresponding numerical example is considered in

Section 7.

2 Definition of the problem

We consider a linear viscoelastic and aging (of the non-convolutional integral

type) body, which is subject to some external loading. We denote the volume

occupied by the body by �, which is assumed to be a Lipschitz domain.

We are going to consider the equilibrium equations for such a solid. Note that

a viscoelastic solid is still a solid and therefore its deformation is slow and we
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restrict ourselves to the quasi-static case description, i.e., classical for the solid

mechanics statement of problem, without the inertial term. A summation from 1

to n over repeating indices is assumed in all the present work, unless the opposite

is stated.

∂

∂xh

((
ahk

i j 0
(x, t)+ ahk

i j (x)?
) ∂u j (x, t)

∂xk

)
= − fi 0(x, t), x ∈ �

i, j, h, k = 1, 2, . . . , n

(2.1)

with boundary conditions:

ui (x, t) = ψi (x, t), x ∈ ∂�u , (2.2)
((

ahk
i j 0
(x, t)+ ahk

i j (x)?
) ∂u j (x, t)

∂xk

)
nh(x) = φi (x, t), x ∈ ∂�σ , (2.3)

i = 1, 2, 3, ∀x ∈ � holding for any t ∈ [0, T ].

(ahk
i j (x) ? e j

k )(t) :=

t∫

0

ahk
i j (x, t, τ ) ∙ e j

k (x, τ )dτ (2.4)

are Volterra integral operators with kernels ahk
i j (x, t, τ ); ahk

i j 0
(x, t) are instanta-

neous elastic coefficients (out-of-integral terms) and

ahk
i j (x) := ahk

i j 0
(x, t)+ ahk

i j (x)? ;

fi 0 are components of a vector of external forces; φi (x, t) are components of a

vector of boundary traction on the part ∂�σ of the external boundary; ψi (x, t)

are components of the displacement vector on the rest part ∂�u of the boundary,

nh are components of the outer unit normal vector to the boundary of �. All

functions are supposed to be continuous w.r.t. t ∈ [0, T ] and sufficiently smooth

w.r.t. x in domain � (for performing a partial integration).

The whole viscoelastic operator tensor
(
ahk

i j (x)
)n×n

n×n is assumed to be sym-

metric at each point x ∈ �:

ahk
i j (x) = akh

ji (x) = aik
h j (x) = ahj

ik (x). (2.5)

The tensor
(
ahk

i j 0
(x, t)

)n×n
n×n is additionally positive-definite, with elements

bounded at each point x ∈ �

c0η
j
kη

j
k ≤ ahk

i j 0
(x, t)ηi

hη
j
k ≤ C0η

j
kη

j
k , (2.6)
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for all η j
k = ηk

j ∈ R and t ∈ [0, T ], where the constants 0 < c0 ≤ C0 < ∞ are

independent of x and t .

For isotropic materials we get:

ahk
i j = λδhiδk j + μδi jδhk + μδikδhj . (2.7)

Example 2.1.

(i) Often, the kernels ahk
i j (x, t, τ ) are of the convolution type and are taken in

the exponential form:

ahk
i j (x, t, τ ) =






∑m
p=1 α

hk
i j p
(x)e−βp(x)(t−τ), if t ≥ τ

0 if t < τ ;
(2.8)

where the βp(x) and the αhk
i j p
(x) are piecewise continuous functions for

x ∈ �, often βp are just constants;

(ii) The ahk
i j (x, t, τ ) may also be kernels of the Abel type (e.g., relaxation

kernels of concrete, rocks [1], polymers [2]):

ahk
i j (x, t, τ ) =






Ahk
i j 1
(x, t, τ )(t − τ)−α

+Ahk
i j 2
(x, t, τ )(τ )−β

+Ahk
i j 3
(x, t, τ )t−γ , if t ≥ τ

0 otherwise;

(2.9)

with 0 ≤ α, β, γ < 1. The Ahk
i j p

, p = 1, 2, 3, are continuous in t and τ ,

and piece-wise continuous in x ∈ �.

3 Weak problem formulation and results on solvability and

stability estimate

In this section we derive a weak problem formulation from the classical one,

given by (2.1)-(2.3) in the previous section, by partial integration, and then

assume general functional classes for its coefficients and right-hand sides.

In order to obtain the variational formulation, we multiply equation (2.1) by

test functions vi (x) ∈ H 1
0 (�, ∂�u), i = 1, . . . , n, where H 1

0 (�, ∂�u) := {v ∈
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H 1(�) : v(x) = 0, x ∈ ∂�u}, and integrate over the whole domain �. Integrat-

ing by parts and taking into account boundary condition (2.2), we obtain:
∫

�

−ahk
i j

∂u j

∂xk

∂vi

∂xh
dx +

∫

∂�σ

(
ahk

i j

∂u j

∂xk

)
vi nhds = −

∫

�

fi0vi dx . (3.1)

If for equation (3.1) we take into consideration the boundary condition, we will

obtain the following weak problem:

Find u j ∈ H 1(�), j = 1, . . . , n, satisfying (2.2) and equation:
∫

�

ahk
i j

∂u j

∂xk

∂vi

∂xh
dx = l(v),

l(v) :=
∫

�

fi0vi dx +
∫

∂�σ

φivi ds

(3.2)

∀vi ∈ H 1
0 (�, ∂�u), i = 1, . . . , n.

Definition 3.1 (General weak formulation). Consider the matrix of instanta-

neous elastic coefficients
(
ahk

i j 0

)
n×n ∈ C([0, T ]; L∞(�)), the relaxation opera-

tors
(
ahk

i j ?
)

n×n, such that

ahk
i j (t, τ ) = 0 ∀τ > t, and

ahk
i j ∈ C

(
[0, T ]; L1([0, T ], L∞(�))

)
, and

f0 := ( fi0)n ∈ C([0, T ]; H−1(�)),

the boundary tractions φ := (φi )n ∈ C([0, T ]; H−1/2(∂�σ )) and boundary

displacements ψ := (ψi )n ∈ C([0, T ]; H1/2(∂�u)).

We define a weak solution of problem (2.1)-(2.3) as a vector-valued function

u ∈ C([0, T ]; H1(�)), which can be represented in the form u = û + ψ̃ , where

ψ̃ ∈ C([0, T ]; H1(�)) satisfies (ψ̃ |∂�u ) = ψ and ûi ∈ C([0, T ]; H 1
0 (�, ∂�u)),

i = 1, . . . , n, satisfies the integral identity

[
a(û, v)

]
(t) :=

∫

�

[
ahk

i j

∂ û j

∂xk

]
(t)
∂vi

∂xh
dx = l̂(v)(t) ∀t ∈ [0, T ], (3.3)

for any vi ∈ H 1
0 (�, ∂�u). The right hand-side of (3.3) is, for all t ∈ [0, T ], a

linear functional on the H1
0(�, ∂�u)

l̂(v)(t) :=
∫

�

(

fi0(t)vi −

[

ahk
i j

∂ψ̃ j

∂xk

]

(t)
∂vi

∂xh

)

dx +
∫

∂�σ

φi (t)vi ds. (3.4)
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The space of linear bounded functionals on H1
0(�, ∂�u) is denoted by H−1(�).

We denote further

a0(û, v)(t) :=
∫

�

ahk
i j 0
(x, t)

∂ û j (x, t)

∂xk

∂vi (x)

∂xh
dx and

a(û, v)(t, τ ) :=
∫

�

ahk
i j (x, t, τ )

∂ û j (x, τ )

∂xk

∂vi (x)

∂xh
dx .

(3.5)

Obviously,

[
a(û, v)

]
(t) = a0(û, v)(t)+

∫ t

0
a(û, v)(t, τ )dτ.

Note that a0(û, v) and a(û, v) are bilinear forms on H1
0(�, ∂�u) for every t and

almost every τ . We can rewrite the weak formulation (3.3) as follows

a0(û, v)(t)+
∫ t

0
a(û, v)(t, τ )dτ = l̂(v)(t), t ∈ [0, T ] (3.6)

Now let us rewrite equation (3.6) in the operator form. For this purpose we

introduce the following notations:

A0x û := a0(û, ∙), Ax û := a(û, ∙), F(t) := l̂(v)(t). (3.7)

A0x(t), Ax(t, τ ) : H1
0(�, ∂�u) → H−1(�) for all fixed t and almost all τ ∈

[0, T ]. Now we can represent equation (3.3) in the form

Aû = F(t),

where A∙ is an infinite dimensional integro-differential operator of the following

form:

A = A0x ∙ +Ax?

and the weak problem formulation (3.3) takes the form:

A0x(t)û(t)+
[
Ax ? û

]
(t) = F(t). (3.8)

Equation (3.8) provides the most general form of the time-space integro-differen-

tial dependencies of the considered problem. The following theorem is used as

an auxiliary result for showing the solvability of such equations.

Comp. Appl. Math., Vol. 27, N. 2, 2008
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Theorem 3.2 (Data stability). Let� ⊂ Rn be a Lipschitz domain and ∂�u ⊆

∂�, let A0x ∈ C([0, T ];L(H1
0(�, ∂�u), H−1)), and let A0x(t) be boundedly-

invertible uniformly in [0, T ], Ax(t, τ ) = 0 ∀τ > t , Ax ∈ C
(
[0, T ]; L1

(
[0, T ],

L(H1
0(�, ∂�u), H−1)

))
, and F ∈ C([0, T ]; H−1). Then there exists a unique

global solution u of the problem

A0x(t)u(t)+ [Ax ? u] (t) = F(t) (3.9)

in C([0, T ]; H1
0(�, ∂�u)), which depends continuously on F, that is

‖u‖C([0,T ];H1(�)) ≤ C1‖F‖C([0,T ];H−1) (3.10)

where the constant C1 is independent of F, and if ‖A−1
0x (t)‖L(H−1,H1) ≤ 1

c0
, then

C1 ≤ C̃
(

1

c0
max
i, j,h,k

‖ahk
i j (t, τ )‖C([0,T ],L1([0,T ],L∞(�)))

)
(3.11)

where C̃ is some real-valued function, independent of f .

The proof of this theorem can be found in [3], [6].

Lemma 3.3. Let� be a Lipschitz domain inRn, the instantaneous elastic (out-

of-integral) coefficients ahk
i j 0

∈ C([0, T ]; L∞(�)) satisfy the symmetry (2.5)

and positivity condition (the first of (2.6)) with a constant c0, and the relaxation

kernels ahk
i j ∈ C([0, T ], L1([0, T ], L∞(�))) also satisfy the symmetry condition

(2.5). Then

(i) A0x belongs to C([0, T ];L(H1
0(�, ∂�u), H−1)), and A0x(t) has an inverse

operator A−1
0x (t) ∀t ∈ [0, T ]. This inverse operator is uniformly bounded

in [0, T ], that is, the following estimate

‖A−1
0x (t)‖L(H−1,H1) ≤

1

c0
, (3.12)

holds for any t ∈ [0, T ], and c0 is independent from t.

(ii) Ax(t, τ ) satisfies the following estimate

‖Ax(t, τ )‖L(H1(�),H−1) ≤ max
i, j,h,k

‖ahk
i j (t, τ )‖L∞(�), (3.13)
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∀t and almost all τ ∈ [0, T ]. Furthermore, the condition

ahk
i j ∈ C([0, T ], L1([0, T ], L∞(�)))

implies that Ax ∈ C([0, T ], L1([0, T ],L(H1
0(�, ∂�u), H−1))).

See [3], [6] for proof.

Lemma 3.2. In both cases of Example 2.1,

ahk
i j ∈ C([0, T ], L1([0, T ], L∞(�))).

See [3], [6] for proof.

Remark 3.5. Consider the weak problem given by Definition 3.1. The func-

tional defined by (3.4) is a continuous functional, satisfying the following esti-

mate

‖l̂(t)‖C([0,T ],H−1) ≤ C
(
|| f0||C([0,T ],L2(�)) + ||φ||C([0,T ],H−1/2(∂�σ ))

+ ||ψ ||C([0,T ],H1/2(∂�u))

)
,

(3.14)

where C depends on �, ∂�σ , maxi, j,h,k ‖ahk
i j (t, τ )‖C([0,T ],L1([0,T ],L∞(�))).

See [3], [6], [10] for proof.

4 Preliminaries w.r.t. approximation and interpolation

We construct on domain �̄ a quasi-uniform triangular/tetrahedral space mesh

of Nel elements and denote each element j of � by � j . We denote h :=

max j (diam � j ). Then, we perform the semi-discrete (spatial) FE approximation

of the solution in space by:

uh(x, t) := Pr u =
nnodes∑

j=1

N j (x)U j (t),

t ∈ [0, T ], x ∈ �k, k = 1, . . . , Nel,

(4.1)

where N j (x) are shape functions, nnodes denotes the number of nodes in each

finite element and Pr is a projection on the space of polynomials of degree at

most r .
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The following standard (see, e.g. [17] or (32), Th. 5 in [13]) error estimate

‖u − uh‖L∞([0,T ],H1(�)) ≤ Ch‖u‖L∞([0,T ],H2(�)), u ∈ H 2(�), (4.2)

or

‖u − uh‖L∞([0,T ],L2(�)) ≤ Ch2‖u‖L∞([0,T ],H2(�)) (4.3)

is known for the solution u of problem (2.1)–(2.3), and its semi-discrete projec-

tion uh defined by (4.1), if the triangulation of � is quasi-uniform. It is known

from the standard theory of elliptic second order problems [12], that if � is

C1,1 convex domain inRn , ∂�u is non-empty and the coefficients are piece-wise

smooth in the space variable then the solution of the problem (2.1)–(2.3) is reg-

ular in H 2 and, according to [12], Chap. 8, Th. 8.12, using (3.14) (assuming φ,

ψ = 0),

‖u‖C([0,T ];H2(�)) ≤ C‖‖u‖L2(�) + ‖ f ‖L2(�)‖C([0,T ]). (4.4)

Furthermore, if � has a Cr+1-boundary, then the problem (2.1)–(2.3) is Hr+1-

regular, and,

‖u‖C([0,T ];Hr+1(�)) ≤ C‖‖u‖Hr−1(�) + ‖ f ‖Hr−1(�)‖C([0,T ]). (4.5)

Remark 4.1. Note only that this is difficult to reach for r higher value than 1,

since C3-regular boundary may arise some problems with a suitable triangulation

at the boundaries. Therefore the best choice for the FE-approximation are linear

shape functions.

Using (4.2) and the stability estimate (4.4), (3.10), (3.14), we estimate the error

of the spatial semi-discrete FE-discretization:

‖θr‖L∞([0,T ],H1(�)) := ‖u − Pr u‖L∞([0,T ],H1(�))

≤ Chr‖ f ‖C([0,T ],L2(�)), 0 ≤ r ≤ 1,
(4.6)

or

‖θr‖L∞([0,T ],H1(�)) ≤ Chr‖ f ‖C([0,T ],Hr−1(�)), r > 1, (4.7)

Then we can refer to Theorem 2 from [13] or Theorem 6 from [15] for discrete

data stability estimate

‖uh‖L∞([0,T );H1(�)) ≤ CS‖F‖L∞([0,T );H−1). (4.8)
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We should only replace in its proof the estimate of the history term by the

following estimate

i−1∑

m=1

∫ tm

tm−1

‖ahk
i j (t, τ )‖L∞(�)‖uh(τ )‖H1(�)dτ

≤ max
i, j,h,k

‖ahk
i j ‖C(([0,T ],L1([0,T ],L∞(�)))‖uh‖C([0,ti );H1(�))

(4.9)

Further, we divide the time interval [0, T ] by (n1 + 1) points 0 = t0 < t1 <

∙ ∙ ∙ < tn1 = T and denote q := maxi |ti − ti−1|. In the next step, we perform

fully discrete polynomial approximation of the n-dimensional vectors U j =

(U j 1, . . . ,U j n), j = 1, . . . , nnodes, in time:

πpU j (t) :=
n1∑

k=0

Poly p
k (t)U j,k, t ∈ [ti , ti+1] ⊂ [0, T ],

i = 0, . . . , n1 − 1,

(4.10)

where Poly p
k are polynomials of the power p ∈ [0,∞) on intervals [ti , ti+1] ⊂

[0, T ]. Thus, we obtain the complete space-time approximation πp Pr u of the

exact solution u(x, t).

According to Lemma 12 from [14],

‖ρp‖L∞([0,T ],B) := ‖Pr u − πp Pr u‖L∞([0,T ],B)

≤ Cπ ||uh||C p̂([0,T ],B)q
p̂ (4.8)

≤ C1|| f ||C p̂([0,T ],Bq p̂

where B = {H 1(�), L2(�)}, p̂ = p + 1 > 0 and q := maxi |ti − ti−1|,

i = 1, . . . , n1. The same result is presented in [8] (Theorem 1.1) and [21]

(Theorems 4.4.7 and 4.3.15) for spline collocation approximation (4.10) of finite

dimensional functions with collocation parameters {ck} chosen as equidistant

points in [0,1].

Remark 4.2. In general, for p > 1, the stability constant Cπ depends upon

the numerical solution and discretization ||πp||. But for piece-wise constant

or linear interpolation, Cπ is an independent constant (see Sec. 4.4 in [21] or

Lem. 12 in [14]).

We restrict ourselves on the case p ≤ 1 in this paper.
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Remark 4.3. Estimate (4.11) again requires a higher regularity (now w.r.t.

time) as it is assumed in Section 3. Nevertheless, looking through the proofs

(see [1]) of statements recalled in Section 3, one can see that all estimates could

be justified also for right-hand side functions, integral kernels (after integration)

and instantaneous elastic coefficient from C1([0, T ]).

In the next step we analyze the space-time dependencies in the out-of-integral

(instantaneous elastic) coefficients, the integral kernels and the right-hand side

of the problem (2.1)–(2.3). In our following considerations we will represent

the integral kernels in the form:

ahk
i j (x, t, τ ) =

(
α(x, t, τ )β(t, τ )

)hk

i j
, (4.11)

where αhk
i j (x, t, τ ) are the well-behaved parts of the kernel, normally piece-

wise-smooth and bounded, and βhk
i j (t, τ ) are singular parts.

If it is possible to separate the space and time dependence in the non-singular

part of the kernels, as well as in the out-of-integral coefficients and the right-hand

side functions, and use their global stiffness matrix (matrices) as the constant

coefficient matrix in constructing the system of finite dimensional integral equa-

tions later on.

If such separation is not applicable, we are forced to discretize the time interval

and carry out the series of FEM analyzes for large number of values of tm and τl .

The stiffness matrices, which we obtain, are used afterwards for approximating

the coefficient matrices of the resulting system of integral equations.

It is obvious, that for the second, more complicated case, the time interval

discretization points must be chosen very carefully in order to minimize the

number of spatial analyzes on the one hand (note that even a single run of the

FEM package on a non-trivial geometry can appear extremely time- and resource-

consuming), and on the other hand, to capture all the non-smoothness properties

of the kernel, like oscillations, jumps etc.

In the sections below we suggest an approach to the numerical treatment of

the equations with relaxation kernels αhk
i j (x, t, τ ), the instantaneous elastic co-

efficients (out-of-integral terms) ahk
i j 0
(x, t), components of vectors of external

forces fi 0 and boundary traction φi (x, t), with inseparable time and space de-

pendencies. Let us recall the following error estimate for multidimensional
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interpolation from [22].

Theorem 4.4. Let � ⊂ Rn, f ∈ Cr+1(�) and Sr f (∙) be its unique interpola-

tion by Lagrange polynomials of degree ≤ r taken on the triangular/tetrahedral

discretization (� j ) j=1,...,Nel of domain�. Let further N = N (r) = dim Sr be the

number of interpolation points in each � j , j = 1, . . . , Nel . Then the following

interpolation estimate
∥
∥
∥ f − Sr f

∥
∥
∥

C(�)
≤ C Mr+1hr+1 (4.12)

is valid, where C = C(r, n) and

Mr+1 = sup
x∈�

||Dr+1 f (x)|| < +∞,

where the notation Dr f =
{
∂α1

x1
. . . ∂αn

xn
f
}
, α1 + ∙ ∙ ∙ + αn = r is used.

Furthermore, if f ∈ Hr+1(�), and Sr ∈ L(Hr+1(�), H m(�))
∥
∥
∥ f − Sr f

∥
∥
∥

Hm (�)
≤ C ||Dr+1 f ||L2(�)h

r+1−m ∀ 0 ≤ m ≤ r + 1. (4.13)

These estimates can be generalized for the essentially bounded (like in [13],

[15]) or continuous on a closed interval, i.e., bounded (like in our case) in time

semi-discrete (spatial) approximations.

5 Spatial approximation via interpolation and subsequent

FE/collocation methods

By the space-time approximations (4.1) and (4.10) we reduce the infinite di-

mensional system of integral equations (1.1) in Hilbert spaces to the system of

linear algebraic equations and the viscoelastic problem with memory (1.2) to the

system of recurrent pure elastic problems in this section.

Suppose that ψ ≡ 0, and functions αhk
i j , ahk

i j 0
, fi 0 and φi are m + 1 time

differentiable in �. We suggest to approximate all these terms with respect

to x ∈ � by continuous functions that are piecewise-polynomial on the finite

elements �p, p = 1, . . . , Nel , i.e.

αhk
i j (x, t, τ ) ≈ Smαhk

i j (∙, t, τ )

:=
∑Nel

p=1

∑
q:xq∈�p

αhk
i j (xq, t, τ )Pm

q (x)χp(x), x ∈ �
(5.1)
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where Nel is the number of elements in the model, xq is the node of the p-th

element, χp is a characteristic function on the elements, i.e.:

χp(x) =






1 if x belongs to the p-th element

0 otherwise

and Pm
q (x) is a Lagrange polynomial of power m in the q-th node of the p-th

element.

Performing FE-approximation (4.1), we obtain entries of the global stiffness

matrix
3
(u,l)
nd, i j (t, [Ud j ]) :=

∑

δ:xδ∈�p

qd8
hk
nd i j (xδ, t, [Ud j ])

×
∫

�p

Pm
δ (x)

∂Nu(x)

∂xk

∂Nl(x)

∂xh
dx,

(5.2)

where i, j = 1, . . . , n, stand for displacement vector components, u, l are global

numbers of the nodes belonging to element p, and8nd,γ (xq, t, [ud]) are integrals

8nd,γ (xq, t, [ud]) :=






∫ 1

0
(α(xq , tn, td + sqd)β(tn, td + sqd))γ

× ud(td + sqd)ds, 0 ≤ d ≤ n − 1;
∫ t

0
(α(xq , tn, tn + sqn)β(tn, tn + sqn))γ

× un(tn + sqn)ds, d = n.

(5.3)

with n = 0, . . . n1 and γ standing for a generic 4−index.

Now, let us apply approximation (5.1) to the instantaneous elastic coefficients

ahk
i j 0(x, t) and then apply the Finite Element approximation (4.1) to the out-of-

integral term of operator equation (3.6). Thus we eliminate the space dependence,

and obtain elements of the out-of-integral stiffness matrix
∫

�p

ahk
i j 0(x, t)

∂Nu(x)

∂xk

∂Nl(x)

∂xh
dx ≈

∑

q:xq∈�p

ahk
i j 0(xq, t)

×
∫

�p

Pm
q (x)

∂Nu(x)

∂xk

∂Nl(x)

∂xh
dx,

3
(u,l)
i j 0 (t) :=

∑

q:xq∈�p

ahk
i j 0(xq, t)

∫

�p

Pm
q (x)

∂Nu(x)

∂xk

∂Nl(x)

∂xh
dx,

i, j = 1, . . . , n.

(5.4)
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Finally, we calculate the elements entries of the global load vector. For this

reason we refer to (3.4), keeping in mind that we let for simplicity ψ(x, t) ≡ 0.
∫

�p

fi0(x, t)Nl(x)dx +
∫

∂�σ∩�p

φi (s, t)Nl(s)ds ≈ F (l)
i (t)

:=
∑

q:xq∈�p

fi0(xq, t)
∫

�p

Pm
q (x)Nl(x)dx

+
∑

q:xq∈�p∩∂�σ

φi (xq, t)
∫

∂�σ∩�p

Pm
q (s)Nl(s)ds.

(5.5)

Collecting these element stiffness matrices and load vectors to the global ones

by the standard assembly procedure, we can rewrite the variational statement of

the problem (3.1) in the form:

3i j 0(t)Un j (t)+3nn, i j [t,Un j ] = Fi (t)−
n−1∑

d=0

3nd, i j [td,Ud j ],

n = 0, . . . n1

(5.6)

Further, we look for the solution of (5.6) recurrently in each subinterval using

(4.10), which can be done by standard collocation procedure.

Remark 5.1. Note that we can replace Pm
q (x) in definitions (5.2), (5.4), (5.5)

by Nq(x), if the shape functions approximating the solution and the Lagrange

shape functions Pm
q (x), approximating the inhomogeneous coefficients and the

external loading, all are of the same order.

In most applications the integrals (5.3) occurring in the collocation equation

(5.6) cannot be evaluated analytically. Besides, the term β(t, τ ) possesses a

weak singularity in the end of every subinterval (see (2.9)). One is forced to

resort the collocation algorithm given in [7] to employing suitable quadrature

formulae for kernel approximation. Thus, we suggest here to use the Lagrange

canonical polynomials

Ll(s) :=
p+1∏

k=1,k 6=l

s − ck

cl − ck
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for collocation parameters {c j } with 0 ≤ c1 < ∙ ∙ ∙ < cp+1 ≤ 1 as weights for

quadrature approximation of integrals (5.3), i.e., replace (5.3) by the sum:

8̂
( j)
n,d[ud] :=

p+1∑

l=1

w
( j)
n,d,lα(tn, j , td,l)ud(ti,l) if 0 ≤ d ≤ n − 1, (5.7)

with the quadrature weights given by

w
( j)
n,i,l :=

∫ 1

0
Ll(s)β(tn, j , ti + sqi )ds. (5.8)

A similar idea was also presented in [25].

Example 5.2. Let β(t, s) ≡ 1. Then we are in a framework of the standard

collocation and

w
( j)
n,i,l :=

∫ 1

0
Ll(s)ds. (5.9)

Example 5.3. Let β(t, s) = (t − s)−α and let the discretization by tn , n =

{0, n1} be equidistant with step size q. Then

w
( j)
n,i,l := q−α

∫ 1

0
Ll(s)(n − i + c j − s)−αds

This integral could be analytically taken in the form of a hypergeometric series

(see [23]). However it can be reduced to the finite expression through Euler’s

0− or B− functions only for n − i + c j = 1. Therefore, we prefer to avoid the

weak singularity by partial integration

w
( j)
n,i,l ≈






0, if l 6= 1 and l 6= p + 1

q−αL1(0)
(n−i+c j )

1−α

1−α , if l = 1

−q−αL p+1(1)
(n−i+c j −1)1−α

1−α , if l = p + 1

+
q−α(n − i + c j − cl)

1−α

1 − α

∫ 1

0
L ′

l(s)ds

The detailed recurrent formulas for the weights can be found in [24].
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6 A priori error estimates

Let us first suppose that the instantaneous elastic coefficients ahk
i j 0 as well as

the external loads fi0 and φi are either space-independent functions or change

homogeneously in space, i.e. they are represented as a product of purely space

and time dependent functions respectively. Furthermore, we suppose, that βhk
i j ∈

L1([0, T ]), i.e., the weak singular part of integral kernels is space independent,

αhk
i j ∈ C([0, T ] × [0, T ],Cm+1(�)). We apply the suggested in Section 5 ap-

proximation in space by interpolation to the relaxation kernels only. Let

Ax u :=
∫

�

(
α(x, t, τ )β(t, τ )

)hk
i j

∂u j (x, τ )

∂xk

∂ ∙i (x)

∂xh
dx, (6.1)

Ax SuS :=
∫

�

(
Smα(∙, t, τ )β(t, τ )

)hk
i j

∂uS j (x, τ )

∂xk

∂ ∙i (x)

∂xh
dx, (6.2)

where Smαhk
i j (x, t, τ ) is the approximation of the non-singular part of the kernels,

defined by (5.1), and uS denotes the solution of our problem (3.9) corresponding

to this approximation. We introduce the error in the solution caused by the kernel

approximation by interpolation as:

ε := u − uS. (6.3)

Lemma 6.1. The error in the solution caused by kernel approximation (5.1) is

of the same order as the error of kernel approximation itself, i.e.

‖ε(t)‖H1(�) := ‖u(t)− uS(t)‖H1(�) ≤ Chm+1 (6.4)

for any t ∈ [0, T ], where

C =
C̃

(
1
c0

a?
)

c2
0

‖ f ‖C([0,T ],L2(�))

× max
i, j,h,k

(∥
∥Dm+1αhk

i j

∥
∥

C([0,T ]×[0,T ]×�)

∥
∥βhk

i j

∥
∥

C([0,T ],L1([0,T ]))

)

Proof. To begin with, let us represent equation (3.9) in the form:

u(t)+
∫ t

0
A0

−1
x (t)Ax(t, τ )u(τ )dτ = A0

−1
x (t)F(t) (6.5)
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Similarly, we can write for uS(t):

uS(t)+
∫ t

0
A0

−1
x (t)Ax S(t, τ )uS(τ )dτ = A0

−1
x (t)F(t) (6.6)

The difference u − uS should then satisfy equation

u(t)− uS(t)+
∫ t

0
A0

−1
x (t)Ax(t, τ )(u(τ )− uS(τ ))dτ = A0

−1
x (t)F

∗(t),

F∗(t) :=
∫ t

0

(
Ax S(t, τ )− Ax(t, τ )

)
uS(τ )dτ

Owing to Theorem 3.2, (4.8), the error (6.3) can then be estimated as follows:

‖u(t)− uS(t)‖C([0,T ],H1(�)) ≤
1

c0
C̃

( 1

c0
a ?

)∥
∥
∥F∗

∥
∥
∥

C([0,T ],H−1(�))

=
1

c0
C̃

( 1

c0
a ?

)∥
∥
∥

∫ t

0

(
Ax S(t, τ )− Ax (t, τ )

)
uS(τ )dτ

∥
∥
∥

C([0,T ],H−1(�))

≤
1

c0
C̃

( 1

c0
a ?

)
‖uS‖C([0,T ],H1(�))

×
∥
∥
∥

∫ t

0

∥
∥
∥Ax S(t, τ )− Ax (t, τ )

∥
∥
∥
L(H1(�))

dτ
∥
∥
∥

C([0,T ])

(3.13)
≤

1

c0
C̃

( 1

c0
a ?

)
‖uS‖C([0,T ],H1(�))

× max
i, j,k,h

(∥
∥
∥Smαhk

i j − αhk
i j

∥
∥
∥

C([0,T ]×[0,T ],L∞(�))

∥
∥
∥βhk

i j

∥
∥
∥

C([0,T ],L1([0,T ]))

)

Theorem 3.2, (4.8)
≤

1

c2
0

C̃
( 1

c0
max(a, aS) ?

)∥
∥
∥F

∥
∥
∥

C([0,T ],H−1(�))

× max
i, j,k,h

(∥
∥
∥Smαhk

i j − αhk
i j

∥
∥
∥

C([0,T ]×[0,T ],L∞(�))

∥
∥
∥βhk

i j

∥
∥
∥

C([0,T ],L1([0,T ]))

)

Theorem 4.4
≤

1

c2
0

C̃
( 1

c0
max(a, aS) ?

)∥
∥
∥ f

∥
∥
∥

C([0,T ],L2(�))

× max
i, j,k,h

(∥
∥
∥Dm+1αhk

i j

∥
∥
∥

C([0,T ]×[0,T ]×�))

∥
∥
∥βhk

i j

∥
∥
∥

C([0,T ],L1([0,T ]))

)
hm+1

�

Let now the instantaneous elastic coefficients ahk
i j 0 and the external loads fi0

and φi also possess inseparable time-space dependencies and ahk
i j 0, fi0 and φi

belong to C([0, T ],Cm+1(�)). So, we apply the approximation Sm , defined by

(5.1), to these terms too. We define, additionally to (6.1), (6.2),

A0x S(t)uS(t) :=
∫

�

Smahk
i j 0(∙, t)

∂uS j (x, t)

∂xk

∂ ∙i (x)

∂xh
dx, (6.7)
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FS(t) :=
∫

�

Sm fi0(∙, t)uSi (x, t)dx +
∫

∂�σ

Sm+1φi (∙, t)uSi (s, t)ds, (6.8)

where Sm is the approximation defined by (5.1), and uS denotes the solution of

(3.9) corresponding to this approximation.

Lemma 6.2. The error in the solution of (3.9) caused by approximations

Smahk
i j 0, Smαhk

i j , Sm fi0 and Sm+1φi is again of the order O(hm+1), i.e.,

‖ε(t)‖H1(�) := ‖u(t)− uS(t)‖H1(�) ≤ Chm+1 (6.9)

for any t ∈ [0, T ].

Proof. Consider again equations (6.5) and

uS(t)+
∫ t

0
A−1

0x S(t)Ax S(t, τ )uS(τ )dτ = A−1
0x S(t)FS(t) (6.10)

We estimate the error on the same way as in previous lemma just extending

the proof by the triangle inequality:

‖u(t)− uS(t)‖H1(�)

≤
1

c0
C̃

( 1

c0
a ?

)(
‖uS‖C([0,T ],H1(�))

×
∥
∥
∥

∫ t

0

(
A−1

0x S(t)Ax S(t, τ )− A0x S
−1(t)Ax(t, τ )

)
dτ

+
∫ t

0

(
A−1

0x S(t)Ax(t, τ )− A0x
−1(t)Ax(t, τ )

)
dτ

∥
∥
∥
L(H1(�),H1(�))

+
∥
∥
∥A−1

0x (t)F(t)− A−1
0x (t)FS(t)+ A−1

0x (t)FS(t)− A−1
0x S(t)FS(t)

∥
∥
∥

H1(�)

)

Sec. 3
≤

1

c2
0

C̃
( 1

c0
a ?

)
‖FS‖C([0,T ],H−1(�)) (6.11)

×
[

1

c0
max
i, j,k,h

( ∥
∥βhk

i j

∥
∥

C([0,T ],L1([0,T ]))

∥
∥Smαhk

i j − αhk
i j

∥
∥

C([0,T ]×[0,T ],L∞(�))

)

+ max
i, j,k,h

(∥
∥
∥αhk

i j

∥
∥
∥

C([0,T ]×[0,T ],L∞(�)

∥
∥
∥βhk

i j

∥
∥
∥

C([0,T ],L1([0,T ]))

)
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×
∥
∥
∥A−1

0x S − A−1
0x

∥
∥
∥

C([0,T ],L(H−1,H1(�)))

]

+
C̃

c2
0

(∥
∥
∥ f0 − Sm f0

∥
∥
∥

C([0,T ],L2(�))
+

∥
∥
∥φ − Sm+1φ

∥
∥
∥

C([0,T ],H1(�))

)

+
C̃

c0
‖FS‖C([0,T ],H−1(�))

∥
∥
∥A−1

0x S − A−1
0x

∥
∥
∥

C([0,T ],L(H−1,H1(�)))
.

First we estimate

‖FS‖C([0,T ],H−1(�)) ≤ ‖FS − F‖C([0,T ],H−1(�)) + ‖F‖C([0,T ],H−1(�)) , (6.12)

and, according to Remark (3.5)

‖F‖C([0,T ],H−1(�)) ≤ C
(
|| f0||C([0,T ]×�) + ||φ||C([0,T ],H−1/2(∂�σ ))

)
.

Let us estimate the term
∥
∥A−1

0x S − A−1
0x

∥
∥

C([0,T ],L(H−1,H1(�)))
now:

∥
∥A−1

0x S − A−1
0x

∥
∥

C([0,T ],L(H−1,H1(�)))

=
∥
∥A−1

0x S(A0x − A0x S)A
−1
0x

∥
∥

C([0,T ],L(H−1,H1(�)))

≤
1

c2
0

∥
∥A0x − A0x S

∥
∥

C([0,T ],L(H1(�),H−1))

≤
1

c2
0

max
i, j,k,h

∥
∥ahk

i j 0 − Smahk
i j 0

∥
∥

C([0,T ]×�).

(6.13)

Application of Theorem 4.4 to each term of (6.11), to (6.12) and to (6.13) com-

pletes the proof. �

The following lemma gives the a priori estimate for the total solution error.

Theorem 6.3 (A priori error estimate). The error estimate satisfies:

∥
∥u − πp Pr uS

∥
∥

L∞([0,T ],H1(�)
≤ CShm+1 + Chr + Cπq p̂ (6.14)

Proof. Using triangle inequality, we can see that:
∥
∥
∥u − πp Pr uS

∥
∥
∥

L∞([0,T ],H1(�))
≤

∥
∥
∥u(t)− uS(t)

∥
∥
∥

L∞([0,T ],H1(�))

+
∥
∥
∥uS(t)− Pr uS(t)

∥
∥
∥

L∞([0,T ],H1(�))
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+
∥
∥
∥Pr uS(t)− πp Pr uS(t)

∥
∥
∥

L∞([0,T ],H1(�))

The estimates for the first term in the right-hand side are given by (6.4), (6.9),

for the second by (4.2) and (4.6) for L2- and H 1-norms respectively, and for the

third term by (4.11). �

Thus, we can conclude that the error, introduced by spatial approximation of

relaxation kernels, instantaneous elastic coefficients and external loads, does not

increase the total error, if m ≥ r . On the other hand, it significantly simplifies

the calculation procedure, allowing us to significantly reduce the computations

of the spatial finite element analysis.

7 Numerical example

Consider the homogeneous isotropic viscoelastic prismatic rod of length `, as

shown in Figure 1.

Figure 1 – Test problem: isotropic viscoelastic rod.

It is subject to stretching under its own weight and under an external tension

pressure p, homogeneously distributed over its lower end. The rod is rigidly
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fixed in the middle point A = (0, 0, 0) on its upper face. Besides, the zero dis-

placement constraints in vertical direction are applied to the circle of diameter

m, which completely belongs to the upper face of the rod.

Consider the system of equilibrium equations (2.1)–(2.3) under isotropy con-

dition (2.7), and switch over to Poisson’s ratio and Young’s modulus through the

relation:

λ =
ν E

(1 + ν) (1 − 2 ν)
, μ =

E

2(1 + ν)
. (7.1)

We assume further that the Poisson’s ratio ν is time-independent and that the

Young’s modulus E is taken in the form of the following Volterra integral operator

E = E0 + E?; E? = −E0

∫ t

0
k(t − τ) ∙ dτ. (7.2)

Now, the system of equilibrium equations (2.1)–(2.3) can be rewritten as follows:

E

2(1 + ν)(1 − 2ν)

∂

∂xi
div u(x, t)+

E

2(1 + ν)
1 ui (x, t) = − fi (x, t), (7.3)

with boundary conditions:

ui

∣
∣

A = 0, i = 1, 2, 3, (7.4)

u3

∣
∣

x3=0,

x2
1+x2

2=(m
2 )

2
= 0, (7.5)

σ3

∣
∣
x3=`

= p f2(t), (7.6)

σi j n j

∣
∣
on the rest of boundary = 0, i, j = 1, 2, 3, (7.7)

holding for any t ∈ [0, T ]. Here

fT(x, t) = ( fi (x, t))n = (0, 0, ρg f2(t)) , (7.8)

where ρ is the material density, and we choose

k(s) =
{

1
√

s
, or

s2

2
e−s , (7.9)

f2(t) =
{

t + 1 −
(

2
√

t +
4

3

√
t3

)
, or (t2 + t + 1)e−t . (7.10)
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Since the right-hand side of our system can be represented as a product of a

purely space- and time-dependent function, and the kernel (7.9) of operator (7.2)

is space-independent, the solution of the problem (7.3)–(7.7) will be of the form:

ui (x, t) := ui1(x)u2(t). (7.11)

We rewrite our system as:
(

1

2(1 + ν)(1 − 2ν)

∂

∂xi
div u1(x)+

1

2(1 + ν)
1ui1(x)

)
u2(t)

= −
[
(E)−1 fi

]
(t).

(7.12)

Then the pair of equations, consisting of the purely spatial one:

E0

2(1 + ν)(1 − 2ν)

∂

∂xi
div u1(x)+

E0

2(1 + ν)
1ui1(x)

= −

{
0, i = 1, 2;

ρg, i = 3

(7.13)

and the temporal one:

u2(t) = (t + 1)−
(

2
√

t +
4

3

√
t3

)
+

∫ t

0

u2(τ )√
t − τ

dτ or (7.14)

u2(t) = (t2 + t + 1)e−t +
∫ t

0

(t − τ)2

2
eτ−t u2(τ )dτ (7.15)

can be solved analytically to yield the desired solution:

u1(x) =
1

E0








−ρgνx1x3 − ν(ρg`− p)x1,

−ρgνx2x3 − ν(ρg`− p)x2,

ρgx2
3

2
+ (ρg`− p)x3 +

ρgν

2

(
x2

1 + x2
2

)
−
ρgνm2

8








for the spatial part of the solution, and

u2(t) = 1 + t or (7.16)

u2(t) = 1 +
1

3

(

1 − e− 3
2 t

[

cos

(√
3

2
t

)

+
√

3 sin

(√
3

2
t

)])

(7.17)
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For a numerical simulation of the system’s space-dependent part we used the

ANSYS Finite Element package. Since the ANSYS element library does not

contain elements supporting materials with weakly singular kernels, we com-

bined ANSYS with the collocation method implemented in an own fortran code

based on the algorithm from [8]. The latter algorithm was modified to allow

for weak-singular kernel parts as well as a coefficient matrix in front of the

out-of-integral term.

Figure 2 – FE-mesh and boundary conditions.

The FEM discretization of ∂
∂x

(
α(x, tm, τl)

∂u
∂x

)
w.r.t. the space variable is ob-

tained as the global stiffness matrix of the problem with appropriate material

properties, and the one for the right-hand side as a global load vector. For

the extraction of the global stiffness matrix from ANSYS in a text format, we

modified rdsubs.F code, taken from the ANSYS distribution medium and in-

corporated into original ANSYS as a User Predefined Routine (UPF). Thus, we

reduced the infinite-dimensional system of the Volterra integral equations to a

finite-dimensional one. Then, the obtained integral equation system was solved
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Figure 3 – FE-mesh of the quarter of rod and σ22 at the time-step t = 0.

numerically with the spline collocation method described in Section 5. Finally

the numerical solution for the system of integral equations was obtained by iter-

atively solving a system of linear algebraic equations with help of the conjugate

gradient method, as ui j = ui (t j ), j = 0, . . . , n1, i = 1, . . . , 3N , where n1 is

the number of discretization points for the time interval and N is the number of

nodes in the finite element discretization of the body.

7.1 Convergence in time

To test the temporal convergence of the collocation method, we solve both prob-

lems, (7.14) and (7.15), on the unit time interval with five collocation points

on a unit subinterval and compare the analytical u2(t) and numerical U2(t) so-

lutions in the arbitrary chosen time point T = 1
3 . The summary of numerical

performance is presented in Table 1.
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Time, equation u2(t) U2(t) |u2(t)− U2(t)|

T = 1/3, (7.14) 0.1333371E+01 0.132760E+01 0.577E-02

T = 1/3, (7.15) 0.13983189911 0.13983187675 0.224E-07

Table 1 – Comparison of analytical (u2(t)) and numerical (U2(t)) solutions of equations

(7.14) and (7.15).

7.2 Spatial and full convergence

The following parameter set: E0 = 8.5 ∙ 1010 Pa, ν = 0.16, ρ = 1.2770 kg/m3,

p = −10 ∙ 107 Pa, m = 1 cm, l = 10 cm was used for a numerical example.

To perform the numerical simulation with ANSYS, we took advantage of the

symmetry of the modeled body and therefore considered only a quarter of it

(see Fig. 3). The body has been discretized with 244 elements, 620 nodes. The

summary of successive spatial and temporal numerical performances of ANSYS

and the collocation fortran-routine is presented in Tables 2 and 3.

Time ‖u1(t)‖L∞(�) ‖U1(t)‖L∞(�) ‖u1(t)− U1(t)‖L∞(�)

T = 0 0.946305E-04 0.94118E-04 0.512456E-06

Table 2 – Comparison of analytical (u1(t)) and numerical (U1(t)) solution.

Time ‖u3(t)‖L∞(�) ‖U3(t)‖L∞(�) ‖u3(t)− U3(t)‖L∞(�)

T = 0 0.11812E-01 0.12168E-01 0.35534E-03

T = 1/3, (7.17) 0.157497E-01 0.161542E-01 0.54400936E-03

T = 1/3, (7.18) 0.1651694E-02 0.1701474E-02 0.496881E-04

Table 3 – Comparison of analytical (u3(t)) and numerical (U3(t)) solution.
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