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1 Introduction

Goppa codes form a subclass of alternant codes and they are described in terms of

a polynomial called Goppa polynomial. The most famous subclasses of alternant

codes are BCH codes and Goppa codes, the former for their simple and easily ins-

trumented decoding algorithm, and the latter for meeting the Gilbert-Varshamov

bound. However, most of the work regarding construction and decoding of

Goppa codes has been done considering codes over finite fields. On the other

hand, linear codes over rings have recently generated a great deal of interest.

Linear codes over local finite commutative rings with identity have been dis-

cussed in papers by Andrade [1], [2], [3] where it was extended the notion of

Hamming, Reed-Solomon, BCH and alternant codes over these rings.

In this paper we describe a construction technique of Goppa and Srivastava

codes over local finite commutative rings. The core of the construction technique
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mimics that of Goppa codes over a finite field, and is addressed, in this paper,

from the point of view of specifying a cyclic subgroup of the group of units

of an extension ring of finite rings. The decoding algorithm for Goppa codes

consists of four major steps: (1) calculation of the syndromes, (2) calculation of

the elementary symmetric functions by modified Berlekamp-Massey algorithm,

(3) calculation of the error-location numbers, and (4) calculation of the error

magnitudes.

This paper is organized as follows. In Section 2, we describe a construction

of Goppa codes over local finite commutative rings and an efficient decoding

procedure. In Section 3, we describe a construction of Srivastava codes over

local finite commutative rings. Finally, in Section 5, the concluding remarks are

drawn.

2 Goppa Codes

In this section we describe a construction technique of Goppa codes over arbitrary

local finite commutative rings in terms of parity-check matrices, which is very

similar to the one proposed by Goppa [4] over finite fields. First, we review basic

facts from the Galois theory of local finite commutative rings.

Throughout this paperA denotes a local finite commutative ring with identity,

maximal idealM and residue fieldK = A
M
≡ GF(pm), for some primep,

m will be a positive integer, andA[x] denotes the ring of polynomials in the

variablex overA. The natural projectionA[x] → K[x] is denoted byμ, where

μ(a(x)) = a(x).

Let f (x) be a monic polynomial of degreeh in A[x] such thatμ( f (x)) is

irreducible inK[x]. Then f (x) is also irreducible inA[x] [5, Theorem XIII.7].

LetR be the ringA[x]/〈 f (x)〉. ThenR is a local finite commutative ring with

identity and it is called a Galois extension ofA of degreeh. Its residue field is

K1 = R/M1 ≡ GF(pmh), whereM1 is the unique maximal ideal ofR, and

K∗1 is the multiplicative group ofK1, whose order ispmh− 1.

Let R∗ denote the multiplicative group of units ofR. It follows thatR∗ is

an abelian group, and therefore it can be expressed as a direct product of cyclic

groups. We are interested in the maximal cyclic subgroup ofR∗, hereafter

denoted byGs, whose elements are the roots ofxs− 1 for some positive integer
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s such that gcd(s, p) = 1. There is only one maximal cyclic subgroup ofR∗

having order relatively prime top [5, Theorem XVIII.2]. This cyclic group has

orders= pmh− 1.

The Goppa codes are specified in terms of a polynomialg(z) called Goppa

polynomial. In contrast to cyclic codes, where it is difficult to estimate the

minimum Hamming distanced from the generator polynomial, Goppa codes

have the property thatd ≥ deg(g(z))+ 1.

Let g(z) = g0+ g1z+ ∙ ∙ ∙ + gr zr be a polynomial with coefficients inR and

gr 6= 0. Letη = (α1, α2, ∙ ∙ ∙ , αn) be a vector consisting of distinct elements of

Gs such thatg(αi ) are units fromR for i = 1, 2, ∙ ∙ ∙ , n.

Definition 2.1. A shortened Goppa codeC(η, ω, g) of lengthn ≤ s overA

has parity-check matrix

H =









g(α1)
−1 ∙ ∙ ∙ g(αn)

−1

α1g(α1)
−1 ∙ ∙ ∙ αng(αn)

−1

...
. . .

...

αr−1
1 g(α1)

−1 ∙ ∙ ∙ αr−1
n g(αn)

−1









, (1)

where ω = (g(α−1
1 ), g(α−1

2 ), ∙ ∙ ∙ , g(α−1
n )). The polynomialg(z) is called

Goppa polynomial.

Definition 2.2. LetC(η, ω, g) be a Goppa code.

• If g(z) is irreducible thenC(η, ω, g) is called an irreducible Goppa code.

• If, for all c = (c1, c2, ∙ ∙ ∙ , cn) ∈ C(η, ω, g), it is true that c
′
=

(cn, cn−1, ∙ ∙ ∙ , c1) ∈ C(η, ω, g), thenC(η, ω, g) is called a reversible

Goppa code.

• If g(z) = (z− α)r thenC(η, ω, g) is called a commutative Goppa code.

• If g(z) has no multiple zeros thenC(η, ω, g) is called a separable Goppa

code.
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Remark 2.1. Let C(η, ω, g) be a Goppa code.

1. We haveC(η, ω, g) is a linear code.

2. A parity-check matrix with elements fromA is then obtained by replacing

each entry ofH by the corresponding column vector of lengthh fromA.

3. For a Goppa code with polynomialgl (z) = (z− βl )
rl , whereβl ∈ Gs, we

have

Hl =








(α1− βl )
−rl (α2− βl )

−rl ∙ ∙ ∙ (αn − βl )
−rl

α1(α1− βl )
−rl α2(α2− βl )

−rl ∙ ∙ ∙ αn(αn − βl )
−rl

...
...

. . .
...

α
rl−1
1 (α1− βl )

−rl α
rl−1
2 (α2− βl )

−rl ∙ ∙ ∙ α
rl−1
n (αn − βl )

−rl








which is row-equivalent to

Hl =










1
(α1−βl )

rl
1

(α2−βl )
rl ∙ ∙ ∙ 1

(αn−βl )
rl

(α1−βl )

(α1−βl )
rl

(α2−βl )

(α2−βl )
rl ∙ ∙ ∙ (αn−βl )

(αn−βl )
rl

...
...

. . .
...

(α1−βl )
rl−1

(α1−βl )
rl

(α2−βl )
rl−1

(α2−βl )
rl ∙ ∙ ∙ (αn−βl )

rl−1

(αn−βl )
rl










=









1
(α1−βl )

rl
1

(α2−βl )
rl ∙ ∙ ∙ 1

(αn−βl )
rl

1
(α1−βl )

(rl−1)
1

(α2−βl )
(rl−1) ∙ ∙ ∙

1
(αn−βl )

(rl−1)

...
...

. . .
...

1
(α1−βl )

1
(α2−βl )

∙ ∙ ∙ 1
(αn−βl )









.

Consequently, ifg(z) =
∏k

l=1(z− βl )
rl =

∏k
i=1 gl (z), then the Goppa

code is the intersection of Goppa codes with Goppa polynomialgl (z) =

(z− βl )
rl , for l = 1, 2, ∙ ∙ ∙ , k, and its parity-check matrix is given by

H =












H1

H2

...

Hk












.
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4. Alternant codes are a special case of Goppa codes [3, Definition 2.1].

It is possible to obtain an estimate of the minimum Hamming distanced of

C(η, ω, g) directly from the Goppa polynomialg(z). The next theorem provides

such an estimate.

Theorem 2.1. The codeC(η, ω, g) has minimum Hamming distanced ≥ r+1.

Proof. We haveC(η, ω, g) is an alternant codeC(n, η, ω) with η = (α1,

α2, ∙ ∙ ∙ , αn) and ω = (g(α1)
−1, g(α2)

−1, ∙ ∙ ∙ , g(αn)
−1) [3, Definition 2.1]. By

[3, Theorem 2.1] it followsC(η, ω, g) has minimum distanced ≥ r + 1.

Example 2.1. LetA = Z2[i ] andR = A[x]
〈 f (x)〉 , where f (x) = x3 + x + 1 is

irreducible overA andi 2 = −1. If α is a root of f (x), thenα generates a cyclic

groupGs of orders= 23−1= 7. Letη = (α, α4, 1, α2), g(z) = z3+z2+1 and

ω = (g(α)−1, g(α4)−1, g(1)−1, g(α2)−1) = (α3, α5, 1, α6). Sincedeg(g(z)) =

3, it follows that

H =








α3 α5 1 α6

α4 α2 1 α

α5 α6 1 α3








,

is the parity-check matrix of a Goppa codeC(η, ω, g) overA with length 4 and

minimum Hamming distance at least 4.

Example 2.2. LetA = Z2[i ] andR = A[x]
〈 f (x)〉 , where f (x) = x4 + x + 1 is

irreducible overA. Thuss= 15 andG15 is generated byα, whereα4 = α + 1.

Let g(z) = z4 + z3 + 1, η = (1, α, α2, α3, α4, α5, α6, α8, α9, α10, α12) and

ω = (1, α6, α12, α13, α9, α10, α11, α3, α14, α5, α7). Since deg(g(z)) = 4, it

follows that

H =












1 α6 α12 α13 α9 α10 α11 α3 α14 α5 α7

1 α7 α14 α α13 1 α2 α11 α8 1 α4

1 α8 α α4 α2 α5 α8 α4 α2 α10 α

1 α9 α3 α7 α6 α10 α14 α12 α11 α5 α13











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is the parity-check matrix of a Goppa codeC(η, ω, g) overZ2[i ] with length 11

and minimum Hamming distance at least 5.

2.1 Decoding procedure

In this subsection we present a decoding algorithm for Goppa codesC(η, ω, g).

This algorithm is based on the modified Berlekamp-Massey algorithm [6] which

corrects all errors up to the Hamming weightt ≤ r/2, i.e., whose minimum

Hamming distance isr + 1.

We first establish some notation. LetR be a local finite commutative ring with

identity as defined in Section 2 andα be a primitive element of the cyclic group

Gs, wheres= pmh−1. Letc = (c1, c2, ∙ ∙ ∙ , cn) be a transmitted codeword and

b = (b1, b2, ∙ ∙ ∙ , bn) be the received vector. Thus the error vector is given by

e= (e1, e2, ∙ ∙ ∙ , en) = b− c.

Given a vectorη = (α1, α2, ∙ ∙ ∙ , αn) = (αk1, αk2, ∙ ∙ ∙ , αkn) in Gn
s , we define

thesyndrome valuessl of an error vectore= (e1, e2, ∙ ∙ ∙ , en) as

sl =
n∑

j=1

ej g(α j )
−1αl

j , l ≥ 0.

Suppose thatν ≤ t is the number of errors which occurred at locationsx1 =

αi1, x2 = αi2, ∙ ∙ ∙ , xν = αiν with valuesy1 = ei1, y2 = ei2, ∙ ∙ ∙ , yν = eiν .

Sinces= (s0, s1, ∙ ∙ ∙ , sr−1) = bHt = eHt , then the firstr syndrome values

sl can be calculated from the received vectorb as

sl =
n∑

j=1

ej g(α j )
−1αl

j =
n∑

j=1

bj g(α j )
−1αl

j , l = 0, 1, 2, ∙ ∙ ∙ , r − 1.

The elementary symmetric functionsσ1, σ2, ∙ ∙ ∙ , σν of the error-location num-

bersx1, x2, ∙ ∙ ∙ , xν are defined as the coefficients of the polynomial

σ(x) =
ν∏

i=1

(x − xi ) =
ν∑

i=0

σi x
ν−i ,

whereσ0 = 1. Thus, the decoding algorithm being proposed consists of four

major steps:

Comp. Appl. Math., Vol. 24, N. 2, 2005
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Step 1 – Calculation of the syndrome vectors from the received vector.

Step 2 – Calculation of the elementary symmetric functionsσ1, σ2, ∙ ∙ ∙ , σν

from s, using the modified Berlekamp-Massey algorithm [6].

Step 3 – Calculation of the error-location numbersx1, x2, ∙ ∙ ∙ , xν from σ1,

σ2, ∙ ∙ ∙ , σν , that are roots ofσ(x).

Step 4 – Calculation of the error magnitudesy1, y2, ∙ ∙ ∙ , yν fromxi ands, using

Forney’s procedure [7].

Now, each step of the decoding algorithm is analyzed. There is no need to com-

ment on Step 1 since the calculation of the vector syndrome is straightforward.

The set of possible error-location numbers is a subset of{α0, α1, ∙ ∙ ∙ , αs−1}. In

Step 2, the calculation of the elementary symmetric functions is equivalent to

finding a solutionσ1, σ2, ∙ ∙ ∙ , σν , with minimum possibleν, to the following set

of linear recurrent equations overR

sj+ν+sj+ν−1σ1+∙ ∙ ∙+sj+1σν−1+sj σν = 0, j = 0, 1, 2, ∙ ∙ ∙ , (r−1)−ν, (2)

wheres0, s1, ∙ ∙ ∙ , sr−1 are the components of the syndrome vector. We make use

of the modified Berlekamp-Massey algorithm to find the solutions of Equation

(2). The algorithm is iterative, in the sense that the followingn− ln equations

(calledpower sums)






snσ
(n)

0 + sn−1σ
(n)

1 + ∙ ∙ ∙ + sn−lnσ
(n)
ln
= 0

sn−1σ
(n)

0 + sn−2σ
(n)

1 + ∙ ∙ ∙ + sn−ln−1σ
(n)
ln
= 0

...

sln+1σ
(n)

0 + slnσ
(n)

1 + ∙ ∙ ∙ + s1σ
(n)
ln
= 0

are satisfied withln as small as possible andσ (0)

0 = 1. The polynomialσ (n)(x) =

σ
(n)

0 +σ
(n)

1 x+∙ ∙ ∙+σ
(n)
ln

xn represents the solution at then-th stage. Then-thdis-

crepancyis denoted bydn and defined bydn = snσ
(n)

0 +sn−1σ
(n)

1 +∙ ∙ ∙+sn−lnσ
(n)
ln

.

The modified Berlekamp-Massey algorithm for commutative rings with iden-

tity is formulated as follows. The inputs to the algorithm are the syndromes

Comp. Appl. Math., Vol. 24, N. 2, 2005
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s0, s1, ∙ ∙ ∙ , sr−1 which belong toR. The output of the algorithm is a set of va-

luesσi , i = 1, 2, ∙ ∙ ∙ , ν, such that Equation (2) holds with minimumν. Let

σ (−1)(x) = 1, l−1 = 0, d−1 = 1, σ (0)(x) = 1, l0 = 0 andd0 = s0 be the a set

of initial conditions to start the algorithm as in Peterson [8]. The steps of the

algorithm are:

1. n← 0.

2. If dn = 0, thenσ (n+1)(x)← σ (n)(x) andln+1← ln and to go 5).

3. If dn 6= 0, then findm ≤ n−1 such thatdn− ydm = 0 has a solutiony and

m− lm has the largest value. Then,σ (n+1)(x)← σ (n)(x)− yxn−mσ (m)(x)

andln+1← max{ln, lm+ n−m}.

4. If ln+1 = max{ln, n+ 1− ln} then go to step 5, else search for a solution

D(n+1)(x) with minimum degreel in the range max{ln, n+ 1− ln} ≤ l <

ln+1 such thatσ (m)(x) defined byD(n+1)(x) − σ (n)(x) = xn−mσ (m)(x) is

a solution for the firstm power sums,dm = −dn, with σ
(m)

0 a zero divisor

in R. If such a solution is found,σ (n+1)(x)← D(n+1)(x) andln+1← l .

5. If n < r − 1, thendn = sn + sn−1σ
(n)

1 + ∙ ∙ ∙ + sn−lnσ
(n)
ln

.

6. n← n+ 1; if n < r − 1 go to 2); else stop.

The coefficientsσ (r )

1 , σ
(r )

2 , ∙ ∙ ∙ , σ (r )
ν satisfy Equation (2). At Step 3, the solu-

tion to Equation (2) is generally not unique and the reciprocal polynomialρ(z) of

the polynomialσ (r )(z) (output by the modified Berlekamp-Massey algorithm),

may not be the correct error-locator polynomial

(z− x1)(z− x2) ∙ ∙ ∙ (z− xν),

where xj = αki , for j = 1, 2, ∙ ∙ ∙ , ν and i = 1, 2, ∙ ∙ ∙ , n, are the correct

error-location numbers. Thus, the procedure for the calculation of the correct

error-location numbers is the following:

• compute the rootsz1, z2, ∙ ∙ ∙ , zν of ρ(z);

Comp. Appl. Math., Vol. 24, N. 2, 2005
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• among thexi = αkj , j = 1, 2 ∙ ∙ ∙ , n, select thosexi ’s such thatxi − zi

are zero divisors inR. The selectedxi ’s will be the correct error-location

numbers and eachkj , for j = 1, 2, ∙ ∙ ∙ , n, indicates the positionj of the

error in the codeword.

At Step 4, the calculation of the error magnitude is based on Forney’s proce-

dure [7]. The error magnitude is given by

yj =

∑ν−1
l=0 σ j l sν−1−l

E j
∑ν−1

l=0 σ j l x
ν−1−l
j

, (3)

for j = 1, 2, ∙ ∙ ∙ , ν, where the coefficientsσ j l are recursively defined by

σ j,i = σi + xj σ j,i−1, i = 0, 1, ∙ ∙ ∙ , ν − 1,

starting withσ0 = σ j,0 = 1. TheEi = g(xi )
−1, for i = 1, 2, ∙ ∙ ∙ , ν, are the

corresponding location of errors in the vectorw. It follows from [9, Theorem 7]

that the denominator in Equation (3) is always a unit inR.

Example 2.3. As in Example 2.1, if the received vector is given byb =
(0, i, 0, 0), then the syndrome vector is given bys = bHt = (i α5, i α2, i α6).

Applying the modified Berlekamp-Massey algorithm, we obtain the following

table

n σ (n)(z) dn ln n− ln

−1 1 1 0 −1

0 1 i α5 0 0

1 1+ i α5z iα2+ α3 1 0

2 1+ α4z 0 1 1

3 1+ α4z – 1 1

Thusσ (3)(z) = 1+ α4z. The root ofρ(z) = z+ α4 (the reciprocal ofσ (3)(z))

is z1 = α4. Among the elements 1, α, ∙ ∙ ∙ , α6 we havex1 = α4 is such that

x1 − z1 = 0 is a zero divisor inR. Therefore,x1 is the correct error-location

number, andk2 = 4 indicates that one error has occurred in the second coordinate

Comp. Appl. Math., Vol. 24, N. 2, 2005
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of the codeword. The correct elementary symmetric functionσ1 = α4 is obtained

from x− x1 = x− σ1 = x−α4. Finally, applying Forney’s method tosandσ1,

givesy1 = i . Therefore, the error pattern is given bye= (0, i, 0, 0).

Example 2.4. As in Example 2.2, if the received vector isb = (0, 0, 1, 0, 0,

0, 0, 0, i, 0, 0), then the syndrome vector is given by

s= bHt = (α12+ i α14, α14+ i α8, α + i α2, α3+ i α11).

Applying the modified Berlekamp-Massey algorithm, the following table is

obtained

n σ (n)(z) dn ln n− ln

−1 1 1 0 −1

0 1 α12+ i α14 0 0

1 1+ (α12+ i α14)z α11+ i α8 1 0

2 1+ (α13+ i α12)z α7+ i α5 1 1

3 1+ (α10+ i α14)z+ (α12+ i )z2 α12+ i α12 2 1

4 1+ α11z+ α11z2 - 2 2

Thusσ (4)(z) = 1 + α11z + α11z2. The roots ofρ(z) = z2 + α11z + α11

(the reciprocal ofσ (4)(z)) are z1 = α2 and z2 = α9. Among the elements

1, α, α2, ∙ ∙ ∙ , α14, we havex1 = α2 andx2 = α9 are such thatx1−z1 = x2−z2 =

0 are zero divisors inR. Therefore,x1 and x2 are the correct error-location

numbers andk3 = 2 andk9 = 9 indicates that two errors have occurred, one in

position 3, and the other in position 9, in the codeword. The correct elementary

symmetric functionsσ1 andσ2 are obtained from(x−x1)(x−x2) = x2+σ1x+σ2.

Thus,σ1 = σ2 = α11. Finally, Forney’s method applied tos, σ1 andσ2, gives

σ11 = σ1 + x1σ10 = α11+ α2 = α9 andσ21 = σ1 + x2σ20 = α11+ α9 = α2.

Thus, by Equation (3), we obtainy1 = 1 andy2 = i . Therefore, the error pattern

is given bye= (0, 0, 1, 0, 0, 0, 0, 0, i, 0, 0).
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3 Srivastava codes

In this section we define another subclass of alternant codes over local finite

commutative rings which is very similar to the one proposed by J. N. Srivastava

in 1967, in an unpublished paper [10], called Srivastava codes. These codes over

finite fields are defined by parity-check matrices of the form

H =

{
αl

j

1− αi β j
, 1≤ i ≤ r, 1≤ j ≤ n

}

,

whereα1, α2, ∙ ∙ ∙ , αr are distinct elements fromGF(qm) andβ1, β2, ∙ ∙ ∙ , βn are

all the elements inGF(qm) except 0, α−1
1 , α−1

2 , ∙ ∙ ∙ , α−1
r andl ≥ 0.

Definition 3.1. A shortened Srivastava code of lengthn ≤ soverA has parity-

check matrix

H =













αl
1

α1−β1

αl
2

α2−β1
∙ ∙ ∙ αl

n
αn−β1

αl
1

α1−β2

αl
2

α2−β2
∙ ∙ ∙ αl

n
αn−β2

...
...

. . .
...

αl
1

α1−βr

αl
2

α2−βr
∙ ∙ ∙ αl

n
αn−βr













, (4)

whereα1, ∙ ∙ ∙ , αn, β1, ∙ ∙ ∙ , βr aren+m distinct elements ofGs andl ≥ 0.

Theorem 3.1. The Srivastava code has minimum Hamming distanced ≥ r+1.

Proof. The minimum Hamming distance of this code is at leastr + 1 if and

only if every combination ofr or fewer columns ofH is linearly independent

overR, or equivalently, that the submatrix

H1 =












αl
i1

αi1−β1

αl
i2

αi2−β1
∙ ∙ ∙

αl
ir

αir −β1

αl
i1

αi1−β2

αl
i2

αi2−β2
∙ ∙ ∙

αl
ir

αir −β2

...
...

. . .
...

αl
i1

αi1−βr

αl
i2

αi2−βr
∙ ∙ ∙

αl
ir

αir −βr












(5)
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is nonsingular for any subset{i1, ∙ ∙ ∙ , i r } of {1, 2, ∙ ∙ ∙ , n}. The determinant of

this matrix can be expressed as

det(H1) = (αi1αi2 . . . αi r )
l det(H2), (6)

where the matrixH2 is given by

H2 =










1
αi1−β1

1
αi2−β1

∙ ∙ ∙ 1
αir −β1

1
αi1−β2

1
αi2−β2

∙ ∙ ∙ 1
αir −β2

...
...

. . .
...

1
αi1−βr

1
αi2−βr

∙ ∙ ∙ 1
αir −βr










. (7)

Note that det(H2) is a Cauchy determinant of orderr , and therefore we conclude

that the determinant of the matrixH1 is given by

det(H1) = (αi1αi2 . . . αi r )
l k

φ(αi1, αi2, ∙ ∙ ∙ , αi r )φ(β1, β2, ∙ ∙ ∙ , βr )

μ(αi1)μ(αi2) . . . μ(αi r )
, (8)

wherek = (−1)m, m =

(
r

2

)

, φ(αi1, αi2, . . . , αi r ) =
∏

i j <ih
(αi j − αih) and

μ(x) = (x−β1)(x−β2) ∙ ∙ ∙ (x−βr ). Then by [9, Theorem 7] we have det(H1)

is a unit inR and therefored ≥ r + 1.

Definition 3.2. Supposer = kl and letα1, ∙ ∙ ∙ , αn, β1, ∙ ∙ ∙ , βk ben+k distinct

elements ofGs, w1, ∙ ∙ ∙ , wn be elements ofGs. A generalized Srivastava code of

lengthn ≤ s overA has parity-check matrix

H =












H1

H2

...

Hk












, (9)
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where

Hj =













w1
α1−β j

w2
α2−β j

∙ ∙ ∙ wn
αn−β j

w1
(α1−β j )

2
w2

(α2−β j )
2 ∙ ∙ ∙

wn
(αn−β j )

2

...
...

. . .
...

w1
(α1−β j )

l
w2

(α2−β j )
l ∙ ∙ ∙

wn
(αn−β j )

l













, (10)

for j = 1, 2, ∙ ∙ ∙ , k.

Theorem 3.2. The generalized Srivastava code has minimum Hamming dis-

tanced ≥ kl + 1.

Proof. The proof of this theorem requires nothing more than the application

of the Remark 2.1(3) and of the Theorem 3.1, since the matrices (1) and (9) are

equivalent, withg(z) =
∏k

i=1(z− βi )
l .

Example 3.1. As in Example 2.2, if

n = 8, r = 6, k = 2, l = 3,

{α1, α2, ∙ ∙ ∙ , α8} = {α
4, α3, α5, α, α7, α12, α10, α2},

{β1, β2} = {α
9, α6} and{w1, ∙ ∙ ∙ , w8} = {α, α, α2, α4, α7, α10, α9, α3},

then the matrix

H =
























α

α4−α9
α

α3−α9
α2

α5−α9
α2

α−α9
α5

α7−α9
α10

α12−α9
α9

α10−α9
α3

α2−α9

α

(α4−α9)2
α

(α3−α9)2
α2

(α5−α9)2
α2

(α−α9)2
α5

(α7−α9)2
α10

(α12−α9)2
α9

(α10−α9)2
α3

(α2−α9)2

α

(α4−α9)3
α

(α3−α9)3
α2

(α5−α9)3
α2

(α−α9)3
α5

(α7−α9)3
α10

(α12−α9)3
α9

(α10−α9)3
α3

(α2−α9)3

α

α4−α6
α

α3−α6
α2

α5−α6
α2

α−α6
α5

α7−α6
α10

α12−α6
α9

α10−α6
α3

α2−α6

α

(α4−α6)2
α

(α3−α6)2
α2

(α5−α6)2
α2

(α−α6)2
α5

(α7−α6)2
α10

(α12−α6)2
α9

(α10−α6)2
α3

(α2−α6)2

α

(α4−α6)3
α

(α3−α6)3
α2

(α5−α6)3
α2

(α−α6)3
α5

(α7−α6)3
α10

(α12−α6)3
α9

(α10−α6)3
α3

(α2−α6)3

























is the parity-check matrix of a generalized Srivastava code overZ2[i ] of length

8 and minimum distance at least 7.
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4 Conclusions

In this paper we presented construction and decoding procedure for Goppa codes

over local finite commutative rings with identity. The decoding procedure is

based on the modified Berlekamp-Massey algorithm. The complexity of the

proposed decoding algorithm is essentially the same as that for Goppa codes

over finite fields. Furthermore, we present the construction of Srivastava codes

over local finite commutative rings with identity.
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