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1 Introduction

Goppa codes form a subclass of alternant codes and they are described in terms of
a polynomial called Goppa polynomial. The mostfamous subclasses of alternant
codes are BCH codes and Goppa codes, the former for their simple and easily ins-
trumented decoding algorithm, and the latter for meeting the Gilbert-Varshamov
bound. However, most of the work regarding construction and decoding of
Goppa codes has been done considering codes over finite fields. On the other
hand, linear codes over rings have recently generated a great deal of interest.

Linear codes over local finite commutative rings with identity have been dis-
cussed in papers by Andrade [1], [2], [3] where it was extended the notion of
Hamming, Reed-Solomon, BCH and alternant codes over these rings.

In this paper we describe a construction technique of Goppa and Srivastava
codes over local finite commutative rings. The core of the construction technique
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232 GOPPA AND SRIVASTAVA CODES OVER FINITE RINGS

mimics that of Goppa codes over a finite field, and is addressed, in this paper,
from the point of view of specifying a cyclic subgroup of the group of units
of an extension ring of finite rings. The decoding algorithm for Goppa codes
consists of four major steps: (1) calculation of the syndromes, (2) calculation of
the elementary symmetric functions by modified Berlekamp-Massey algorithm,
(3) calculation of the error-location numbers, and (4) calculation of the error
magnitudes.

This paper is organized as follows. In Section 2, we describe a construction
of Goppa codes over local finite commutative rings and an efficient decoding
procedure. In Section 3, we describe a construction of Srivastava codes over
local finite commutative rings. Finally, in Section 5, the concluding remarks are
drawn.

2 Goppa Codes

Inthis section we describe a construction technique of Goppa codes over arbitrary
local finite commutative rings in terms of parity-check matrices, which is very
similar to the one proposed by Goppa [4] over finite fields. First, we review basic
facts from the Galois theory of local finite commutative rings.

Throughout this papefl denotes a local finite commutative ring with identity,
maximal ideal:M and residue field = % = GF(p™M), for some primep,
m will be a positive integer, andl[x] denotes the ring of polynomials in the
variablex over A. The natural projectiori[x] — K[x] is denoted by:, where
p(acx)) = acx).

Let f(x) be a monic polynomial of degreein A[x] such thatu(f (X)) is
irreducible inK[x]. Thenf (x) is also irreducible inA[x] [5, Theorem XIII.7].
Let R be the ringA[x]/(f (X)). ThenR is a local finite commutative ring with
identity and it is called a Galois extension@f of degreeh. Its residue field is
Ki; = R/M; = GF(p™), whereM; is the unique maximal ideal R, and
KK} is the multiplicative group oKy, whose order ip™" — 1.

Let R* denote the multiplicative group of units &. It follows thatR* is
an abelian group, and therefore it can be expressed as a direct product of cyclic
groups. We are interested in the maximal cyclic subgrouRdf hereafter
denoted bygs, whose elements are the rootsx8f— 1 for some positive integer
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ANTONIO APARECIDO DE ANDRADE and REGINALDO PALAZZO JR. 233

s such that gcés, p) = 1. There is only one maximal cyclic subgroup®f
having order relatively prime tp [5, Theorem XVIII.2]. This cyclic group has
orders = p™" — 1.

The Goppa codes are specified in terms of a polynogial called Goppa
polynomial. In contrast to cyclic codes, where it is difficult to estimate the
minimum Hamming distancd from the generator polynomial, Goppa codes
have the property that > deg(g(2)) + 1.

Letg(z) = go+ 012+ - - - + g: Z be a polynomial with coefficients it and
O # 0. Letn = (ay, ap, - - - , an) be a vector consisting of distinct elements of
Gs such thag(«;) are units fromR fori =1,2,---,n.

Definition 2.1. A shortened Goppa cod&(n, w, g) of lengthn < s over. A
has parity-check matrix

glag) ™ . glon) ™t .
_ | «ag@)” o+ ang(on)” ’ )
&5‘1g<a1)—1 el gt
whereo = (g(e;h), 9@y h), - -, glayh). The polynomialg(z) is called

Goppa polynomial.

Definition 2.2. LetC(n, w, g) be a Goppa code.

* If g(2) isirreducible thenC(n, w, g) is called an irreducible Goppa code.

o If, forall ¢ = (c1,¢,---,C) € C(p,w,Q), it is true that c =
(Ch,Cnho1, -+ ,C) € C(n, w,Q), thenC(n, w, g) is called a reversible
Goppa code.

If g9(2) = (z— )" thenC(n, w, Q) is called a commutative Goppa code.

If g(z) has no multiple zeros thaf(n, w, g) is called a separable Goppa
code.
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234 GOPPA AND SRIVASTAVA CODES OVER FINITE RINGS

Remark 2.1. LetC(n, w, g) be a Goppa code.

1. We haveC(n, w, g) is a linear code.

2. Aparity-check matrix with elements from is then obtained by replacing
each entry oH by the corresponding column vector of lengjtfrom A.

3. For a Goppa code with polynomigl(z) = (z— )", whereg, € Gs, we

have

(2 — )"

a2z — )"

(1 — )"
ar(ay — A"
H=| .

e — )T @) ez — B

which is row-equivalent to

- 1 1
(ag—p)N (a2—p)"
(@1—81) (a2—B1)
Ho= | ©@-BT  (@p)
(1—p" "t (=gt
L (a—p)" (a2—p)"
- 1 1
(1 —B)" (a2—B)"!
1 1

(a1=B)N™D  (ap—p)M1—D

_1 _1
L (ca—B) (2—B1)

(an—p)" 2

(an — p)™"

an(oan — A) ™"

afl Yo — A"

1 7
(l>ln—/3I)rI

(an—B1)
(an—p)"!

(an—p)T -
1
(an—p)"
N S
(oan—p) =D
1
(an—p1)

Consequently, ig(z) = [[f,(z — B)" = [T*_, 4 (2), then the Goppa
code is the intersection of Goppa codes with Goppa polynognial =
(z—B)", forl =1,2,.--,k, and its parity-check matrix is given by

Hy

Ha
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4. Alternant codes are a special case of Goppa codes [3, Definition 2.1].

It is possible to obtain an estimate of the minimum Hamming distanot
C(n, w, g) directly from the Goppa polynomigl(z). The next theorem provides
such an estimate.

Theorem2.1. Thecode”(n, w, g) has minimum Hamming distande> r + 1.

Proof. We have C(n, w, @) is an alternant codeC(n, , w) with n = (ay,
oz, -+ ,on) andow = (glen) 1, gla) L, - -+, glan) 1) [3, Definition 2.1]. By
[3, Theorem 2.1] it followsC(n, @, g) has minimum distance > r + 1.

Example 2.1. Let A = Zy[i] andR = (’fz‘([;‘)]>, wheref(x) = x3+x+1is
irreducible overd andi? = —1. If « is a root of f (x), thena generates a cyclic
groupGsoforders = 22 —1 = 7. Lety = (a, o*, 1, @?),g(2) = 22+ 7°+1and
o= (g gehH gt g™ = @3« 1,a%. Sincedegg(2)) =

3, it follows that

o> of 1 b

is the parity-check matrix of a Goppa co@é;, w, g) over A with length 4 and
minimum Hamming distance at least 4.

Example 2.2. Let A = Zy[i] andR = (J?([;‘)]), wheref(x) = x*+x+1is
irreducible overA. Thuss = 15 andGis is generated by, wherea* = o + 1.
letg(z) = 22+ 22+ 1,1 = (L, a,a?, a3 a% o ab of, o % «?) and
o = (1,08 a®? a3 a® a9 ol o, ot o «f). Since de@y(z)) = 4, it

follows that

1 of o2 o % 10 11 o3 o o «

1 o o a oB® 1 o? o o8 1 o
H=

1 o o o a2 o o o o? o0 ¢«

1 o o o of o9 o o2 g1l o5 o8
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236 GOPPA AND SRIVASTAVA CODES OVER FINITE RINGS

is the parity-check matrix of a Goppa co@é, w, g) overZ,[i] with length 11
and minimum Hamming distance at least 5.

2.1 Decoding procedure

In this subsection we present a decoding algorithm for Goppa codes, 9).
This algorithm is based on the modified Berlekamp-Massey algorithm [6] which
corrects all errors up to the Hamming weighk r/2, i.e., whose minimum
Hamming distance is + 1.

We first establish some notation. LRtbe a local finite commutative ring with
identity as defined in Section 2 ancbe a primitive element of the cyclic group
Gs, Wheres = p™—1. Letc = (cy, G, - - - , Cy) be a transmitted codeword and
b = (b, by, ---, by) be the received vector. Thus the error vector is given by
e=(e,&, - ,6)=b-c

Given a vectom = (a1, ag, - -+ , o) = (X, @2, ... okn) in GO, we define
thesyndrome values of an error vectoe = (e, &, - - - , &) as

n
§=) eg) e, 1>0.
j=1
Suppose that < t is the number of errors which occurred at locations=
o, X2 = iy, -+, Xy = o, With valuesy; = e,,yo=8€,,---, Yy, =8,.
Sinces = (S, 81, -+, S—1) = bH! = eH?!, then the first syndrome values
5 can be calculated from the received vedias

n n
5= eg@) 'aj =) bjgl) e}, =012 ,r-1
j=1 j=1
The elementary symmetric functioag o>, - - - , o, of the error-location num-
bersxy, xo, - - - , X, are defined as the coefficients of the polynomial

o(X) = ﬁ(x —X) = imx““,
i=1 i=0

whereoy = 1. Thus, the decoding algorithm being proposed consists of four
major steps:
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Step 1 — Calculation of the syndrome vectsfrom the received vector.

Step 2 — Calculation of the elementary symmetric functioss oo, --- , o,
from s, using the modified Berlekamp-Massey algorithm [6].

Step 3 — Calculation of the error-location numbersg, x;, - - - , X, from oy,
oy, --- ,0,, that are roots of (x).
Step 4 — Calculation of the error magnitudgs, v, - - - , y, fromx; ands, using

Forney’s procedure [7].

Now, each step of the decoding algorithm is analyzed. There is no need to com-
ment on Step 1 since the calculation of the vector syndrome is straightforward.
The set of possible error-location numbers is a subsgtbfe?, - - -, &5}, In
Step 2, the calculation of the elementary symmetric functions is equivalent to
finding a solutiorsy, o9, - - - , o, with minimum possible, to the following set
of linear recurrent equations over

Sj+v+Sj4v—101+- - -+Sj410,_1+Sj0, =0, j=0,1,2,---, r=D—v, (2)

wheresy, s1, - - , §_1 are the components of the syndrome vector. We make use
of the modified Berlekamp-Massey algorithm to find the solutions of Equation
(2). The algorithm is iterative, in the sense that the following |, equations
(calledpower sumjp

(n)

500" + 101" + -+ S0 =0

S1—1Uén) + Sq_zal(”) NI Sw—ln—10|(n) -0

n

S04100" + 8,017 + - +S101 =0

n

are satisfied with, as small as possible aago) = 1. The polynomiab ™ (x) =
og” +0."x+---+0,"x" represents the solution at theh stage. The-th dis-
crepancyis denoted by, and defined bg, = sqaé”)+31,lgl(”> 4. .+3(Hnglf1”>_
The modified Berlekamp-Massey algorithm for commutative rings with iden-

tity is formulated as follows. The inputs to the algorithm are the syndromes
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238 GOPPA AND SRIVASTAVA CODES OVER FINITE RINGS

%, S1, - -+, S—1 Which belong toR. The output of the algorithm is a set of va-
luesoi, i = 1,2,---, v, such that Equation (2) holds with minimum Let

o™ Dx)=11_1=0,d1 =1,069x) =11, = 0anddy = s be the a set

of initial conditions to start the algorithm as in Peterson [8]. The steps of the
algorithm are:

1. n < 0.
2. If d, = 0, theno "D (x) < o™ (x) andl, ;1 < |, and to go 5).

3. Ifdy # 0, then findn < n—1 such thatl, — yd,, = 0 has a solutioly and
m — |, has the largest value. Then™V (x) < o™ (x) — yx" Mo M (x)
andl, 1 < maxXln, I, +n —m}.

4. If I, = maxXl,, n+ 1—1,} then go to step 5, else search for a solution
D™+ (x) with minimum degre¢ in the range magk,, n+1—1,} <| <
ln41 such that ™ (x) defined byD ™ (x) — o™ (x) = x" Mo M (x) is
a solution for the firstn power sumsgy, = —d,, with o™ a zero divisor
in R. If such a solution is foundy ™V (x) < D™V (x) andlp1 < I.

5. 1fn<r —1,thend, = 8, + sp_10." + - + sq_|na|(n”).

6. n < n+1;ifn<r —1goto 2); else stop.

The coefficients”, o), - - - , 0" satisfy Equation (2). At Step 3, the solu-

tion to Equation (2) is generally not unique and the reciprocal polyngmiilof
the polynomials " (z) (output by the modified Berlekamp-Massey algorithm),
may not be the correct error-locator polynomial

(Z=X)(Z—=X2) -+ (Z— Xy),

wherex; = o, for j =212---,vandi = 1,2,---,n, are the correct
error-location numbers. Thus, the procedure for the calculation of the correct
error-location numbers is the following:

e compute the rootg,, z, - - - , z, of p(2);
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« among the = i, j = 1,2-.-,n, select those;'s such thatx;, — z
are zero divisors iR. The selected;’s will be the correct error-location
numbers and eadty, for j = 1,2, --- , n, indicates the position of the

error in the codeword.

At Step 4, the calculation of the error magnitude is based on Forney’s proce-
dure [7]. The error magnitude is given by

le}:_ol OjlSi—1-I
yJ = U,l U—1—| b (3)
Ej Z|:o gji Xj
forj =1,2,---, v, where the coefficients; are recursively defined by
oji = 0i +Xjoji-1, 1=01..- v-1

starting withog = oj0 = 1. TheE = g(x)~% fori =1,2,-.-,v, are the
corresponding location of errors in the vectar It follows from [9, Theorem 7]
that the denominator in Equation (3) is always a uniRin

Example 2.3. As in Example 2.1, if the received vector is given by=
(0,1, 0, 0), then the syndrome vector is given by= bH! = (ia®, ia?,iab).
Applying the modified Berlekamp-Massey algorithm, we obtain the following
table

’ n \ o™ (2) \ dn \ In \ n—In ‘
-1 1 1 0| -1
0 1 ior® 0 0
1 | 1+iadz | ic?+a®| 1 0
2 | 1+a%z 0 1 1
3 | 1+az - 1 1

Thuso®(2) = 1+ a*z. The root ofp(z) = z+ o* (the reciprocal o6 ® (2))
is zz = «*. Among the elements, ¥, -- - , «® we havex; = o* is such that
X1 — z1 = 0 is a zero divisor iMR. Therefore x; is the correct error-location
number, an#t, = 4 indicates that one error has occurred in the second coordinate
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ofthe codeword. The correct elementary symmetric funetiog o is obtained
from x — x; = X — 01 = X — o*. Finally, applying Forney’s method &andoy,
givesy; = i. Therefore, the error pattern is given &y (0, i, 0, 0).

Example 2.4. As in Example 2.2, if the received vectorbs= (0,0, 1, 0, O,
0,0,0,i, 0, 0), then the syndrome vector is given by

s=bH!'= @®+ia' a¥+ia® a+ia? o +ia'h.

Applying the modified Berlekamp-Massey algorithm, the following table is
obtained

’ n \ o™ (2) \ dhn \ In \ n—ln ‘
-1 1 1 0| -1
0 1 a?+iat*| 0 0
1 1+ (@ +ia'%z all+ie® | 1 0
2 1+ @B +iat?)z a +ia® |1 1
3 |1+ @ +ia"Mz+ @+ | e +iat? | 2 1
4 1+ otz 4+ o122 - 2 2

Thuso®(2) = 1+ o'z + o122 The roots ofp(2) = 22 + atlz + ot?
(the reciprocal oo @ (2)) arez; = «? andz, = «®. Among the elements
1o, a? -, o' wehavex; = e?andx, = a®aresuchthat;—z; = xo0—2, =
0 are zero divisors iR. Therefore,x; and x, are the correct error-location
numbers an#tz; = 2 andkg = 9 indicates that two errors have occurred, one in
position 3, and the other in position 9, in the codeword. The correct elementary
symmetric functions; ando, are obtained fronix —x;) (X—X) = X?>+01X+05.
Thus,o1 = 0o = «''. Finally, Forney’s method applied & o, ando,, gives
o11 = 01 + X1o10 = o + @? = «® andoy = 01 + Xo090 = ot + ® = o
Thus, by Equation (3), we obtain = 1 andy, = i. Therefore, the error pattern
is given bye = (0,0,1,0,0,0,0,0,i, 0, 0).
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3 Srivastava codes

In this section we define another subclass of alternant codes over local finite
commutative rings which is very similar to the one proposed by J. N. Srivastava
in 1967, in an unpublished paper [10], called Srivastava codes. These codes over
finite fields are defined by parity-check matrices of the form

Oll-

H={—— 1<i<r 1<j<n},
1—aiB
whereay, ay, - - - , a, are distinct elements fro@ F(q™) andBy, B2, - - - , Bn are
all the elements IS F(q™) except Oa; Y, o, %, - -+, o L andl > 0.

Definition 3.1. A shortened Srivastava code of lengtk soverA has parity-
check matrix

I S
a1—pf1  a2—p1 an—p1
o % Lo
a1—f2  ax2—p2 an—pB2

H = ’ , (4)

o % Lo

— Ofl‘ﬁr az—ﬁr an—lgr —

whereay, - - -, an, B1, - - - , Br aren + mdistinct elements afs andl > 0.

Theorem 3.1. The Srivastava code has minimum Hamming distanee + 1.

Proof. The minimum Hamming distance of this code is at lgast 1 if and
only if every combination of or fewer columns oH is linearly independent
overR, or equivalently, that the submatrix

U P S

o —p1 i l—ﬁl oy —B1
| | |
iy iz o S

Ojq, — Ojp— Ojy —

H, = ipn—B2 i,—B2 ir —B2 (5)
o o o
1 2 S|
L ail_,Bl' aiz_,ﬁr air_ﬂl' |
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242 GOPPA AND SRIVASTAVA CODES OVER FINITE RINGS

is nonsingular for any subsét, - -- ,i,} of {1,2,---,n}. The determinant of
this matrix can be expressed as

det(Hy) = (ai i, - .. ;, ) det(Hy), (6)

where the matrixH, is given by

r_-: 1 ... _1_
ail_ﬁl aiz_ﬁl iy _ﬁl
1 1 . 1
H2 — ‘IiljﬂZ aizTﬂZ djy 752 . (7)
1 1 . 1
L ailfﬂf O‘iz*ﬂr i —pr |

Note that detH,) is a Cauchy determinant of orderand therefore we conclude
that the determinant of the matrkt, is given by

¢(Oli15 Uiy, =0 ’air)¢(ﬂl’ ,825 ) ,Br)
pleiy ) pleriy) - oo (e,

det(Hy) = (i i, ... i)' K . (8)

r
wherek = (=)™, m = ) , Py, iy ooy ) = nij<ih(“i; — ) and

w(X) = (X—B)(X—B2)---(X—B). Thenby [9, Theorem 7] we have dély)
is a unit inR and therefora >r + 1.

Definition 3.2. Suppose = klandletoy, - -- , an, B1, - - - , Bk ben+kdistinct
elements ofs, w1, - - - , wy be elements dfs. A generalized Srivastava code of
lengthn < s over A has parity-check matrix

H1

Ho
H=1 |, %)
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where _

_w1 _w2 PP Wn
a1—Bj az—Bj an—Bj
w1 w2 .. Wn
(1—Bj)?  (a2—Bj)? (an—Bj)?
Hj = , (20)

w1 wo . wn

| @18 (2—Bj) (an—8j)"

forj=1,2,---,k

Theorem 3.2. The generalized Srivastava code has minimum Hamming dis-
tanced > kl + 1.

Proof. The proof of this theorem requires nothing more than the application
of the Remark 2.1(3) and of the Theorem 3.1, since the matrices (1) and (9) are
equivalent, withg(z) = [T,z - ).

Example 3.1. Asin Example 2.2, if

nN=8 r=6 k=2 1=3,

4 3 5 7 12 10 2
{ag, ap, -+ ,agl ={a™, o, @, o, 0", ™%, 7, @),
9 6 2 4 7 10 9 3
{B1, B2} = {a”, ¢”} and{wn, - -+, wg} = {o, ¢, %, 0", ¢, 07, o°},
then the matrix
H=
B o o o? o? o 10 o o3 T
P e 23—a9 5_,0 7—a9 79 2129 2109 22—
o o 0(2 0(2 0(5 0{10 Gtg Dt3
@—a9? @392 (@92 (@—a92 @92  (@P=a9? (@92  (a2—a9)?
o o 0(2 Otz 0(5 Otlo Gtg 0(3
@ =93 (@393 (@93  (@—a93 @ —a9® @P-a93 @93  (a2—a9)3
o o 0(2 0(2 0(5 (110 Gtg Dt3
ZA_ab 23_ab 25—_ab “—ab 7_o6 2126 2106 22_ob
2 2 5 10 9 3

(0(4—016)2 (a3_a6)2 (a5_a6)2 (a_a6)2 (a7_a6)2 (alZ_a6)2 (alO_aG)Z (0(2—056)2

@ «l o2 o «10 «° a3

o
—(0{4—056)3 (a3_a6)3 (a5_a6)3 (0(—0(6)3 (Ot7—0t6)3 (alZ_aﬁ)B (alo_a6)3 (0(2—(16)3—

is the parity-check matrix of a generalized Srivastava code Byi of length
8 and minimum distance at least 7.
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4 Conclusions

In this paper we presented construction and decoding procedure for Goppa codes
over local finite commutative rings with identity. The decoding procedure is
based on the modified Berlekamp-Massey algorithm. The complexity of the
proposed decoding algorithm is essentially the same as that for Goppa codes
over finite fields. Furthermore, we present the construction of Srivastava codes
over local finite commutative rings with identity.
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