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Abstract. In the present work we propose the use of weighted Bregman distances in the

construction of regularization terms for the Tikhonov functional applied for the formulation and

solution of the inverse problem of photoacoustic spectroscopy. Test case results demonstrate

that better estimates were obtained for the simultaneous estimation of the thermal diffusivity and

optical absorption coefficient using, as synthetic experimental data, the information on both the

amplitude and phase-lag of the temperature at the interface sample-gas between the material under

analysis and the air chamber of the closed photoacoustic cell.
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1 Introduction

The Photoacoustic Spectroscopy (PAS) [1], or more generally the Photothermal

Spectroscopy [2–4], are non-destructive testing methodologies that have been

applied for the thermal and optical characterization of materials [5–16]. There

are other applications under development, such as gases monitoring [17, 18]

and investigation of thermal contact resistance for copper coatings on carbon

surfaces [19].
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The photoacoustic effect is the basic phenomenon upon which PAS is built,

and it occurs when a material sample placed inside a closed cell filled with air is

illuminated with periodically interrupted light. The light absorbed by the sample

is converted into heat through a nonradiative de-excitation process. The periodic

flow of heat into the air chamber of the cell produces, as an acoustic piston,

pressure disturbances in it, which can be detected by a microphone mounted at

the cell wall. In the model for the direct problem developed by Rosencwaig

and Gersho [20], known as RG theory, this is the only phenomenon taken into

account in the PAS signal.

The PAS inverse problem is known to be ill-conditioned, and therefore regu-

larization methods are usually required for its solution.

A number of different authors have investigated this problem, see for example

Refs. [21–26], and most of them use Tikhonov’s regularization. Such approach

allows the use of a priori information, when available.

In a previous work [27] we used an implicit inverse problem formulation, and

the Levenberg-Marquardt method, for the PAS with the direct problem modeled

with the RG theory. As experimental data it was used only the amplitude of

the steady periodic temperature established at the surface of the material sample

that is next to the air chamber of the closed photoacoustic cell. We were able to

estimate, separately, the thermal diffusivity,α, the thermal conductivity,k, and

the optical absorption coefficient,β, of the material under analysis. However, it

was not possible to estimate any pair of coefficients simultaneously.

In [28] we extended our previous results [27] by considering also as experi-

mental data the phase-lag between the temperature at the sample-gas interface

and the modulated light source. An improvement on the solution of the inverse

problem was observed (smaller confidence bounds) when each parameter was

estimated separately, except for the thermal conductivity due to the null sensitiv-

ity of the phase-lag with respect to this parameter. The simultaneous estimation

of (α, β) was performed, but the estimated values for the unknowns were cor-

rupted by the amplification of the error present in the experimental data. For a

set of experimental data with 3% noise, the confidence bounds for the estimates

were of the order of 8%. Using also a set of 3% noisy experimental data, we

attempted to estimate simultaneously(α, k) or (β, k) but the confidence bounds
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were, respectively, of the order of 14% and 7%. The range of the modulated

frequency for external illumination was shifted from 5-17 Hz (in [27]) to 1-8 Hz

(in [28]) in order to have a higher sensitivity of the parameters to be estimated.

In both works [27, 28], it was required, for most of the test cases, the use

of a damping factor in the Levenberg-Marquardt method in order to achieve

convergence.

As mentioned before, Tikhonov’s regularization [29] is the most well known

approach used for the solution of ill-posed problems. In order to deal with the

effects of the noise present in the experimental data, it has been used in numerous

different areas of application [30–34].

Much work has been done on the analysis and proposition of regularization

terms for Tikhonov’s functional [35–39], and the proper choice of the regulariza-

tion parameter is of key importance for the implementation of such an approach

for the solution of inverse problems [40–42].

Cidade et al. [43, 44] proposed the use of Bregman distances [45] as Tikhonov’s

regularization terms for one application in the restoration of atomic force mi-

croscopy nanoscale images. Using Csiszár’s measure [46], called q-discrepancy,

a family of regularization terms was constructed. Berrocal Tito et al. [47] and

Pinheiro et al. [48] extended this idea by using moments of the q-discrepancy.

The former work [47] is related to the estimation of parameters in an environ-

mental model, and the latter [48] deals with an inverse problem of radiative

properties estimation.

In the present work a one parameter family of regularization terms constructed

with Bregman distances based on theq-discrepancy function is implemented

in the formulation and solution of PAS as an inverse problem. The original

idea [43, 44] was improved by the proper weighting of the unknowns to be

determined, and we use here the denomination weighted Bregman distances.

We have focused on the simultaneous estimation of the sample thermal diffusiv-

ity, αs, and optical absorption coefficient,β.

Besides the use of the weighted Bregman distances we have also implemented

a feedback approach. The results presented in this work indicate an improvement

with respect to our previous works [27, 28].
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The effects of the parameterq used in the construction of the regularization

terms, as well as those of the regularization parameterλ are investigated. Some

test case results are presented.

As real experimental data is not yet available, we have used synthetic exper-

imental data. The experimental apparatus is available at our institution, and in

the near future we will be able to acquire real experimental data. Before dealing

with the difficulties associated with the real experiments, we decided to perform

the numerical simulations in order to evaluate the best conditions in which the

experiments will be performed.

2 Mathematical formulation and solution of the direct problem –
RG theory

Consider the cylindrical closed photoacoustic cell represented schematically in

Figure 1. The sample of the material under analysis is placed upon a backing

material, and the other boundary of the sample adjoint to the air chamber of the

cell, is exposed to an incident modulated light with intensity

I (t) =
1

2
I0 [1 + cos(ω ∙ t)] (1)

whereI0 is the maximum intensity of the incident light,ω is the angular frequency

of the chopping mechanism, andt represents time.

It is assumed that the light doesn’t go through any interaction within the air

chamber and is fully absorbed by the material sample according to Beer’s law

Is (x, t) = eβ x I (t) (2)

whereβ is the optical absorption coefficient, the subscripts represents the sam-

ple, andx is the space coordinate representing the depth in the sample starting

at the interface between the sample and the air chamber, as shown in Figure 1.

The volumetric heat generation at the sample due to the light absorbed is

given by

S(x, t) =
d Is (x, t)

dx
=

1

2
β I0eβx [1 + cos(ω ∙ t)] (3)
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Figure 1 – Schematical representation of the closed photoacoustic cell.

and the mathematical formulation of the heat conduction problem in the photoa-

coustic cell is given by

∂2θg (x, t)

∂x2
=

1

αg

∂θg (x, t)

∂t
, 0 < x < l g (4a)

∂2θs (x, t)

∂x2
=

1

αs

∂θs (x, t)

∂t
−

β I0

2ks
eβx

(
1 + ej ωt

)
, −ls < x < 0 (4b)

∂2θb (x, t)

∂x2
=

1

αb

∂θb (x, t)

∂t
, −(lb + ls) < x < −ls (4c)

with the interface conditions given by

θs (0, t) = θg (0, t) , θs (−ls, t) = θb (−ls, t) (4d, e)

ks
∂θs (x, t)

∂x

∣
∣
∣
∣
x=0

= kg
∂θg (x, t)

∂x

∣
∣
∣
∣
x=0

(4f)

ks
∂θs (x, t)

∂x

∣
∣
∣
∣
x=−ls

= kb
∂θb (x, t)

∂x

∣
∣
∣
∣
x=−ls

(4g)
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and the initial conditions given by

θg (x, 0) = 0, 0 ≤ x ≤ l g (4h)

θs (x, 0) = 0, −ls ≤ x ≤ 0 (4i)

θb (x, 0) = 0, − (ls + lb) ≤ x ≤ −ls (4j)

where j is the imaginary number
√

−1, θ is the complex valued temperature,k

represents the thermal conductivity,α the thermal diffusivity, and the subscripts

g, s andb denote air (gas), sample and backing material, respectively.

The complete solution for problem (4) is given in [1, 20, 27]. Here we are

interested only in the temperature at the sample-gas interface, i.e.x = 0,

θ (0, t) = F0 + θ0ej ω t (5)

whereF0 is the time-independent (dc) component of the solution atx = 0, and

θ0 is a complex valued number given by

θ0 =
[

p1 − p2 + p3

p4 − p5

]
H , p1 = (r − 1) (b + 1) eσsls , (6a, b)

p2 = (r + 1) (b − 1) e−σsls , p3 = 2 (b − r ) e−βls , (6c, d)

p4 = (g + 1) (b + 1) eσsls , p5 = (g − 1) (b − 1) eσsls , (6e, f)

H =
β I0

2ks(β2 − σ 2
s )

, b =
kbab

ksas
(6g, h)

g =
kgag

ksas
, r =

(1 − j )β

2as
(6i, j)

as =
(

ω

2αs

) 1
2

, ab =
(

ω

2αb

) 1
2

(6k, l)

ag =
(

ω

2αg

) 1
2

, σs = (1 + j )as (6m, n)

With the PAS experimental apparatus, we measure the ac component of the

temperature (second term on the right hand side of eqn. (5)), and only the real
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part is of physical interest. Therefore, we choose only the terms

Re[θ(0, t)]ac = |θ0| cos(ωt + φ) (7)

Writing,

θ0 = θ1 + j θ2 and θ1 = Re[θ0] , (8)

θ2 = Im [θ0] and θ0 = |θ0| ej φ (9)

we obtain the amplitude

A = |θ0| =
√

θ2
1 + θ2

2 (10)

and the phase-lag

φ = arctan

(
θ2

θ1

)
(11)

If we know the optical and thermal properties of the sample, the thermal prop-

erties of the other materials in the photoacoustic cell, the physical dimensions

ls, lb andl g represented in Figure 1, the frequency of the chopping mechanism,

and the intensity of the incident light, then eqns. (10) and (11) provide the calcu-

lated values for the amplitude and phase-lag of the temperature at the interface

sample-gas between the material and the air chamber atx = 0.

3 Mathematical formulation and solution of the inverse problem

Consider a vector of unknowns,

EZ =
{
Z1, Z2, ..., ZNu

}T
(12)

whereZi , i = 1, 2, . . . , Nu, are thermal or optical properties of a sample of the

material being tested by Photoacoustic Spectroscopy (PAS), andNu represents

the total number of unknowns.

For each modulation frequency used in the PAS experiment, i.e.fi , i =

1, 2, . . . , Nf , where fi = ωi

/
2π and Nf is the total number of frequencies

considered, we acquire the experimental data on both the amplitude of the steady

periodic temperature atx = 0, i.e. Aexpi
, i = 1, 2, . . . , Nf , and the phase-lag

φexpi
,i = 1, 2, . . . , Nf .
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The inverse problem is then formulated as an optimization problem in which

we seek to minimize Tikhonov’s regularization functional

T
(

EZ
)

=
2N f∑

i =1

[
Ci

(
EZ
)

− Ei

]2
+ λ S

(
EZ, EZR

)

= ERT ER + λ S
(

EZ, EZR
)

(13)

whereCi ( EZ) and Ei represent the calculated and experimental values of the

amplitude, fori = 1, 2, . . . , Nf , and the calculated and experimental values of

the phase-lag, fori = Nf + 1, Nf + 2, . . . , 2Nf , ER is the vector of residues

given by
ER =

{
Acalc1 − Aexp1

, . . . , AcalcN f
− AexpN f

,

φcalc1 − φexp1
, . . . , φcalcN f

− φexpN f

}T (14)

λ is the regularization parameter,S represents the regularization terms, andEZR

is a vector of reference values for the unknowns we want to determine,EZ. We

have made an adjustment by a constant factor in the calculated and experimental

values for the amplitudes,Aexpi
and Acalci , i = 1, 2, . . . , Nf , to make them of

the same order of magnitude as the phase-lag values.

Using Csiszár’s measure [46], here calledq-discrepancy [43, 44], we have

ηq

(
EZ
)

=
1

1 + q

Nu∑

i =1

Zi
Zq

i − mq

q
(15)

whereq is a real valued number withq > 0, andm is a measure associated with

a prior information (it will cancel out in the calculations to be done next), and

the Bregman distance [43–45]

Dq

(
EZ, EZR

)
= ηq

(
EZ
)

− ηq

(
EZR

)
−

〈
∇ηq

(
EZR

)
, EZ − EZR

〉
(16)

a family of one parameter regularization terms can be constructed. From eqns.

(15) and (16), we obtain

Dq

(
EZ, EZR

)
=

1

1 + q

Nu∑

i =1

{

Zi
Zi

q −
(
ZR

i

)q

q
−

(
ZR

i

)q (
Zi − ZR

i

)
}

(17a)
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We must stress that varying the parameterq, with q > 0, a family of regular-

ization terms is obtained.

By taking the limitq → 0 in eqn. (17a), one gets the cross-entropy regular-

ization term

D0

(
EZ, EZR

)
=

Nu∑

i =1

{
Zi ln

(
Zi

ZR
i

)
−

(
Zi − ZR

i

)
}

(17b)

and withq = 1 the usual energy regularization term is derived, namely

D1

(
EZ, EZR

)
=

1

2

Nu∑

i =1

(
Zi − ZR

i

)2
(17c)

As the unknownsZi , i = 1, 2, . . . , Nu, may be of different orders of magni-

tude, we propose a modification to eqn. (17a) by introducing a weighting factor

1
/

fZi , i = 1, 2, . . . , Nu, such that

D̄q

(
EZ, EZR

)
=

1

1 + q

Nu∑

i =1

1

fZi

{

Zi
Zi

q −
(
ZR

i

)q

q
−

(
ZR

i

)q (
Zi − ZR

i

)
}

(18a)

D̄q

(
EZ, EZR

)
denominated weighted Bregman distances, for the particular case

of q → 0 results in

D̄0

(
EZ, EZR

)
=

Nu∑

i =1

1

fZi

{
Zi ln

(
Zi

ZR
i

)
−

(
Zi − ZR

i

)
}

(18b)

In the present work we consider the weighting factor

fZi =
(
ZR

i

)q+1
, i = 1, 2, ..., Nu (19)

The regularization term in eqn. (13) may then be either

S
(

EZ, EZR
)

= Dq

(
EZ, EZR

)
or S

(
EZ, EZR

)
= D̄q

(
EZ, EZR

)
(20a, b)

As described in [43, 44] the use of Bregman distances constructed with the

q-discrepancy measure yields a one-parameter family of regularization terms in

which the usual energy (quadratic),q = 1, and the cross-entropy terms,q → 0,
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are particular cases. See eqns. (17b) and (17c). Therefore, by simply varying

one parameter,q, different solutions are obtained and the user may decide which

one is the best for a given application. It must be stressed that different sets of

experimental data with different levels of noise are better handled by different

regularization terms [43, 44, 49].

It is important to mention also that the regularization terms given by eqns.

(20a,b) allow the use of prior information on the unknowns by including refer-

ence values for such parameters.

In order to minimize the cost function given by eqn. (13), we write the critical

point equation as

∂T
(

EZ
)

∂ EZ
= 0 i.e.

∂T
(

EZ
)

∂ Z j
= 0, j = 1, 2, . . . , Nu (21a, b)

resulting

JT ER + λESEZ = 0 (22)

where the elements of the Jacobian matrixJ are given by

Jst =
∂Cs

∂ Zt
, s = 1, 2, . . . , 2Nf and t = 1, 2, . . . , Nu (23)

and

ESEZ =
{

∂S

∂ Z1
,

∂S

∂ Z2
, . . . ,

∂S

∂ ZNu

}T

(24)

The elements of the Jacobian matrixJ, given by eqn. (23), were calculated

numerically by using a central finite-difference approximation. By using the

Taylor’s expansions

ER
(

EZn+1
)

= ER
(

EZn
)

+ Jn1 EZn (25)

ESZ

(
EZn+1

)
= ESEZ

(
EZn

)
+ Jn

S1 EZn (26)

wheren is used as the iteration index in the iterative procedure that will be

constructed for the estimation of the vector of unknownsEZ,

EZn+1 = EZn + 1 EZn (27)
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and the elements of the Jacobian matrixJs are given by

JSuv
=

∂SZu

∂ Zv

=
∂

∂ Zv

(
∂S

∂ Zu

)
, u = 1, 2, . . . , Nu andv = 1, 2, . . . Nu (28)

Introducing eqns. (25) and (26) into eqn. (22) results in the following:
(

JnT
Jn + λ Jn

S

)
1 EZn = −

(
JnT ERn + λ ESn

EZ

)
(29)

We are now in a position to construct an iterative procedure for the estimation

of the vector of unknownsEZ. We first choose an initial guessEZ0, which may be

for example,
EZ0 = EZR (30)

and then we calculate the Jacobian matricesJ0 and J0
S, whose elements are

given by eqns. (23) and (28), respectively, as well as the elements of the vector

of residues given by eqn. (14). Next, the vector of corrections1 EZ0 is calcu-

lated by solving the system of algebraic linear equations (29). The vector, with

new estimates for the unknowns,EZ1, is obtained using eqn. (27). The iterative

procedure for calculating the corrections1 EZn with eqn. (29) and new estimates

for the unknownsEZn+1 with eqn. (27) is continued until a convergence criterion

such as ∣
∣
∣
∣
1Zi

Zi

∣
∣
∣
∣ < ε for i = 1, 2, . . . , Nu (31)

is satisfied, whereε is a given tolerance.

Before we proceed, we must show how the elements of the vectorESEZ, and the

elements of the Jacobian matrixJS, are calculated.

From eqns. (20a,b) and (24) we observe that

∂S

∂ Z j
=

∂ Dq

∂ Z j
, j = 1, 2, . . . , Nu or (32a)

∂S

∂ Z j
=

∂ D̄q

∂ Z j
, j = 1, 2, . . . , Nu (32b)

and from eqns. (28) and (32a,b) we obtain

JSuv
=






∂2Dq

∂ Z2
u

if u = v

0 if u 6= v

u = 1, 2, . . . , Nu andv = 1, 2, . . . , Nu (33a)
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or

JSuv
=






∂2D̄q

∂ Z2
u

if u = v

0 if u 6= v

u = 1, 2, . . . , Nu andv = 1, 2, . . . , Nu (33b)

The first and second derivatives of the Bregman distance in eqns. (32a,b) and

(33a,b) are obtained from eqns. (17a,b) or (18a,b). These derivatives, as well

as the Bregman distances, are shown in Table 1 for both situations: (a) regular

Bregman distances, and (b) weighted Bregman distances.

(a) regular (b)weighted

Dq =
1

1 + q

Nu∑

i =1





Zi

Zi
q − ZR

q

i
q

− ZR
q

i

(
Zi − ZR

i

)




D̄q =

1

1 + q

Nu∑

i =1

1

fZi





Zi

Zi
q − ZR

q

i
q

− ZRq
i

(
Zi − ZR

i

)





D0 =
Nu∑

i =1

{

Zi ln

(
Zi
ZR

i

)

−
(

Zi − ZR
i

)
}

D̄0 =
Nu∑

i =1

1
fZi

{

Zi ln

(
Zi
ZR

i

)

−
(

Zi − ZR
i

)
}

∂ Dq
∂ Z j

=
Z

q
j − ZR

q

j
q

, j = 1, 2, ..., Nu
∂ D̄q
∂ Z j

=
1

fZ j

Z
q
j − ZR

q

j
q

, j = 1, 2, ..., Nu

∂ D0
∂ Z j

= ln




Z j

ZR
j



 , j = 1, 2, ..., Nu
∂ D̄0
∂ Z j

=
1

fZ j
ln




Z j

ZR
j



 , j = 1, 2, ..., Nu

∂2Dq

∂ Z2
j

= Z
q−1
j , j = 1, 2, ..., Nu

∂2D̄q

∂ Z2
j

=
1

fZi
Z

q−1
j , j = 1, 2, ..., Nu

∂2D0
∂ Z2

j

=
1

Z j
, j = 1, 2, ..., Nu

∂2D̄0
∂ Z2

j

=
1

fZi

1

Z j
, j = 1, 2, ..., Nu

Table 1 – Bregman distances used as regularization terms, and the first and second

derivatives for both cases: (a) regular Bregman distances, and (b) weighted Bregman

distances.

4 Results and discussion

As a continuation of our previous works [27, 28] we are here interested in the

numerical evaluation of the PAS before running the real experiments. There-

fore, we use in the solution of the inverse problem synthetic experimental data
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generated with

Ei = Ci

(
EZexact

)
+ 2.576ri σ, i = 1, 2, . . . , 2Nf (34)

whereri is a random number in the range [-1,1], andσ represents the standard

deviation of the measurement errors. The level of noise in the experimental data

that will be reported next for the numerical test cases is computed by

noisei (%) =

∣
∣
∣
∣
2.576ri σ

Ci

∣
∣
∣
∣ × 100%, i = 1, 2, . . . , 2Nf (35)

and we take the maximum value of thenoisei (%), i = 1, 2, . . . , 2Nf .

In order to compare the performance of the approach developed in the present

work with that presented in [27, 28], we used the same geometry, process, ther-

mal and optical parameters for the photoacoustic cell and for the sample of the

material under analysis. In the test cases performed we have used frequencies of

the modulated incident light from 1 to 8 Hz, which may yield higher sensitivities

to the parameters we want to determine [28]. In Table 2 is presented a summary

of the process, thermal and optical parameters used.

backingmaterial gas

Aluminum Air

αb = 0.82× 10−4m2/s, αg = 0.19× 10−4m2/s,

kb = 201W/mK, kg = 0.0239W/mK,

lb = 5 × 10−3m lg = 1.2 × 10−3m

sample light

Opaqueglass Laser HeNe orother

αs = 5.286× 10−7, monochromaticlight

β = 103m−1 I0 = 100W/m2

ks = 1.047W/mK, modulations frequencyused

lb = 5 × 10−3m f = 1, 2, . . . , 8 Hz

Table 2 – Process, thermal and optical parameters for the photoacoustic cell.

In Figure 2 are presented the results for the simultaneous estimation of the

thermal diffusivity,αs, and optical absorption coefficient,β, of opaque glass,
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using three approaches: (i) without regularization, (ii) with regularization using

the regular Bregman distances, and (iii) with regularization using weighted Breg-

man distances. The first approach corresponds toλ = 0 in eqn. (13), and for the

second and third approachesλ = 0.03 andq = 1 with the regularization terms

given, respectively, by eqns. (20a) and (20b). The reference values and the ini-

tial estimates for the thermal diffusivity and optical absorption coefficients were

taken as:αR
s = 4.0 × 10−7m2/s, βR = 9.5 × 102m−1, α0

s = 5.0 × 10−6m2/s,

andβ0 = 0.9×103m−1. The exact values, which we want to recover, are shown

in Table 2.

Five computations were performed for each approach, using for each computa-

tion a different set of pseudo-random numbers, simulating therefore five different

experiments. The value ofσ = 0.5 in eqn. (34) led to synthetic experimental

data with noise up to 4%.

Convergence difficulties were observed when the initial guesses were not taken

close enough to the exact values, as usually happens with Newton-type methods.

Therefore, in order to achieve convergence the full Newton correction step in

eqn. (27) was not used. Instead we have applied a gain factorγ , with 0 ≤ γ ≤ 1,

such that
EZn+1 = EZn + γ 1 EZn (36)

To obtain the results presented in Figure 2 we usedγ = 0.5.

From Figure 2 we may conclude that the use of the regularization terms

with weighted Bregman distances yielded better results, i.e. smaller confidence

bounds. Nonetheless we must be careful because the confidence bounds were

calculated using the inverse of the matrixJT J + λ JS, and therefore higher val-

ues ofλ could yield smaller confidence bounds. This subject deserves further

investigation.

In Figure 3 are shown the values of the confidence bounds as a percentage of

the estimated values of the unknowns, and the values of the percentage difference

between the estimated and exact values of the unknowns. Ten different runs were

performed for each of the two following approaches: (i) without regularization,

i.e. λ = 0 in eqn. (13), and (ii) with regularization using the weighted Bregman

distances. For the second approach it was consideredλ = 0.03 andq = 1.

Here we have used the same reference values and initial guesses considered in
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Figure 2 – Estimates and confidence bounds for (a) thermal diffusivity, and (b) optical

absorption coefficient using three approaches: without regularization; with regulariza-

tion using regular Bregman distances; and with regularization using weighted Bregman

distances.

the previous case. The exact values, which we want to recover, are shown in

Table 2. It should be noted that in order to obtain the results shown in Figure 3

the reduction on the Newton correction step was not necessary, and we have

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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therefore usedγ = 1 in eqn. (36), going back to eqn. (27). It was also observed

that the use of two different initial guesses led to very similar estimates for the

unknowns, i.e. within the same order of confidence bounds and deviation of the

exact values.

Figure 3 – (a) Confidence bounds as a percentage of the estimated values for the un-

knowns, and (b) the percentage difference between the estimated and exact values of the

unknowns.
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From the results shown in Figure 3a we observe a reduction in the values

of the confidence bounds when the regularization with the weighted Bregman

distances is used, but as mentioned before this reduction may have been caused

by the terms added to the diagonal of the information matrix.

From the results presented in Figure 3b, for the difference between the esti-

mated and exact values for the unknowns, we obtain as average values for 10

runs 4.33 ± 2.84% and 4.86 ± 3.07% for the thermal diffusivity,α, and the

optical absorption coefficient,β, respectively, when no regularization is used.

With the weighted Bregman regularization the following values are obtained:

2.97 ± 1.42% and 3.60 ± 1.72%. Therefore, one observes that not only the

differences forα andβ are reduced when regularization is used, but also the

standard deviation computed using 10 runs of the algorithm. This behavior is

also observed in the results presented in Figure 4 and Table 3.

In Figure 4 are presented the variation of the average for the confidence bounds

as a percentage of the estimated values of the unknowns, and the variation of the

average values of the differences between the estimated and exact values, with

the regularization parameterλ and with the parameterq.

Here we have consideredα0
s = αR

s = 4.0 × 10−7m2/s, β0 = βR = 9.5 ×

102m−1, and the exact values of the unknown parameters are given in Table 2.

It must be stressed that in Figure 4 the error bars correspond to one standard

deviation from the average values of both the percentage differences and confi-

dence bounds (as a percentage of the estimated values) obtained in 10 runs for

each value ofq and for each value ofλ. The standard deviation was calculated

from the distribution of the results obtained in the 10 runs. Further, from the

observation of the error bars shown in Figure 4 we conclude that the deviation

of the estimates forα andβ become smaller as higher values ofλ are considered

for a given value ofq.

In Table 3 are presented the average, the best and the worst values for the

differences between the estimated and exact values for the thermal diffusivityα

and the optical absorption coefficientβ. In Table 3 is also presented the difference

between the worst and the best values for the percentage differences.

The average values presented in Figure 4 and Table 3 were obtained using

10 runs of the algorithm using experimental data with noise up to 4% and the
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Figure 4 – Average values, in 10 runs, for the confidence bounds and difference between

estimated and exact parameters as a function of the regularization parameterλ for (a)

q → 0, (b)q = 1, and (c)q = 2.
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(a) q → 0
αs β

λ average best worst worst-best average best worst worst-best

(%) (%) (%) (%) (%) (%) (%) (%)

0.0 4.7 1.73 10.41 8.68 4.86 1.76 12.01 10.25

0.03 3.78 0.06 7.3 7.24 3.92 0.39 9.27 8.88

0.1 4.65 0.88 13.65 12.77 4.94 1.36 12.24 10.88

0.2 2.19 0.09 7.18 7.09 2.24 0.02 7.01 6.99

0.5 2.50 0.08 8.85 8.77 2.54 0.24 7.93 7.69

2 4.23 1.78 9.42 7.64 4.39 1.44 9.16 7.72

5 4.55 3.93 5.51 1.58 4.59 4.21 4.99 0.78

(b) q = 1
αs β

λ average best worst worst-best average best worst worst-best

(%) (%) (%) (%) (%) (%) (%) (%)

0.0 4.7 1.73 10.41 8.68 4.86 1.76 12.01 10.25

0.007 1.89 0.15 4.71 4.56 2.16 0.14 5.12 4.98

0.009 2.53 0.28 6.15 5.87 2.7 0.30 6.89 6.59

0.01 1.45 0.46 3.17 2.71 1.63 0.20 3.98 3.78

0.02 3.06 0.82 4.75 3.93 3.65 1.19 5.42 4.23

0.03 2.97 0.72 4.53 3.81 3.6 0.83 5.67 4.84

0.05 3.17 2.57 3.95 1.38 3.72 3.09 4.47 1.38

0.07 3.65 3.04 5.27 2.23 4.15 3.51 5.08 1.57

0.09 3.88 2.69 4.63 1.94 4.57 3.86 4.94 1.08

(c) q = 2
αs β

λ average best worst worst-best average best worst worst-best

(%) (%) (%) (%) (%) (%) (%) (%)

0.0 4.7 1.73 10.41 8.68 4.86 1.76 12.01 10.25

0.0001 5.22 0.88 8.7 7.82 5.33 0.91 8.71 7.8

0.0002 4.44 3.45 6.27 2.82 4.1 2.78 6.09 3.31

0.0005 4.98 3.66 6.01 2.35 4.92 3.65 5.90 2.25

0.0012 4.22 3.79 4.49 0.70 4.78 4.49 5.14 0.65

0.0020 5.28 4.75 5.94 1.19 4.93 4.51 5.48 0.97

Table 3 – Average, best and worst values in 10 runs, for the percentage difference between

estimated and exact values for the thermal diffusivity and optical absorption parameter,

as a function of the regularization parameterλ and of theq parameter.
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regularization with the weighted Bregman distances.

From the results presented, we conclude that for different values of the pair

(λ, q) the error in the estimates of the unknowns are of the order of, or smaller

than, the level of the noise present in the experimental data, which represents an

improvement on the results presented in [28].

It is interesting to observe that the spread of the estimates tends to become

smaller when regularization is used. In Table 3 this corresponds to smaller

values of the difference between the worst and the best estimates, i.e. worst-best

in the fifth and ninth columns.

In order to get better estimates for the unknowns we have also implemented

a feedback approach, following [50], in which the estimates at the end of one

cycle of iterations,i , i.e. EZ(i ), are used as the new values for the reference

parameters in the subsequent cycle of iterations,EZR(i +1) = EZ(i ). A schematical

representation of the feedback approach is presented in Figure 5. Observe that

the superscripts in parenthesis represent a specific cycle of iterations. As an

example of the application of the feedback approach, we considered the pair

λ = 0.05 andq = 1.0, andα0
s = 4.0 × 10−7m2/s, β0 = 9.5 × 102m−1,

αR(1)
s = 7.0 × 10−7m2/s, andβR(1) = 1.2 × 103m−1. The exact values to be

recovered are shown in Table 2. The results are presented in Table 4. Each

result presented in Table 4 corresponds to an average calculated with five runs

of the algorithm. The results shown in Table 4 are also presented graphically in

Figure 6.

From the results presented in Table 4 and Figure 6 we observe the conver-

gence ofα andβ to numerical values (average over the last 5 cycles of itera-

tions) (5.17± 0.02) × 10−7m2/s and(10.22 ± 0.02) × 102m−1, respectively.

Therefore, with this approach we were able to obtain better estimates than those

obtained without the feedback approach whose results are shown in Figure 4b.

In order to clarify this point such results are presented in Table 5.

In all test cases presented we have consideredε = 10−5 in eqn. (31). In

fact we have observed that the convergence criterion was always satisfied with

less than 100 iterations of the iterative procedure. Therefore, we have consid-

ered 100 iterations of the iterative procedure in order to obtain all the results

presented here.
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cyclesof αs(×10−7 average average β(×102 average average

iterations m2/s) C. B. (%) Dif. (%) m−1) C. B. (%) Dif. (%)

1 4.50 3.71 –15.00 11.89 3.89 18.90

2 4.58 3.77 –13.60 11.75 3.96 17.50

3 4.63 3.89 –12.40 11.52 4.10 15.20

4 4.70 4.00 –11.00 11.36 4.22 13.60

5 4.75 4.06 –10.20 11.26 4.28 12.60

6 4.78 4.12 –9.50 11.12 4.36 11.20

7 4.85 4.25 –8.20 10.98 4.50 9.80

8 4.90 4.32 –7.30 10.87 4.57 8.70

9 4.93 4.38 –6.70 10.81 4.64 8.10

10 4.97 4.45 –6.00 10.71 4.72 7.10

11 5.03 4.55 –4.90 10.57 4.82 5.70

12 5.08 4.61 –3.90 10.51 4.88 5.10

13 5.07 4.65 –4.00 10.46 4.94 4.60

14 5.12 4.70 –3.10 10.40 4.99 4.00

15 5.13 4.74 –3.00 10.30 5.04 3.00

16 5.18 4.83 –2.00 10.25 5.12 2.50

17 5.20 4.86 –1.70 10.21 5.17 2.10

18 5.18 4.87 –2.00 10.23 5.18 2.30

19 5.14 4.88 –2.70 10.20 5.18 2.00

20 5.15 4.91 –2.50 10.20 5.18 2.00

Table 4 – Estimates obtained for the thermal diffusivity,αs, and the optical absorption

coefficient,β, with the feedback approach using the weigthed Bregman distances as

regularization terms withλ = 0.05 andq = 1.0, andα0
s = 4.0 × 10−7m2/s and

β0 = 9.5 × 102m−1. Also the reference values used at the first cycle of iterations are

α
R(1)
s = 7.0 × 10−7m2/s andβR(1) = 1.2 × 103m−1. For the thermal diffusivity,

α, and the optical absorption coefficient,β, are given, in each cycle, the reference

values, the average confidence bounds (C.B.) as a percentage of the estimated values of

the unknowns, and the average values of the differences (Dif.) between the estimated

values and exact values.
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Figure 5 – Schematical representation of the feedback approach. The superscripts in

parenthesis represent a specific cycle of iterations.EZ(i ) represents the estimates obtained

at the end of the cycle of iterations(i ), and it is used as the reference value for the next

cycle of iterations, i.e.EZR(i +1) = EZ(i ). The initial guess isEZ0, and it is kept the same

throughout the iterative procedure.

∣
∣
∣
∣
∣
αestimated

s − αexact
s

αexact
s

∣
∣
∣
∣
∣
× 100%

∣
∣
∣
∣
∣
βestimated− βexact

βexact

∣
∣
∣
∣
∣
× 100%

From Table3(b)

q = 1, λ = 0.05

without thefeedback 3.17± 0.49 3.72± 0.50

approach (averageof

10 runs)

From Table4

q = 1, λ = 0.05

with thefeedback 2.18± 0.41 2.18± 0.22

approach (average

over the last 5 cycles

of iterations).

Table 5 – Comparison of the absolute values for the average of the difference between

estimated and exact thermal diffusivity,α, and optical absorption coefficient,β, obtained

with and without the feedback approach.

5 Conclusions

In this work we have used an inverse problem approach for the Photoacoustic

Spectroscopy (PAS) in which we were interested in estimating simultaneously

the thermal diffusivity and optical absorption coefficient of a sample.
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Figure 6 – Graphical representation of the results presented in Table 4 for the feedback

approach. The level of noise in the synthetic experimental data was up to 4%. The

numbers in parenthesis indicate the cycle of iteration and the dots represent the estimates

obtained at the end of each cycle of iteration.EZ0 is the initial guess and it is kept the

same throughout the iterative procedure.

The use of weighted Bregman distances constructed with theq-discrepancy

functional as regularization terms in Tikhonov’s functional appears to yield better

estimates for the unknowns. We have varied both the regularization parameter

λ and the parameterq in the weighted Bregman distance in an attempt to find

optimal values for such parameters. We have observed that by increasingλ we

obtain a smaller dispersion of the estimates for the unknowns.

In real applications the exact values for the parameters may be far from the

available reference values, and therefore we believe that the implemented feed-

back approach may be very useful. Preliminary numerical results obtained with

such procedure were very encouraging, and therefore will be submitted for fur-

ther evaluation in a future work, in which real experimental data, acquired with

an experimental apparatus available at our institution, will be used.
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