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Abstract. This paper presents the numerical analysis of the Nonlinear Subgrid Scale (NSGS)

model for approximating singularly perturbed transport models. The NSGS is a free parameter

subgrid stabilizing method that introduces an extra stability only onto the subgrid scales. This

new feature comes from the local control yielded by decomposing the velocity field into the

resolved and unresolved scales. Such decomposition is determined by requiring the minimum of

the kinetic energy associated to the unresolved scales and the satisfaction of the resolved scale

model problem at element level. The developed method is robust for a wide scope of singularly

perturbed problems. Here, we establish the existence and uniqueness of the solution, and provide

an a priori error estimate. Convergence tests on two-dimensional examples are reported.
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1 Introduction

It is known that some numerical difficulties arising in the simulation of ad-

vection-dominated and reaction-dominated problems are due to the presence of

considerable information contained in small scales and whose effects are not

represented on the large ones. In these cases, the smallest scales of the grid

are not fine enough for the viscous dissipation to be effective yielding a kinetic
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energy accumulation [1, 23, 29]. To rectify these difficulties, different method-

ologies have been developed in the literature. The most common approach is

known as stabilized methods [4, 7, 9, 18, 24]. These methods add to the Galerkin

formulation perturbation terms associated to the operator and containing stabi-

lizing parameters dependent on the mesh. In essence, they add some sort of

artificial dissipation to avoid energy accumulation. The accuracy and stability of

the solutions obtained with these methodologies depend on a suitable design of

the stabilization parameter(s) [4, 9, 15, 18]. More recently, stabilized methods

have been reformulated in the context of the variational multiscale formulation

[17, 19] and a number of variational methods for problems exhibiting multiscale

behavior have been developed in the last years [3, 6, 8, 11, 12, 14, 16, 17, 20, 30].

Also, it is worth mentioning that linear methods are usually not able to remove

localized spurious oscillations for nonsmooth solutions. The well known rem-

edy, from the point of view of stabilized methods, is to add a nonlinear term to

the linear formulation to enhance stability, usually called discontinuity or shock

capturing term, which is tuned by stabilized parameters. A detailed review on

the most used shock capturing models is presented in [21], in which it is em-

phasized the important role the stabilized parameters play in the stability and

accuracy of the approximate solution. Here, we present the numerical analysis

of the nonlinear subgrid scale method (NSGS) proposed in [25]. This method is

based on the linear subgrid scale method (SGS) developed by J.-L. Guermond

in [12, 13]. The latter procedure is built by splitting the approximation space

into resolved and unresolved (subgrid) scales so that the bilinear form associ-

ated with the problem satisfies a uniform inf-sup condition with respect to this

decomposition [13]. It also introduces an artificial diffusion subgrid stabilizing

term that depends on the choice of an heuristic parameter. Its correct choice is

crucial to yield accurate solutions, although the criteria for choosing it have been

based on a trial and error strategy [14]. Despite this, the subgrid scale approach

is quite simple and appealing [2] since it may be applied to a great variety of

problems. In this context, the NSGS was developed with the aim of determining

the amount of subgrid dissipation according to the problem, in order to yield a

free parameter method. Unlike other multiscale methods [14, 22, 27], the NSGS

adds to the Galerkin bilinear form a nonlinear subgrid term and does not main-
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tain any other linear operator. The amount of subgrid viscosity is tuned locally

according to the residual of the resolved scale at the element level.

The NSGS method was originally proposed in [25] for advection dominated

advection-diffusion problems. The version presented here recovers the Galerkin

method if the resolved scale solution is accurate enough, resulting in more sta-

ble solutions. The method was also shown to be stable for reaction dominated

reaction-diffusion problems.

In this paper we establish the numerical analysis of the NSGS method, fol-

lowing the approach used in [13]. The convergence properties are shown to be

similar to the SGS method as well as the SUPG method.

The outline of this paper is as follows. We briefly address the basic concepts

of the NSGS model in Section 2. In Section 3 we present existence, uniqueness

and error estimates for the discrete problem. Numerical examples are conducted

in Section 4 and in the last section we draw some conclusions.

2 The nonlinear subgrid stabilization

The advection-diffusion-reaction problem can be modeled by the following

equation

−ε1u + β ∙ ∇u + σu = f in �, (1)

u = 0 on ∂�, (2)

where � ⊂ <d , 1 ≤ d ≤ 3, is an open bounded domain with a Lipschitz

boundary ∂� and unit outward normal n, β is the velocity field, σ is the reaction

coefficient, 0 < ε � 1 is the (constant) diffusion coefficient and f is the

source term. Henceforth, it is assumed that β ∈ [L∞(�)]d , σ ∈ L∞(�) and

f ∈ L2(�). It is also assumed that σ ≥ 0 and there exists a constant σ0 such

that

σ −
1

2
∇ ∙ β ≥ σ0 > 0 . (3)

For simplicity, we set only homogeneous Dirichlet boundary conditions that will

be strongly enforced. Denoting by (∙, ∙) the L2(�) inner product, the classical

formulation of problem (1)-(2) reads: find u ∈ X = H 1
0 (�) so that

B(u, v) = ( f, v), ∀v ∈ X = H 1
0 (�), (4)
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where
B(u, v) = ε(∇u, ∇v) + a(u, v); (5)

a(u, v) = (β ∙ ∇u, v) + (σu, v). (6)

The Lax-Milgram Lemma proves that there is a unique solution to the prob-

lem (4). The operator B(u, v) is coercive although it can lose coercivity if the

diffusion coefficient is small enough. Cases of this type are considered in this

work, such that the Galerkin approximation of (4) based on Xh ⊂ X may be

completely worthless. This can be rectified by using a simple dissipation model

as the one developed in [12, 13] – the SGS method, which has its roots in the

scales separation. In a two-scale approach there is a pair of spaces {X H , Xh} ,

X H ⊂ Xh, which satisfies the following multiscale decomposition [12, 13]

Xh = X H ⊕ X H
h , (7)

where X H is the resolved (coarse) scale space whereas X H
h is the subgrid

(fine) scale space. One possible artificial dissipation mechanism proposed in

[12, 13] is

cb

∫

�

∇uH
h ∙ ∇vH

h d�, (8)

where uH
h ∈ X H

h is the subgrid scale of the approximate solution, vH
h ∈ X H

h is

the subgrid scale of the weight function and cb is the (user-specified) subgrid

scale artificial diffusion coefficient. The operator (8) is added to (4), yielding

an additional control of the subgrid scales. However, the effectiveness of this

formulation is strongly dependent on the choice of cb. The NSGS (Nonlinear

Subgrid Scale Method) [25] was built to overcome this difficulty and can be

seen as a nonlinear counterpart of the SGS method. In this approach, the subgrid

artificial diffusion is adaptively determined as a function of the accuracy of

the resolved scale solution, yielding a free parameter subgrid scale method.

The general construction of the method is shown below. For more details, see

[25, 26].

To define the discrete problem, let Th = {Th} and TH = {T } denote two

triangular regular partitions of the domain �, where the subscripts h and H

stand for the characteristic mesh length of each mesh, respectively. The spaces
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X H and Xh are conforming finite element spaces on TH and Th , respectively.

The NSGS method can be described as follows:





Find uh ∈ Xh such that

A(uh, vh) ≡

B(uh, vh) +
∑

Th∈Th
D(uH , uH

h , vH
h ) = ( f, vh), ∀vh ∈ Xh ,

(9)

where the (local) nonlinear subgrid operator

D : X H × X H
h × X H

h −→ <

is given by

D(uH , uH
h , vH

h ) =
∫

Th∈Th

εk ∇uH
h ∙ ∇vH

h d�. (10)

The subgrid artificial viscosity εk is designed to be the smallest one that is able to

avoid kinetic energy accumulation associated with the unresolved scales, denoted

by Ek . A key ingredient for the εk design is the two-level decomposition of the

velocity field in the form

β = βH + βH
h , (11)

where βH and βH
h are the velocity fields related to the resolved and the sub-

grid scales, respectively. The decomposition (11) allows representing the kinetic

energy related to small scales by Ek = 1
2

∣
∣βH

h

∣
∣2

. Thus, if we denote the subgrid

length scale by ~, it is possible to determine the subgrid time scale at which the

subgrid inertial effects take place as t = ~/
∣
∣βH

h

∣
∣. With these assumptions, the

amount of subgrid viscosity required to dissipate the kinetic energy Ek may be

defined as

εk =
1

2
~|βH

h | . (12)

One may set ~ = h = (measTh)
1/d , as assumed in [12, 13], although other

choices are possible. The subgrid velocity field βH
h is determined by assuming

that the residual of the resolved scale solution (using βH ) at each element level

vanishes and, among all possible subgrid scale velocity fields, βH
h yields minimal

kinetic energy Ek . The solution of this minimization problem may be found

through the minimun of the functional

J
(
βH

h , λ
)

=
∫

T

[
1

2

∣
∣βH

h

∣
∣2

+ λ (−ε1uH + βH ∙ ∇uH + σuH − f )

]
d�, (13)
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where λ is a Lagrange multiplier. The stationary condition for this functional

leads to

δ J
(
βH

h , λ
)

= 0 ⇒






βH
h − λ∇uH = 0;

−ε1uH + βH ∙ ∇uH + σuH = f .
(14)

Since R(uH ) = −ε1uH + β ∙ ∇uH + σuH − f , a simple algebrism yields

βH
h ∙ ∇uH = R(uH ). (15)

Then, given definitions (12) and (9), we design the method by considering the

following two cases:

(1) when |∇uH | = 0, which implies |R(uH )| = 0, we have |βH
h | = 0 so

that A(uh, vh) = B(uh, vh), recovering the Galerkin method. In this case,

the Galerkin formulation is coercive enough and no extra stability term

is needed;

(2) when |∇uH | 6= 0, we obtain

|βH
h | =

|R(uH )|

|∇uH |
. (16)

This means that an extra dissipation mechanism is added to the Galerkin

formulation so that

A(uh, vh) = B(uh, vh) +
1

2

∫

T
h
|R(uH )|

|∇uH |
∇uH

h ∙ ∇vH
h d�, (17)

characterizing the enhancement of the stability throughout the subgrid

term. Notice that the subgrid artificial viscosity depends on the resolved

scale solution in the following way

εk := εk(uH ) =
1

2
h
|R(uH )|

|∇uH |
. (18)

The non-linear formulation (9) is solved using a quite simple iterative pro-

cedure in which εk (or βH
h ) is delayed one iteration. The initial guess is built

solving (9) with εk = (measTh)
1/d , independently of ∇uH , which amounts to

using the SGS method [12] with cb = (measTh)
1/d . It is important to remark
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that this choice does not yield any change in the final solution accuracy. The

convergence is checked for all the resolved scale degrees of freedom, under a

prescribed tolerance (tol), and may decrease with the increase of the distance

between two consecutive approximations εi
k and εi+1

k , where the new superscript

denotes the iterative step. We improve convergence by proposing the following

average rule to determine the subgrid artificial viscosity:

εi+1
k :=

1

2

(
εi+1

k + εi
k

)
. (19)

The existence and uniqueness of the solution of (9) are proved in the next

section, and an a priori error estimate is presented as well. This analysis is carried

out for the case (2) (|∇u H | 6= 0) described previously, which characterizes the

nonlinear model. Otherwise, when |∇uH | = 0, the Galerkin formulation is

recovered as well as its properties.

Remark 2.1. As reported in [25], the NSGS stabilization term has roots in

the nonlinear discontinuity capturing term developed in [10]. However, while

the latter is built based on designing an approximate upwind direction, the key

ingredient in the former is based on scale separation of the velocity field, so

that the resulting artificial diffusion depends only on the resolved scale degrees

of freedom. Moreover, another remarkable difference is that the proposed two-

scale framework yields a method free of stabilization parameter and no extra

linear stabilization term.

Remark 2.2. The formulation (9) with the nonlinear operator defined by (10)

is a slight improvement in the original design proposed for the NSGS method

in [25], where the SGS method was kept in the variational form if |∇uH | = 0.

In the present version, case (1) allows recovering the Galerkin method when the

gradient of the resolved scale solution vanishes. See [26] for further details.

3 Numerical analysis

As usual, ‖ ∙ ‖0, ‖ ∙ ‖m and | ∙ |∞ denote the standard Sobolev norms of L2(�),

H m(�) and L∞(�), respectively. Similarly, we use ‖ ∙ ‖0,R , ‖ ∙ ‖m,R and | ∙ |∞,R

to denote their restriction to a region R ⊂ �. Throughout this paper we use
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c > 0 as a generic constant that does not depend on (H, h) and whose value may

change in different situations.

We assume that the discrete counterpart of the bilinear form B(∙, ∙) (4) satisfies

the following continuity and coercivity properties: there exist positive constants

α1 and α2 such that

B(uh, vh) ≤ α1‖uh‖1‖vh‖1 ; (20)

B(vh, vh) ≥ α2‖vh‖
2
1 . (21)

The proof follows directly from the definition of the bilinear form and condi-

tion (3) and is therefore omitted. We will also make the following assump-

tions [13]:

(A1) Approximation property on X H : For given u ∈ H k+1(T ), k > 0, there

exists wH ∈ X H such that

‖u−wH‖0,T + H‖β ∙∇(u−wH )‖0,T ≤ cH k+1‖u‖k+1,T ∀T ∈ TH ; (22)

(A2) There is a linear projection operator PH : Xh → X H that is L2(T ) -stable:

‖PHvh‖0,T ≤ c‖vh‖0,T ∀vh ∈ Xh and ∀T ∈ TH . (23)

For all vh ∈ Xh we set vH = PHvh and vH
h = (I − PH )vh , where I is the

identity operator;

(A3) Inverse estimate in Xh: ∀vh ∈ Xh and ∀T ∈ TH , the following inverse

inequality holds:

‖β ∙ ∇vh‖0,T + ‖∇vh‖0,T ≤ cH−1‖vh‖0,T ; (24)

(A4) Discrete inf-sup condition: There are two constants ca > 0 and cδ ≥ 0,

such that ∀T ∈ TH

ca‖β ∙ ∇vH‖0,T ≤ sup
ϕh∈Xh(T )

(β ∙ ∇vH , ϕh)|T

‖ϕh‖0,T
+ cδas(vh, vh)

1/2, (25)

where as(u, v) = (a(u, v) + a(v, u))/2 is the symmetric part of

a(u, v). This inequality is important to establish optimal error estimates
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for the problem and it is satisfied by some commonly used approximat-

ing elements. See [12] for details. In the two-dimensional numerical ex-

periments performed in Section 4, we use the two-level P1 setting [12]

that amounts to consider two nested triangular meshes, TH and Th , with

h = H/2, such that each triangle T ∈ TH contains four sub-triangles Th

of Th formed by connecting the middle of the three edges of T . With this

choice, the unresolved solution necessarily vanishes at the three vertices

of each element of TH .

The main feature of the NSGS method (9) is its ability to capture disconti-

nuities by introducing the subgrid scales and controlling them by the artificial

viscosity operator D(uH , uH
h , vH

h ). It depends on the quantity |βH
h | which is

assumed to satisfy

q0 ≤ |βH
h | ≤ q1, (26)

with q0, q1 > 0. This inequality is always true since |∇uH | 6= 0 and follows

directly from the definition of the subgrid velocity field (16). The previous

inequality implies

εk(uH ) =
1

2
h

∣
∣βH

h

∣
∣ ≥

h

2
q0 = σ1 H, with σ1 > 0 , (27)

and

εk(uH ) =
1

2
h

∣
∣βH

h

∣
∣ ≤

h

2
q1 = σ2 H, with σ2 > 0 , (28)

yielding the following coercivity and continuity properties

D
(
uH , uH

h , vH
h

)
≤ σ2 H‖∇uH

h ‖0,T ‖∇vH
h ‖0,T ; (29)

D
(
vH , vH

h , vH
h

)
≥ σ1 H‖∇vH

h ‖2
0,T . (30)

Next we define the following norm

‖|vh‖|
2 =

∑

T ∈TH

ε‖∇vh‖
2
0,T + σ0‖vh‖

2
0,T + σ1 H‖∇vH

h ‖2
0,T . (31)

In order to prove the solution uniqueness, the minimum condition for the

subgrid artificial diffusion is required, which comes from definition (18). Notice

that when |∇uH | 6= 0 we obtain |βH
h | = |β − βH | = |R(uH )| /|∇uH |, which
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ensures that, in each element T, lim
H→0

βH = β. Moreover, as βH
h is selected such

as to minimize ‖β − βH‖0,T , the following inequality holds

∣
∣βH

h (uH )
∣
∣ ≤

∣
∣βH

h (wH )
∣
∣ , ∀wH ∈ X H , (32)

which means εk(uH ) ≤ εk(wH ), ∀wH ∈ X H .

The two following Lemmas are also required to estimate the error of the

NSGS method.

Lemma 3.1. There exists α > 0 such that ∀uH
h ∈ X H

h , ∀(H, h), and ∀T ∈ TH

we have

sup
vh∈Xh

D(uH , uH
h , vH

h )

‖vh‖0,T
≤ α‖∇uH

h ‖0,T .

Proof. Using (23), (24) and (29) we obtain

D(uH , uH
h , vH

h ) ≤ ce2σ2‖∇uH
h ‖0,T ‖vH

h ‖0,T

≤ ce2σ2‖∇uH
h ‖0,T ‖(I − PH )vh‖0,T

≤ α‖∇uH
h ‖0,T ‖vh‖0,T ,

yielding the desired result with α = ce2σ2 > 0. �

Lemma 3.2. There is c0 ≥ 0 such that

∀uh, vh ∈ Xh (σuh, vh) ≤ c0as(uh, uh)
1/2‖vh‖0.

Proof. From (3) it follows that

√
σ0‖uh‖0 ≤ as(uh, uh)

1/2,

i.e., as(∙, ∙) is L2-coercive. Then, applying the Cauchy-Schwartz inequality,

we have

(σuh, vh) ≤ |σ |∞‖uh‖0‖vh‖0 ≤
|σ |∞
√

σ0
as(uh, uh)

1/2‖vh‖0,

which leads to the desired result with c0 = |σ |∞/
√

σ0 ≥ 0. �
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The next Lemma is used to prove the existence of the solution uh and is

included for clarity. As an extension of the Brouwer Fixed Point Theorem, its

proof can be found in [28] (Lemma 1.4 – pp. 164-166).

Lemma 3.3. Let Xh be a finite dimensional Hilbert space with inner product

[∙, ∙] and norm [∙]. Let P be a continuous operator from Xh onto Xh such that

[P(u), u] > 0 for all u such that [u] = l,

for a given l ∈ <+. Then, there exists u ∈ Xh, [u] ≤ l, such that P(u) = 0.

Proposition 3.4 (Existence of uh). Assume that β ∈ [L∞(�)]d , σ ∈ L∞(�)

and (21) and (26) hold. Then, there exists a solution uh to (9).

Proof. Define the inner product in Xh ⊂ H 1
0 (�) by [u, v] = (∇u, ∇v), with

the associated norm [u] = |u|1, and an operator P : Xh → Xh such that

[Puh, vh] = (L(G), vh).

The Riesz operator L : X∗
h → Xh is such that

L(G) = (L ◦ G)(uh),

with

G : Xh 7→ X∗
h

uh 7→ 〈G(uh), vh〉 = B(uh, vh)

+
∑

T ∈TH
D(uH , uH

h , vH
h ) − ( f, vh) ∀vh ∈ Xh,

where X∗
h is the dual space of Xh . As B(∙, ∙) is coercive and D(∙, ∙, ∙) is positive,

we have

[Puh, uh] = B(uh, uh) +
∑

T ∈TH

D(uH , uH
h , uH

h ) − ( f, uh)

≥ α2|uh|
2
1 − cp‖ f ‖0|uh|1

≥ |uh|1(α2|uh|1 − cp‖ f ‖0).

Thus [Puh, uh] > 0 if [uh] = l, for a sufficiently large l; more precisely,

l >
cp

α2
‖ f ‖0, where cp is the Poincaré constant. As the operator P is continuous

(B(∙, ∙), D(∙, ∙, ∙) and ( f, ∙) are continuous forms), the hypotheses of Lemma 3.3

hold and hence there exists a solution uh to (9). �
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The next Proposition establishes the uniqueness of uh . The proof is based on

the fulfillment of (32).

Proposition 3.5 (Uniqueness of uh). We assume that there exists a solution uh

to (9) and that (3) and (32) hold. Then, uh is unique.

Proof. Assume that there are two solutions u1
h, u2

h ∈ Xh and corresponding

resolved and unresolved solutions (u1
H and uH ;1

h ; u2
H and uH ;2

h ). Taking succes-

sively uh = u1
h and uh = u2

h in (9) and subtracting the resulting equations, we

get

B
(
u1

h − u2
h, vh

)
+

(
εk(u

1
H )∇uH ;1

h − εk(u
2
H )∇uH ;2

h , ∇vH
h

)
= 0.

Choosing vh = u1
h − u2

h and using (3), (5) and (6) in the previous equation, we

get (
εk(u

1
H )∇uH ;1

h − εk(u
2
H )∇uH ;2

h , ∇uH ;1
h − ∇uH ;2

h

)

+ ε‖∇(u1
h − u2

h)‖
2
0 + σ0‖u1

h − u2
h‖

2
0 ≤ 0.

(33)

Now, as u1
h and u2

h are solutions of (9), it follows from (32) that

εk(u
1
H ) ≤ εk(u

2
H ) and εk(u

2
H ) ≤ εk(u

1
H ),

i.e., εk(u1
H ) = εk(u2

H ) = α ≥ 0. Thus, we get

(
εk(u

1
H )∇uH ;1

h − εk(u
2
H )∇uH ;2

h , ∇uH ;1
h − ∇uH ;2

h

)

= α
(
∇(uH ;1

h − uH ;2
h ), ∇(uH ;1

h − uH ;2
h )

)
≥ 0.

(34)

Hence, (33) and (34) lead to

ε‖∇(u1
h − u2

h)‖
2
0 + σ0‖u1

h − u2
h‖

2
0 ≤ 0.

Therefore, since ε > 0, σ0 > 0 and u1
h − u2

h ∈ Xh , we get

u1
h = u2

h . �

An a priori error estimate for formulation (9) is established by the following

theorem. This analysis follows the approach used in [5, 13].
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Theorem 3.6. Let u ∈ H k+1(�)∩ H 1
0 (�) be the solution of (1)-(2). We assume

that the assumption (26) holds and ε < H < 1. If uh is the discrete solution

of (9), then



∑

T ∈TH

ε‖∇(u − uh)‖
2
0,T + as(u − uh, u − uh)|T + σ1 H‖uH

h ‖2
0,T





1/2

≤ cH k+ 1
2 ‖u‖k+1.

(35)

Since as(∙, ∙)|T is L2(T )-coercive (Lemma 3.3), then

‖|u − uh‖| ≤ cH k+ 1
2 ‖u‖k+1, (36)

where ‖| ∙ ‖| is defined in (31).

Moreover, the following estimates hold for the solution uH :

‖u − uH‖0 ≤ cH k+ 1
2 ‖u‖k+1 ; (37)

and

‖∇(u − uH )‖0 ≤ c

[

1 +
(

H

ε

)1/2
]

H k‖u‖k+1. (38)

Proof. Let wH be the interpolant of u in the space X H and let us set

ηh = u − wH ; eh = wH − uh; u − uh = ηh + eh .

Observing that eH
h = −uH

h and subtracting (9) from (4) taking eh as test func-

tion, we obtain

B(eh, eh) + D(uH ; eH
h , eH

h ) = −B(ηh, eh). (39)

Using (5), (6) and (30), we obtain

ε
∑

T ∈TH

‖∇eh‖
2
0,T + as(eh, eh) +

∑

T ∈TH

σ1 H‖eH
h ‖2

0,T ≤ −B(ηh, eh). (40)

Since as(ηh, eh) = 1
2 [a(ηh, eh) + a(eh, ηh)] so that a(ηh, eh) = 2as(eh, ηh) −

a(eh, ηh), −B(ηh, eh) can be written as

−B(ηh, eh) = −ε(∇ηh, ∇eh) − 2as(eh, ηh) + a(eh, ηh). (41)
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The first term on the right-hand side of (41) can be bounded by using the

Cauchy-Schwartz and Young’s inequalities. This yields:

−ε(∇ηh, ∇eh) ≤ μ1ε
∑

T ∈TH

‖∇eh‖
2
0,T +

ε

4μ1

∑

T ∈TH

‖∇ηh‖
2
0,T .

The second term is bounded by using the inequality as(u, v) ≤ μas(u, u)

+as(v, v)/4μ, which holds for all μ > 0 and as(. , .) symmetric positive. Thus,

− 2as(eh, ηh) ≤ μ2a(eh, eh) +
1

μ2
a(ηh, ηh)

≤ μ2a(eh, eh) +
1

μ2

∑

T ∈TH

‖β ∙ ∇ηh‖0,T ‖ηh‖0,T +
|σ |∞
μ2

∑

T ∈TH

‖ηh‖
2
0,T

≤ μ2a(eh, eh) +
μ′

2

μ2

∑

T ∈TH

H‖β ∙ ∇ηh‖
2
0,T

+
(

H−1

4μ′
2μ2

+
|σ |∞
μ2

) ∑

T ∈TH

‖ηh‖
2
0,T .

Finally for the third term we use Lemma 3.2 and Young’s inequality to get

a(eh, ηh) ≤ (β ∙ ∇eh, ηh) + c0as(eh, eh)
1/2‖ηh‖0

≤ (β ∙ ∇eh, ηh) + μ3as(eh, eh) +
c

4μ3

∑

T ∈TH

‖ηh‖
2
0,T .

Substituting these three inequalities back into (40), we get

ε(1 − μ1)
∑

T ∈TH

‖∇eh‖
2
0,T + (1 − μ2 − μ3)as(eh, eh)

+
∑

T ∈TH

σ1 H‖eH
h ‖2

0,T

≤ (β ∙ ∇eh, ηh) +
ε

4μ1

∑

T ∈TH

‖∇ηh‖
2
0,T (42)

+
μ′

2

μ2

∑

T ∈TH

H‖β ∙ ∇ηh‖
2
0,T

+
(

H−1

4μ′
2μ2

+
|σ |∞
μ2

+
c

4μ3

) ∑

T ∈TH

‖ηh‖
2
0,T .
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Now, the term (β ∙ ∇eh, ηh) may be rewritten as

(β ∙ ∇eh, ηh) ≤
∑

T ∈TH

‖β ∙ ∇eh‖0,T ‖ηh‖0,T

≤
∑

T ∈TH

‖β ∙ ∇eH‖0,T ‖ηh‖0,T + ‖β ∙ ∇eH
h ‖0,T ‖ηh‖0,T .

(43)

In order to obtain a bound for ‖β ∙ ∇eH‖0,T we use the discrete inf-sup condi-

tion (A4). Note that

(β ∙ ∇eH , ϕh) = − (β ∙ ∇eH
h , ϕh) − ε(∇eh, ∇ϕh) − (σeh, ϕh)

− D(uH , eH
h , ϕH

h ) − ε(∇ηh, ∇ϕh) − a(ηh, ϕh).

Then, using the Cauchy-Schwartz inequality, the inverse estimate (A3) and

Lemmas 3.1 and 3.2, we get

ca‖β ∙ ∇eH‖0,T

≤ sup
vh∈Xh(T )

(β ∙ ∇eH , vh)|T

‖vh‖0,T
+ cδas(eh, eh)

1/2|T

≤ ‖β ∙ ∇eH
h ‖0,T + cεH−1‖∇eh‖0,T + c0as(eh, eh)

1/2|T + α‖∇eH
h ‖0

+ cεH−1‖∇ηh‖0,T + ‖β ∙ ∇ηh‖0,T + |σ |∞‖η‖0,T + cδas(eh, eh)
1/2|T

≤ cεH−1‖∇ηh‖0,T + ‖β ∙ ∇ηh‖0,T + |σ |∞‖η‖0,T

+ cεH−1‖∇eh‖0,T + (α + |β|∞)‖∇eH
h ‖0,T + (c0 + cδ)as(eh, eh)

1/2|T .

Hence, the term

‖β ∙ ∇eh‖0,T ‖ηh‖0,T

in (43) is bounded by

‖β ∙ ∇eh‖0,T ‖ηh‖0,T

≤ c
(
εH−1‖∇ηh‖0,T ‖ηh‖0,T + ‖β ∙ ∇ηh‖0,T ‖ηh‖0,T + ‖ηh‖

2
0,T

+ εH−1‖∇eh‖0,T ‖ηh‖0,T + ‖∇eH
h ‖0,T ‖ηh‖0,T + as(eh, eh)

1/2‖ηh‖0,T
)
.
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Applying Young’s inequality to each term gives

‖β ∙ ∇eh‖0,T ‖ηh‖0,T

≤ c
(

1

2
ε2 H−1‖∇ηh‖

2
0,T +

1

2
H−1‖ηh‖

2
0,T +

1

2
H‖β ∙ ∇ηh‖

2
0,T

+
1

2
H−1‖ηh‖

2
0,T + ‖ηh‖

2
0,T + μ4ε‖∇eh‖

2
0,T +

1

4μ4
εH−2‖ηh‖

2
0,T

+ μ5 H‖∇eH
h ‖2

0,T +
1

4μ5
H−1‖ηh‖

2
0,T + μ6as(eh, eh) +

1

4μ6
‖ηh‖

2
0,T

)
.

Returning now to (42) and (43), and choosing suitable values for μ1, μ2, μ′
2,

μ3, μ4, μ5 and μ6, we obtain

∑

T ∈TH

ε‖∇eh‖
2
0,T + as(eh, eh)|T + σ1 H‖eH

h ‖2
0,T

≤ c
∑

T ∈TH

[
(ε2 H−1 + ε)‖∇ηh‖

2
0,T + H‖β ∙ ∇ηh‖

2
0,T (44)

+ (1 + H−1 + εH−2)‖ηh‖
2
0,T

]
.

Next, using the approximation property (A1), the triangular inequality and con-

sidering that ε ≤ H , we obtain the estimate (35) given by




∑

T ∈TH

ε‖∇(u − uh)‖
2
0,T + as(u − uh, u − uh)|T + σ1 H‖uH

h ‖2
0,T





1/2

≤ cH k+ 1
2 ‖u‖k+1.

Since as(∙, ∙)|T is L2(T )-coercive, i.e., as(eh, eh)|T ≥ σ0‖eh‖2
0,T , we obtain

‖|eh‖| ≤ cH k+ 1
2 ‖u‖k+1. (45)

To obtain the estimate (37) note that

‖u − uH‖0 ≤ ‖u − uh‖0 + ‖uH
h ‖0 ≤ ‖u − uh‖0 + ‖eH

h ‖0

≤ ‖u − uh‖0 + ‖eh‖0 + ‖eH‖0 ≤ 2‖eh‖0 + ‖ηh‖0 + ‖eH‖0.
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As PH is L2 stable (assumption (A2)), then ‖eH‖0 ≤ c‖eh‖0. Thus

‖u − uH‖0 ≤ c‖eh‖0 + ‖ηh‖0.

Now, using again (A1) and (45) we obtain

‖u − uH‖0 ≤ cH k+ 1
2 ‖u‖k+1. (46)

Finally, considering that

‖∇(u − uH )‖0 ≤ ‖∇(u − uh)‖0 + ‖∇uH
h ‖0

≤ ‖∇eh‖0 + ‖∇ηh‖0 + ‖∇uH
h ‖0 ,

together with assumption (A1), (44) and the relation ε < H , we get the desired

result (38). �

One may note that the previous estimates recover the same rates of many

stabilized methods, like SUPG, and the SGS method as well. Those estimates

are also verified by the numerical experiments conducted in the next section.

4 Numerical results

In this section, we provide numerical experiments to evaluate the NSGS con-

vergence rates in the L2 norm and the H 1 semi-norm, which are compared to

results obtained using the SGS method with cb = cb (measTh)
1/d , cb = 1, unless

otherwise indicated. We consider two problems with regular solutions defined in

a two-dimensional domain � = (0, 1) × (0, 1) , where the medium is assumed

homogeneous and isotropic. The structured meshTH is formed by connecting the

bottom left corner of each mesh square with its top right corner. The convergence

of the iterative procedure is obtained when max
1≤ j≤dof

∣
∣
∣ui+1

H ; j − ui
H ; j

∣
∣
∣ ≤ tol = 10−3,

where dof stands for the total number of degrees of freedom in TH . In general

a small number of iterations is necessary to reach the preset accuracy. We did

not consider here computational aspects of both methods since SGS is a linear

method and it obviously leads to much cheaper cost. However, the additional

computational cost resulting from the NSGS method, or any other stabilized

nonlinear method, is surely justified when either the problem is nonlinear or
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non physical oscillations are not permissible (see e.g. [21]). One may check the

NSGS property of preventing spurious modes through numerical experiments

for problems with internal and boundary layers which are reported in [26].

4.0.1 Example 1: Advection-diffusion-reaction problem

Consider the problem (1) with β = (1, 0), σ = 1 and ε = 10−3 and 10−7.

We also consider the limiting case where ε vanishes. The source term f and

Dirichlet boundary conditions are set such that the exact solution is as follows:

u(x, y) = exp
(

−
(x − 0.5)2

0.2
−

3(y − 0.5)2

0.2

)
.

The convergence rates are shown in Figures 1-5. The numerical performance

of the NSGS method and the SGS method is nearly identical, independently of

the diffusion range. Second-order convergence of the error ‖u − uh‖0 is reached

for both methods, and the same happens to ‖u − uH‖0. Similarly, both methods

yield optimal convergence rates for ‖∇u − ∇uh‖0 and the error ‖∇u − ∇uH‖0

is also an O(h) as predicted by the analysis. We may also note that the NSGS

error of uH decreases more smoothly when compared to the one of uh . Figure 5

also shows that the SGS convergence rates slightly depends on the choice of the

free parameter cb.

4.0.2 Example 2: Advection-diffusion problem

We now consider an advection-diffusion problem with β = (1, 0) and the dif-

fusion coefficient equal to 10−3 and 10−6. Homogeneous Dirichlet boundary

conditions are prescribed all over the boundary and the source term f is set such

that the exact solution is as follows:

u(x, y) = sin(πx) sin(πy).

The convergence rates are shown in Figures 7 and 9. For ε = 10−3, Figure 7

shows optimal convergence rates (O(h2)) for ‖u − uH‖0 and nearly optimal for

‖u − uh‖0, in the case of both NSGS and SGS with cb = 1. Like in the previous

test case, optimal convergence rates are reached for both methods in terms of

‖∇u − ∇uh‖0 and of ‖∇u − ∇uH‖0 as well. The same behavior occurs for

ε = 10−6.
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Figure 1(a-b) – Convergence rates (ε = 10−3).
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Figure 1(c-d) – Convergence rates (ε = 10−3).
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Figure 2(a-b) – Convergence rates (ε = 10−7).
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Figure 2(c-d) – Convergence rates (ε = 10−7).
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Figure 3(a-b) – Convergence rates (ε = 0).
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Figure 3(c-d) – Convergence rates (ε = 0).
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Figure 4(a-b) – Convergence rates (ε = 10−3).
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Figure 4(c-d) – Convergence rates (ε = 10−3).
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Figure 5(a-b) – Convergence rates (ε = 10−6).
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Figure 5(c-d) – Convergence rates (ε = 10−6).
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5 Conclusion

In this work we analyzed the Nonlinear Subgrid Method (NSGS) proposed

in [25] for advection-diffusion equations. It is based on a two-level approach

in which a nonlinear viscosity term is added only to the subgrid scales of the

finite element mesh. The amount of subgrid viscosity is scaled by the resolved

scale solution at element level, yielding a free parameter method. The discrete

setting introduced in [12, 13] was used to conduct the analysis. The method was

proved to be stable and yields optimal convergence rates by assuming that the

grid is quasi-uniform. Under the assumption that the subgrid eddy viscosity is

minimum, uniqueness of solution is proved.
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