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New conservation laws for inviscid Burgers equation
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Abstract. In this paper it is shown that the inviscid Burgers equation is nonlinearly self-adjoint.

Then, from Ibragimov’s theorem on conservation laws, local conserved quantities are obtained.
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1 Introduction

In a previous work [4] the class of the self-adjoint equations (in the sense of the

definition introduced by Ibragimov in [12]) of the type

ut + f (t, x, u, ux) = 0

was determined. In particular, it was proved that the inviscid Burgers equation

ut + a(u)ux = 0 (1)

is (quasi) self-adjoint. In addition, from Ibragimov’s theorem on conservation

laws [13], conservation laws for projectable Lie point symmetries (see [21]) of

(1) were established.

Recently Maria Luz Gandarias [8] and Nail Ibragimov [17, 18, 19] have

generalized the previous concepts of self-adjoint equations [12, 13, 14].
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The recent developments allow one to find new conservation laws for equa-

tion (1). Thus in this paper the results obtained in [4] are complemented by

using the new concepts [8, 17, 18, 19] combined with the powerful result [13].

The paper is organized as the follows: in the next section it is revisited

Ibragimov’s theorem on conservation laws and the concepts of self-adjoint

equations. In the Section 3 the results regarding (1) obtained in [4] are dis-

cussed with the point of view of the new developments. In the following, some

new conservation laws are established illustrating the results.

2 Revisiting previous results

2.1 Ibragimov’s theorem on conservation laws

In what follows, it is assumed the summation over repeated indices, x =

(x1, . . . , xn) and u = (u1, . . . , um) denotes the indepedent variables and the

depedents variables, respectively. The set of kth order derivatives and all differ-

ential functions of finite order shall be denoted by ∂ku and A, respectively.

Ibragimov’s theorem on conservation laws is

Theorem 2.1. Any symmetry (Lie point, Lie-Bäcklund, nonlocal symmetry)

X = ξ i ∂

∂xi
+ ηα

∂

∂uα
+ ηαi

∂

∂uαi
+ ηαi j

∂

∂uαi j

+ ∙ ∙ ∙ , (2)

where ξ i , ηα ∈ A, ηαi = Di (η
α − ξ j uαj ) + ξ j uαi j , η

α
i j = Di D j (η

α − ξ kuαk ) +

ξ kuαki j , etc, of the system of equations

Fα(x, u, ∂u, . . . , ∂ su) = 0 (3)

with n independent variables x = (x1, . . . , xn) and m dependent variables

u = (u1, . . . , um) is inherited by the adjoint equation. Specifically the operator

Y = ξ i ∂

∂xi
+ ηα

∂

∂uα
+ ηβ∗

∂

∂vβ
(4)

with an appropriately chosen coefficient η∗ is admitted by the system of equa-

tions (3) and its adjoint system

F∗
α (x, u, v, ∂u, ∂v, . . . , ∂ su, ∂ sv) :=

δ(vβFβ)

δuα
= 0. (5)
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Furthermore, the combined system (3) and (5) has the conservation law

Di Ci = 0, where

Ci = ξ iL+ Wα

[
∂L

∂uαi
− D j

(
∂L

∂uαi j

)

+ D j Dk
∂L

∂uαi jk

− ∙ ∙ ∙

]

+ D j (W
α)

[
∂L

∂uαi j

− Dk

(
∂L

∂uαi jk

)

+ ∙ ∙ ∙

]

+ D j Dk(W
α)

[
∂L

∂uαi jk

− ∙ ∙ ∙

]

+ ∙ ∙ ∙

(6)

and W α = ηα − ξ i uαi .

2.2 Quasi-self-adjoint and self-adjoint equations

The following definitions were introduced in [12, 13, 14].

Definition 2.2. An equation F = 0 is said to be self-adjoint if there exists a

function φ = φ(x, u, . . .) such that F∗|v=u = φF. Thus F∗|v=u = 0 if and only

if F = 0.

Definition 2.3. An equation F = 0 is said to be quasi-self-adjoint if there

exists a function φ = φ(x, u, . . .) such that F∗|v=ϕ(u) = φF, with ϕ′(u) 6= 0.

Thus F∗|v=ϕ(u) = 0 if and only if F = 0.

Whenever an equation is quasi-self-adjoint or self-adjoint, formulae (6)

allow one to construct local conservation laws for the considered equation

insteading of v by ϕ(u) or u, respectively.

Recently many authors have been employing these concepts in order to es-

tablish conservation laws for equations and systems. For instance, Ibragimov,

Torrisi and Tracinà determined the class of quasi-self-adjoint system derived from

a (2 + 1) generalized Burgers equation in [16]. Bruzón, Gandarias and Ibragi-

mov determined a class of self-adjoint differential equations in [3]. Conservation

laws for the Camassa-Holm equation was obtained by Ibragimov, Khamitova and

Valenti in [20]. Further examples can be found in [4, 5, 15].
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2.3 Conservation laws for inviscid Burgers equation

The adjoint equation to (1) is (see [4])

vt + a(u)vx = 0. (7)

Let F = vt + a(u)ux . Then it is easy to see that F∗|v=ϕ(u) = −ϕ′(u)(ut +

a(u)ux). Thus (1) is quasi-self-adjoint, for all smooth function ϕ = ϕ(u). In

particular, this holds for ϕ = u and equation (1) is also self-adjoint.

From Ibragimov’s theorem on conservation laws, a conserved vector for

equation (1) is

C0 = [η + (τa(u)− ξ) ux ]ϕ(u),

C1 = [ηa(u)− (τa(u)− ξ) ut ]ϕ(u),
(8)

where

X = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
is a Lie point symmetry generator of (1).

3 New conservation laws for equation (1)

Definitions 1 and 2 have been extended to

Definition 3.1. An equation F = 0 is said to be nonlinearly self-adjoint if the

equation obtained from the adjoint equation (5) by the substitution v = ϕ(x, u)

with a certain function ϕ(x, u) 6= 0 is identical with the original equation (3),

that is,

F∗
∣
∣
v=ϕ(x,u) = φ(x, u, . . .)F, (9)

for some φ ∈ A.

Whenever (9) holds for a certain function ϕ such that ϕu 6= 0 and ϕxi 6= 0,

the equation F = 0 is called weak self-adjoint.

Remark 3.1. The concept of nonlinearly self-adjoint equations was introduced

by Ibragimov, see [17, 18, 19]. On the other hand, the notion of weak self-adjoint

equation was introduced by Gandarias in [8].
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With respect to these new concepts, weak self-adjointness for evolution equa-

tions were obtained in [9, 10, 11]. Namely, in [10] Gandarias, Redondo and

Bruzón applied the new concept to a class of equations arising in financial mathe-

matics. In [9] Gandarias established local conservation laws for a porous medium

equation using the self-adjointness of the equation under consideration. More

recently Gandarias and Bruzón [11] found a class of weak self-adjoint forced

KdV equations.

Nonlinearly self-adjointness have been focused by Freire and Sampaio in

[6], where the authors determined a class of nonlinear self-adjoint equations

of fifth-order. In [2] Bozhkov, Freire and Ibragimov showed that the nonlinear

self-adjointness of the Novikov equation (further details, see [2] and references

therein) implies in the strictly self-adjointness of that equation. In [7] new classes

of self-adjoint equations up to fifth-order were found.

Taking the nonlinearly self-adjointness for differential equations into account,

substituting v = ψ(x, t, u) into (7) and using (1), it is obtained

ψt + a(u)ψx = 0. (10)

A solution to (10) is ψ(x, t, u) = φ(z)+ ϕ(u), with z = x − ta(u).

From Ibragimov’s theorem on conservation laws, a local conservation law for

equation (1) is given by

C0 = [η + (τa(u)− ξ) ux ] (φ(z)+ ϕ(u)),

C1 = [η − (τa(u)− ξ) ut ] (φ(z)+ ϕ(u)),
(11)

where z = x − ta(u).

In fact, the new conserved vector obtained from the self-adjointness’ new

concept is C = (C0,C1), where

C0 = [η + (τa(u)− ξ) ux ]φ(x − ta(u)),

C1 = [ηa(u)− (τa(u)− ξ) ut ]φ(x − ta(u)).
(12)

Observe that (12) possibilites to find an infinite number of new conservation

laws for a fixed Lie point symmetry generator of equation (1).
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4 Examples

Here it will be established some conservation laws illustrating the results ob-

tained previously. Consider the Lie point symmetry generator

X4 = t
∂

∂t
−

a(u)

a′(u)

∂

∂u
(13)

of equation (1). Here it is used the same notation employed in [4]. Substituting

the components of (13) into (12) it is obtained

C0 =
[
−

a(u)

a′(u)
+ ta(u) ux

]
φ(x − ta(u)),

C1 =
[
−

a(u)2

a′(u)
− ta(u) ut

]
φ(x − ta(u)).

(14)

Setting φ(z) = z into (14), it is found that the conserved vector is C =

(C0,C1), where

C0 = −
a(u)

a′(u)
(x − ta(u))− t A(u)+ Dx

(
t x A(u)− t2α(u)

)
,

C1 = −
a(u)2

a′(u)
(x − ta(u))+ x A(u)− 2tα(u)+ Dt

(
t2α(u)− t x A(u)

)

α is given by A′(u) = a(u) and β is a function such that α′(u) = a(u)2.

Transfering the terms Dx(. . .) from C0 to C1 and simplifying, it is obtained the

conserved vector C = (C0,C1), with components given by

C0 = −
a(u)

a′(u)
(x − ta(u))− t A(u),

C1 = −
a(u)2

a′(u)
(x − ta(u))+ x A(u)− 2tα(u).

Recently new Lie point symmetries of the inviscid Burgers equations were

found, see [1]. In the next example we use the new generator (it is employed the

same notation of the original paper [1])

Z11 = (x − ta(u))
∂

∂x

for establishing another conservation laws for (1). Let φ = c1(x − ta(u))+ c2,

ϕ = c3u p + c4/u, p 6= −1, where c1, c2, c3, c4 ∈ R are arbitrary constants,
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A′(u) = a(u), B ′(u) = a(u)u p, U ′ = a(u)/u and α′ = a(u)2. From (10) it is

obtained
C0 = −c1(x − ta(u))2ux − c2(x − ta(u))ux

− c3(x − ta(u))ux − c4
x − ta(u)

u
ux ,

C1 = c1(x − ta(u))2ut + c2(x − ta(u))ut

+ c3(x − ta(u))ut + c4
x − ta(u)

u
ut .

Since

C0 = c1
[
Dx(2xt A − x2u − t2α)+ 2xu − 2t A

]
+ c2 [Dx(t A − xu)+ u]

+ c3

[
Dx

(
t B − x u p+1

p+1

)
+ u p+1

p+1

]
+ c4

[
Dx

(
x ln |u| + ta(u)

u

)
+ ln |u|

]
,

C1 = c1
[
Dt(x2u + t2α − 2xt A)+ 2x A − 2tα

]
+ c2 [Dt(xu − t A)+ A]

+ c3

[
Dt

(
x u p+1

p+1 − t B
)

+ B
]

+ c4 [Dt (x ln |u| − tU )+ U ] ,

by transfering the terms Dt(. . .) from C1 to C0, it is obtained

C0 = c1(2xu − 2t A)+ c2u + c3
u p+1

p + 1
+ c4 ln |u|,

C1 = c1(2x A − 2tα)+ c2 A + c3 B + c4U .

It is easy to see that the conserved vector obtained is a linear combination of

the conserved vectors

D1 = (2xu − 2t A, 2x A − 2tα), D2 = (u, A),

D3 =
(

u p+1

p + 1
, B

)
, D4 = (ln |u|,U ).

5 Conclusion

In this paper the previous results on conservation laws obtained by the author in

[4] are generalized using the recent new developments due to Maria L. Gandarias

[8] and Nail H. Ibragimov [17, 19]. The main result is the new conserved vector

(12). In particular, the results obtained here possibilite one to construct an infinite

number of new conservation laws for equation (1).
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