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Abstract. In this paper we present a filter sequential quadratic programming (SQP) algorithm

for solving constrained optimization problems. This algorithm is based on the modified quadratic

programming (QP) subproblem proposed by Burke and Han, and it can avoid the infeasibility of

the QP subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm

does not require any restoration phase procedure which may spend a large amount of computation.

We underline that global convergence is derived without assuming any constraint qualifications.

Preliminary numerical results are reported.
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1 Introduction

In this paper, we consider the constrained optimization problem:

(NLP)






min f (x)

s.t. cE(x) = 0,

cI(x) ≤ 0,
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where cE(x) = (c1(x), c2(x), ∙ ∙ ∙ , cm1(x))T , cI(x) = (cm1+1(x), cm1+2(x), ∙ ∙ ∙ ,

cm(x))T , E = {1, 2, ∙ ∙ ∙ , m1}, I = {m1 + 1, m1 + 2, ∙ ∙ ∙ , m}, f : Rn → R

and ci : Rn → R, i ∈ E ∪ I are twice continuously differentiable functions.

The feasible set of the problem (NLP) is denoted by X = {x ∈ Rn|cE(x) =

0, cI(x) ≤ 0}.

The sequential quadratic programming (SQP) method has been widely used

for solving the problem (NLP). It generates a sequence {xk} converging to the

desired solution by solving the quadratic programming (QP) subproblem:





min q(d) = ∇ f (xk)
T d + 1

2 dT Bkd

s.t. ∇cE(xk)
T d + cE(xk) = 0,

∇cI(xk)
T d + cI(xk) ≤ 0,

‖d‖∞ ≤ ρ,

(1.1)

where ρ > 0 is the trust region radius, Bk ∈ Rn×n is a symmetric positive definite

matrix. At each iteration xk , the solution d of the QP subproblem is regarded

as a trial step and the next trial iterate has the form xk + d. The acceptance

of this trial step depends on whether the trial iterate xk + d makes some merit

function descent. Generally, this merit function is a type of penalty function with

some parameters whose adjustment can be problematic. Fletcher and Leyffer [7]

proposed a trust region filter SQP method to solve the problem (NLP) instead of

traditional merit function SQP methods. In addition, the computational results

presented in Fletcher and Leyffer [7] are also very encouraging.

Recently, this topic got high importance in recent years (see [6, 17, 18, 22,

23]). Trust region filter SQP methods have been studied by Fletcher, Leyffer

and Toint in [8] and by Fletcher, Gould, Leyffer, Toint and Wächter in [9]. In

this latter paper, an approximate solution of the QP subproblem is computed and

the trial step is decomposed into normal and tangential components. Gonzaga,

Karas and Vanti [10] presented a general framework for filter methods where

each step is composed of a feasibility phase and an optimality phase. Similar

filter method was proposed by Ribeiro, Karas and Gonzaga in [21]. In all these

papers only the global convergence of the proposed methods is analyzed. On

the other hand, in [24], Ulbrich studied the local convergence of a trust region

filter SQP method. Anyway, the components in the filter adopted in [24], differs

from those in [7, 8, 9]. It should be underlined that the filters approach has been
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used also in conjunction with the line search strategy (see Wächter and Biegler

[26, 27]); with interior point methods (see Benson, Shanno and Vanderbei [5];

Ulbrich, Ulbrich and Vicente [25]) and with the pattern search method (see Audet

and Dennis [1]; Karas, Ribeiro, Sagastizábal and Solodov [15]).

However, all filter algorithms mentioned above include the provision for a

feasibility restoration phase if the QP subproblem becomes inconsistent. Al-

though any method (e.g. [3, 4, 16]) for solving a nonlinear algebraic system

of equalities and inequalities can be used to implement this calculation, a large

amount of computation may be spent. In this paper, we incorporate the filter

technique with the modified QP subproblem for solving general constrained op-

timization problems. The main feature of this paper is that there is no restoration

phase procedure. Another feature is that global convergence of our algorithm is

established without assuming any constraint qualifications.

This paper is organized as follows. In section 2, we describe how the modified

QP subproblem is embedded in the filter algorithm. In section 3, it is proved

that the algorithm is well defined, and is globally convergent to a stationary

point. If Mangasarian-Fromowitz constraint qualification (MFCQ) holds at this

stationary point, then it is a KKT point. In section 4, we report some numerical

results.

2 Algorithm

It is well-known that the Karush-Kuhn-Tucker (KKT) conditions for the problem

(NLP) are:
{

∇x L(x, λ, μ) = 0, cE(x) = 0, cI(x) ≤ 0,

λ ≥ 0, λT cI(x) = 0.
(2.2)

where

L(x, λ, μ) = f (x) + μT cE(x) + λT cI(x), (2.3)

is the Lagrangian function, μ ∈ Rm1 and λ ∈ Rm−m1 are the multipliers corre-

sponding to the constraints of the problem (NLP).

The SQP method generates iterates by solving the subproblem (1.1). However,

the subproblem (1.1) may be inconsistent if xk is not a feasible point for the

problem (NLP). In order to avoid this bad situation, we solve a modified QP
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subproblem instead of the subproblem (1.1). Before introducing the modified

QP subproblem, we first solve the problem





min ql(d) =
∑

i∈E |∇ci (xk)
T d + ci (xk)|

+
∑

i∈I max
{
0, ∇ci (xk)

T d + ci (xk)
}
,

s.t. ‖d‖∞ ≤ σk,

(2.4)

where the scalar σk > 0 is used to restrict d in norm. Let d̃k denote the solution

of (2.4). If σk ≤ ρ and ql(d̃k) = 0, then the QP subproblem (1.1) is consistent.

The problem (2.4) can be reformulated as a linear program






min
d∈Rn ,z1∈Rm1 ,

z2∈Rm−m1

eT
m1

z1 + eT
m−m1

z2

s.t. −z1 ≤ ∇cE(xk)
T d + cE(xk) ≤ z1,

∇cI(xk)
T d + cI(xk) ≤ z2,

z2 ≥ 0,

‖d‖∞ ≤ σk,

(2.5)

where vectors em1 = (1, 1, ∙ ∙ ∙ , 1)T ∈ Rm1 and em−m1 = (1, 1, ∙ ∙ ∙ , 1)T ∈

Rm−m1 .

Now we define that s̄(xk, σk) and r̄(xk, σk) are equal to z̃2 and ∇cE(xk)
T d̃k +

cE(xk), respectively, where (d̃k, z̃1, z̃2) denotes the solution of (2.5). At each

iteration, we generate the trial step by solving the modified QP subproblem

QP
(
xk, Bk, σk, ρk

)






min q(d) = ∇ f (xk)
T d + 1

2 dT Bkd

s.t. ∇cE(xk)
T d + cE(xk) = r̄(xk, σk),

∇cI(xk)
T d + cI(xk) ≤ s̄(xk, σk),

‖d‖∞ ≤ ρk .

Here, at each iterate, we require that ρk be greater than σk . So, the choice of

σk depends on ρk .

Define 8(xk, σk) =
∑

i∈E |r̄i (xk, σk)| +
∑

i∈I s̄i (xk, σk), where r̄i (xk, σk) and

s̄i (xk, σk) denote the i th component of r̄(xk, σk) and s̄(xk, σk) respectively.

Actually, 8(xk, σk) = ql(d̃k) with the scalar σk > 0. Obviously, d = 0 is
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feasible for the problem (2.4) and then ql(d̃k) ≤ ql(0) = V (xk), where the

constraint violation V (x) is defined as

V (x) =
∑

i∈E

|ci (x)| +
∑

i∈I

max
{
0, ci (x)

}
.

Therefore, 8(xk, σk) ≤ V (xk).

Let d denote the solution of QP(xk, Bk, σk, ρk). Let the trial point be x̂ =

xk + d . The KKT conditions for the subproblem QP(xk, Bk, σk, ρk) are






∇ f (xk) +
∑

i∈I λk,i∇ci (xk) +
∑

i∈E μk,i∇ci (xk) + Bkd + λu
k − λl

k = 0,

λk,i (∇ci (xk)
T d + ci (xk) − s̄i (xk, σk)) = 0, i ∈ I,

(d − ρken)T λu
k = 0, (d + ρken)T λl

k = 0,

∇ci (xk)
T d + ci (xk) − r̄i (xk, σk) = 0, i ∈ E,

∇ci (xk)
T d + ci (xk) ≤ s̄i (xk, σk), i ∈ I, ‖d‖∞ ≤ ρk,

λk,i ≥ 0, i ∈ I, λu
k, j ≥ 0, λl

k, j ≥ 0, j ∈ {1, 2, ∙ ∙ ∙ , n},

(2.6)

where en = (1, 1, ∙ ∙ ∙ , 1)T ∈ Rn , μk ∈ Rm1 , λk ∈ Rm−m1 , λl
k ∈ Rn and

λu
k ∈ Rn .

In our filter, we consider pairs of values (V (x), f (x)). Definitions 1–4 below

are very similar to those in [7, 8].

Definition 1. The iterate xk dominates the iterate xl if and only if V (xk) ≤

V (xl) and f (xk) ≤ f (xl). And it is denoted by xk � xl .

Thus, if xk � xl , the latter is of no real interest to us since xk is at least as good

as xl with respect to the objective function’s value and the constraint violation.

Furthermore, if xk � xl , we say that the pair (V (xk), f (xk)) dominates the pair

(V (xl), f (xl)).

Definition 2. The kth filter is a list of pairs
{
(V (xl), f (xl))

}
l<k , such that no

pair dominates any other.

Let Fk denote the indices in the kth filter, i.e.,

Fk =
{
l < k : x j � xl for all j ∈ {0, 1, 2, . . . , k − 1} \ {l}

}
.
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Filter methods accept a trial point x̂ = xk + d if its corresponding pair (V (x̂),

f (x̂)) is not dominated by any other pair in the kth filter, neither the pair corre-

sponding to xk , i.e., (V (xk), f (xk)).

In a filter algorithm, one accepts a new pair (V (x̂), f (x̂)) if it cannot be domi-

nated by other pairs in the current filter. Although the definition of filter is simple,

it needs to be refined a little in order to guarantee the global convergence.

Definition 3. A new trial point x̂ is said to be “acceptable to xl”, if

V (x̂) − V (xl) ≤ −γ1V (x̂), (2.7a)

or f (x̂) − f (xl) < −γ2V (x̂), (2.7b)

is satisfied, where γi ∈
(
0, 1

2

)
, i = 1, 2 are two scalars.

Definition 4. A new trial point x̂ is said to be “acceptable to the kth filter” if

x̂ is acceptable to xl for all l ∈ Fk .

Therefore, to accept a new pair into the current filter, we should test the con-

ditions defined in Definition 4. If the new trial point x̂ is acceptable in the sense

of Definitions 3 and 4, we may wish to add the corresponding pair to the filter.

Meanwhile, any pair in the current filter dominated by the new pair is removed.

In order to restrict V (xk), it still needs an upper bound condition for accepting

a point. The trial point x̂ satisfies the upper bound condition if

V (x̂) ≤ Uk (2.8)

holds, where Uk is a positive scalar. Here Uk is updated at each iteration and

it may converge to zero for some instances. We aim to control the constraint

violation by setting Uk . In current iteration k, if a trial step is accepted and

8(xk, σk) = 0, then we will keep Uk unchanged in next iteration. Otherwise

we will reduce Uk in next iteration. The detailed information about the update

of Uk is given in Algorithm 2.1.

Denote

1q(d) = q(0) − q(d) = −∇ f (xk)
T d −

1

2
dT Bkd (2.9)
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as the quadratic reduction of f (x), and

1 f (d) = f (xk) − f (xk + d) (2.10)

as the actual reduction of f (x). In our algorithm, if a trial point xk + d is

acceptable to the current filter and xk , and

1q(d) > 0, (2.11)

the sufficient reduction criterion of the objective function f should be satis-

fied, i.e.,

1 f (d) ≥ η1q(d), η ∈
(

0,
1

2

)
. (2.12)

Now we are in the position to state our filter SQP algorithm.

Algorithm 2.1.

Step 1. Initialization.

Given initial point x0, parameters η ∈
(
0, 1

2

)
, γ1 ∈

(
0, 1

2

)
, γ2 ∈

(
0, 1

2

)
, γ ∈

(0, 0.1), r ∈ (0, 1), U0 > 0, ρmin > 0, ρ̄ > ρmin, ρ ∈ [ρmin, ρ̄], σ0 ∈ (γρ, ρ).

Set k = 0, Flag=1, put k into Fk .

Step 2. Compute the search direction.

Compute the search direction d from the subproblem QP(xk, Bk, σk, ρ). If

ρ ≥ ρmin, set ds = d and 8s = 8(xk, σk).

Step 3. Check for termination.

If d = 0 and V (xk) = 0, then stop;

Else if V (xk) > 0 and 8(xk, σk) − V (xk) = 0, then stop.

Step 4. Test to accept the trial point.

4.1. Check acceptability to the filter.

If the upper bound condition (2.8) holds for x̂ = xk + d, 8(xk, σk) = 0, and

xk + d is acceptable to both the kth filter and xk , then go to 4.3.

Otherwise, if 8(xk, σk) = 0, then set ρ = 1
2ρ and choose σk ∈ (γρ, ρ), go to

Step 2;
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4.2. Compute tk , the first number t of the sequence {1, r, r2, ∙ ∙ ∙ , } satisfying

V
(
xk + tkds

)
− V

(
xk

)
≤ tkη

(
8s − V (xk)

)
. (2.13)

Set Flag=0, d = ds , and go to 4.4.

4.3. Check for sufficient reduction criterion.

If 1 f (d) < η1q(d) and 1q(d) > 0, then ρ = 1
2ρ and choose σk ∈ (γρ, ρ),

and go to Step 2;

otherwise go to 4.4.

4.4. Accept the trial point.

Set ρk = ρ, dk = d , xk+1 =

{
xk + dk, if Flag=1,

xk + tkdk, if Flag=0,

and ρ = min
{

max{2ρ, ρmin}, ρ̄
}
.

Step 5. Augment the filter if necessary.

If Flag=1 and 1q(dk) ≤ 0, then include (V (xk), f (xk)) in the kth filter.

If Flag=0, then set Uk+1 = V (xk + tkdk); otherwise, set Uk+1 = Uk and

leave the filter unchanged.

Step 6. Update.

Compute Bk+1. Set σk+1 ∈ (γρ, ρ) and k := k + 1, Flag=1, go to Step 2.

Remark 1. The role ds in Step 2 is to record a trial step d with ρ ≥ ρmin.

By Step 4.1, we know that if 8(xk, σk) > 0, then both conditions in Step 4.1

are violated. A trial iterate xk + d with 8(xk, σk) > 0 may be considered as a

“worse” step which may be far away from the feasible region. So Step 4.2 is

executed to reduce the constraint violation. The step ds is used in Step 4.2 due

to the descent property of ds proved by Lemma 3.4. In addition, it should be

interpreted that, at the beginning of iteration k, the pair (V (xk), f (xk)) is not in

the current filter, but xk must be acceptable to the current filter.

Remark 2. Our algorithm has three loops: the loop 2-(4.1)-2, the loop 2-(4.3)-

2, and the loop 2-6-2. We observed that the radius ρ is allowed to reduce to a

value less than ρmin in the loops 2-(4.1)-2 and 2-(4.3)-2. But in the loop 2-6-2
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Initialization with a point x0,
k := 0, Flag = 1, ρ ∈ [ρmin, ρ̄].

Solve QP(xk, Bk, σk, ρ). If ρ ≥ ρmin, set ds = d.

Check for termination.

Inequality (2.8) holds, Φ(xk, σk) = 0,
and xk + d is acceptable to both the

filter and xk.

no
yes

Is Φ(xk, σk) = 0?ρ = ρ/2
yes

no

Compute tk satisfying
(2.13). Set Flag =0, d = ds.

Is Δf(d) < ηΔq(d)

and Δq(d) > 0?

yes
ρ = ρ/2

no

Set ρk = ρ, dk = d,

xk+1 =

{
xk + dk, if Flag=1,

xk + tkdk, if Flag=0,

and ρ = min{max{2ρ, ρmin}, ρ̄}.

If Flag=1 and Δq(dk) ≤ 0, include
(V (xk), f(xk)) in the filter. If Flag=0,

set Uk+1 = V (xk + tkdk), otherwise,
set Uk+1 = Uk.

Set k := k + 1, Flag =1.

Figure 1 – Flowchart of Algorithm 2.1.
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the radius ρ is not less than ρmin. At each iteration, the first trial radius ρ is

greater than or equal to ρmin. Subsequently, trial radius ρ may not stop de-

creasing until either the filter acceptance criteria are satisfied or Step 4.2 is

executed. Hence, ρ may be less than ρmin during the execution process of the

loops 2-(4.1)-2 and 2-(4.3)-2.

As for proving global convergence, we use the terminology firstly introduced

by Fletcher, Leyffer and Toint [8]. We call d an f -type step if 1q(d) > 0,

indicating that then the sufficient reduction criterion (2.12) is required. If d

is accepted as the final step dk in the kth iteration, we refer to k as an f -type

iteration.

Similarly, we call d a V -t ype step if 1q(d) ≤ 0. If d is accepted as the

final step dk in iteration k, we refer to k as a V -type iteration. In addition, if xk

is generated by Step 4.2, we also refer to it as a V -type iteration.

If f (xk+1) < f (xk), then we regard the step dk as an f monotone step. Obvi-

ously, an f -type step must be an f monotone step.

3 Global convergence

In this section, we prove the global convergence of Algorithm 2.1. Firstly, we

give some assumptions:

(A1) Let {xk} be generated by Algorithm 2.1 and {xk}, {xk + dk} are contained

in a closed and bounded set S of Rn;

(A2) All the functions f, ci , i ∈ E ∪ I are twice continuously differentiable

on S.

(A3) The matrix Bk is uniformly positive definite and bounded for all k.

Remark 3. Assumption (A1) is reasonable. It may be forced if, for example,

the original problem involves a bounded box among its constraints.

Remark 4. A consequence of Assumption (A3) is that there exist constants

δ, M > 0, independent of k such that δ‖y‖2 ≤ yT Bk y ≤ M‖y‖2 for all y ∈ Rn .

Assumptions (A1) and (A2) imply boundedness of ‖∇2ci (x)‖ i ∈ E ∪ I, and
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‖∇2 f (x)‖ on S. Without loss of generality, we may assume ‖∇2ci (x)‖ ≤ M,

i ∈ E ∪ I, ‖∇2 f (x)‖ ≤ M , ∀ x ∈ S.

Lemma 3.1. Assume x̄ is not a stationary point of V in the sense that 0 /∈

∂V (x̄), where ∂V denotes the Clarke subdifferential of V . Then there exists a

scalar ε̄ > 0 and a neighborhood N (x̄) of x̄ , such that 8(x, σ ) − V (x) < −ε̄

for all σ ≥ γρmin and all x ∈ N (x̄).

Proof. By [2, Lemma 2.1], 0 /∈ ∂V (x̄) implies 8(x̄, γρmin) − V (x̄) < 0,

where γ and ρmin are from Algorithm 2.1. By the continuity of the function

8(∙ , γρmin) − V (∙) on Rn , there exists a neighborhood N (x̄) and a scalar ε̄ > 0

such that 8(x, γρmin) − V (x) < −ε̄ whenever x ∈ N (x̄). The condition σ ≥

γρmin together with the definition of 8 yields 8(x, σ )− V (x) ≤ 8(x, γρmin)−

V (x). Therefore, 8(x, σ ) − V (x) < −ε̄ holds for all σ ≥ γρmin and all

x ∈ N (x̄). �

Remark 5. It can be seen that ε̄ depends on x̄ such that 0 /∈ ∂V (x̄) (i.e.,

ε̄ = ε̄(x̄)), because it must satisfy 8(x̄, σ ) − V (x̄) < −ε̄.

Lemma 3.2. Let dk = 0 be a feasible point of QP(xk, Bk, σk, ρk). Then xk

is a stationary point of V (x). Moreover, if xk ∈ X , then xk is a KKT point of

the problem (NLP).

Proof. Since dk = 0 implies 8(xk, σk) − V (xk) = 0, it follows from [2, Lem-

ma 2.1] that xk is a stationary point of V (x). If V (xk) = 0 and dk = 0, then it

follows from [2, Lemma 2.2] that xk is a KKT point for the problem (NLP). �

Lemma 3.3. Let Assumptions (A1)-(A3) hold and d be a feasible point of

the subproblem QP(x, B, σ, ρ), then we have

V (x + td) − V (x) ≤ t (8(x, σ ) − V (x)) +
1

2
t2mnMρ2, (3.14)

for t ∈ [0, 1].
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Proof. By Taylor Expansion formula, the feasibility of d and Assumption (A2),

we have that for i ∈ E and t ∈ [0, 1],

|ci (x + td)| = |ci (x) + t∇ci (x)T d +
1

2
t2dT ∇2ci (zi )d|

≤ (1 − t)|ci (x)| + t |(ci (x) + ∇ci (x)T d)| +
1

2
t2nMρ2, (3.15)

and for i ∈ I and t ∈ [0, 1],

ci (x + td) = ci (x) + t∇ci (x)T d +
1

2
t2dT ∇2ci (zi )d

≤ (1 − t)ci (x) + t (ci (x) + ∇ci (x)T d) +
1

2
t2nMρ2, (3.16)

where the vector zi is between x and x + td . The term 1
2 t2nMρ2 in (3.15) and

(3.16) is derived because

|dT ∇2ci (zi )d| ≤ nMρ2,

where we use that ‖ ∙ ‖2 ≤ n‖ ∙ ‖2
∞. Formulae (3.15) and (3.16) combining with

definitions of V (x) and 8(x, σ ) yield (3.14). �

The following lemma shows that the loop in Step 4.2 is finite.

Lemma 3.4. Let Assumptions (A1)-(A3) hold, η ∈
(
0, 1

2

)
and x̄ satisfies 0 /∈

∂V (x̄). Then, there exist a scalar t̄ > 0 and a neighborhood N (x̄) of x̄ such

that for any x ∈ N (x̄) and any d feasible for the problem QP(x, B, σ, ρ) with

γρmin ≤ σ ≤ ρ ≤ ρ̄, it holds that

V (x + td) − V (x) ≤ tη(8(x, σ ) − V (x)), (3.17)

for all t ∈ (0, t̄].

Proof. It follows from Lemma 3.1 that there exists a neighborhood N (x̄) and

ε̄(x̄) > 0 such that 8(x, σ ) − V (x) < −ε̄(x̄) whenever x ∈ N (x̄). Combin-

ing this with (3.14), we have

V (x + td) − V (x) ≤ tη(8(x, σ ) − V (x)) − t (1 − η)ε̄(x̄) +
1

2
t2mnMρ2.
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Hence, the inequality (3.17) holds for all t ∈ (0, t̄(x̄)], where

t̄(x̄) :=
2(1 − η)ε̄(x̄)

mnM ρ̄2
. �

Hence, if 0 /∈ ∂V (xk), (2.13) follows taking x̄ = x = xk and d = ds .

It implies that the loop in Step 4.2 is finite.

The following lemma shows that the iterate sequence {xk} approaches a sta-

tionary point of V (x) when Step 4.2 of Algorithm 2.1 is invoked infinitely

many times.

Lemma 3.5 If Step 4.2 of Algorithm 2.1 is invoked infinitely many times, then

there exists an accumulation point x̄ of {xk} such that the sequence {Uk} con-

verges to V (x̄), where 0 ∈ ∂V (x̄), i.e., x̄ is a stationary point of V (x).

Proof. Since Step 4.2 is invoked infinitely many times. By Step 5 Uk+1 is

reset by V (xk + tkdk) infinitely. From Step 2 and 4.2, we note that if Step 4.2

is invoked at iteration k, the radius ρ in QP(xk, Bk, σk, ρ) associated with ds is

greater than or equal to ρmin. Define K = {k | Uk+1 is reset by V (xk + tkdk)}.

Obviously, K is an infinite set. The inequality (2.13) ensures V (xk+1) = Uk+1

for all k ∈ K. The upper bound condition (2.8) ensures V (xk+1) ≤ Uk = Uk+1

for all k /∈ K. Therefore, V (xk) ≤ Uk for all k. This together with (2.13) yields

Uk+1 ≤ V (xk) ≤ Uk for all k ∈ K. For k /∈ K, Uk+1 = Uk . Therefore,

{Uk} is a monotonically decreasing sequence and also has a lower bound zero.

Then there exists an accumulation point x̄ of {xk} such that {Uk+1}K → V (x̄).

If 0 /∈ ∂V (x̄), by Lemma 3.1, there exists a neighborhood N (x̄) of x̄ and

ε̄(x̄) > 0, such that

8(xk, σk) − V (xk) < −ε̄(x̄), (3.18)

whenever xk ∈ N (x̄). This together with (2.13) yields

Uk+1 −Uk ≤ Uk+1 − V (xk) < −tkηε̄(x̄), (3.19)

for k ∈ K and xk ∈ N (x̄). By the mechanism of Algorithm 2.1 and Lemma 3.4,

we have tk ≥ r t̄(x̄). It follows with (3.19) that

Uk+1 −Uk < −rηt̄(x̄)ε̄(x̄)
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for k ∈ K and xk ∈ N (x̄). Letting k ∈ K tend to infinity in above inequality,

the limit in the left-hand side is zero while the limit in the right-hand side is less

than zero, which is a contradiction. Therefore 0 ∈ ∂V (x̄). �

Lemma 3.6. Consider sequences {V (xk)} and { f (xk)} such that f (xk) is

monotonically decreasing and bounded below. If for all k, either V (xk+1)−

V (xk) ≤ −γ1V (xk+1) or f (xk) − f (xk+1) ≥ γ2V (xk+1) holds, where constants

γ1 and γ2 are from (2.7a) and (2.7b), then V (xk) → 0, for k → +∞.

Proof. See [8, Lemma 1]. �

Lemma 3.7. Suppose Assumptions (A1)-(A3) hold. If there exists an infinite

sequence of iterates {xk} on which (V (xk), f (xk)) is added to the filter, where

V (xk) > 0 and { f (xk)} is bounded below, then V (xk) → 0 as k → +∞.

Proof. Since inequalities (2.7a) and (2.7b) are the same as [8, (2.6)], the con-

clusion follows from Lemma 3.6 and [8, Corollary]. �

Lemma 3.8. Suppose Assumptions (A1)-(A3) hold. Let d be a feasible point

of QP(xk, Bk, σk, ρ). If 8(xk, σk) = 0, it then follows that

1 f (d) ≥ 4q(d) − nρ2 M, (3.20)

V (xk + d) ≤
1

2
mnρ2 M. (3.21)

Proof. The proof of this lemma is very similar to the proof [8, Lemma 3]. By

Taylor’s theorem, we have

f (xk + d) = f (xk) + ∇ f (xk)
T d +

1

2
dT ∇2 f (y)d,

where y denotes some point on the line segment from xk to xk +d. This together

with (2.9) and (2.10) implies

1 f (d) = 4q(d) +
1

2
dT

(
Bk − ∇2 f (y)

)
d.
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Then (3.20) follows from the boundedness of ∇2 f (y) and Bk , and ‖d‖∞ ≤ ρ.

Since 8(xk, σk) = 0, QP(xk, Bk, σk, ρ) reduces to (1.1). For i ∈ E ∪ I , it

follows that

ci (xk + d) = ci (xk) + ∇ci (xk)
T d +

1

2
dT ∇2ci (yi )d,

where yi denotes some point on the line segment from xk to xk + d. By feasibil-

ity of d ,

|ci (xk + d)| ≤
1

2
nρ2 M, i ∈ E

and

ci (xk + d) ≤
1

2
nρ2 M, i ∈ I.

follow in a similar way. It follows with the definition of V (x) that (3.21)

holds. �

Lemma 3.9. Suppose Assumptions (A1)-(A3) hold. Let d be a feasible point

of QP(xk, Bk, σk, ρ) with 8(xk, σk) = 0. Then xk + d is acceptable to the filter

if ρ2 ≤ 2τk
mnM(1+γ1)

, where τk := min
k∈Fk

{V (xk)}. �

Proof. It follows from (3.21) that V (xk + d) − τk ≤ −γ1V (xk + d) holds

if ρ2 ≤ 2τk
mnM(1+γ1)

. By the definition of τk , (2.7a) is satisfied. Hence xk + d

is acceptable to the filter. �

In order to prove that the iterate sequence generated from Algorithm 2.1 con-

verges to a KKT point for the problem (NLP), some constraint qualification

should be required, such as the well-known MFCQ. Thus we review its defini-

tion as follows.

Definition 5 (See [2]). MFCQ is said to be satisfied at x , with respect to the

underlying constraint system cE(x) = 0, cI(x) ≤ 0, if there is a z ∈ Rn such that

the gradients ∇ci (x), i ∈ E are linearly independent and the following systems

∇ci (x)T z = 0, i ∈ E,

∇ci (x)T z < 0, i ∈
{
i : ci (x) = 0, i ∈ I

}

are satisfied.
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Proposition 3.10. Suppose that MFCQ is satisfied at x∗ ∈ X , then there exists

a neighborhood N (x∗) of x∗ such that

1. MFCQ is satisfied at every point in N (x∗) ∩ X ;

2. inequality

sup
k

{
‖μk‖1 + ‖λk‖1 : xk ∈ N (x∗), σk ∈ (ρmin, ρk), ρk ∈ (ρmin, ρ̄]

}
< +∞.

holds, where the vectors λk , μk generated by QP(xk, Bk, σk, ρk) are multiplier
vectors associated with xk ∈ N (x∗).

Proof. The first result is established in [20, Theorem 3]. The second result is

established in [2, Theorem 5.1]. �

If MFCQ does not hold at a feasible x∗, then the second statement of Propo-

sition 3.10 cannot be guaranteed. All feasible points of the problem (NLP) at

which MFCQ does not hold will be called non-MFCQ points.

The following lemma shows that (1.1) is consistent when xk approaches a

feasible point at which MFCQ holds and both the quadratic reduction and the

actual reduction of the objective function have sufficient reduction. Its proof is

similar to that of [8, Lemma 5].

Lemma 3.11. Suppose Assumptions (A1)-(A3) hold and let x∗ ∈ S be a feasi-

ble point of problem (NLP) at which MFCQ holds but which is not a KKT point.

Then there exists a neighborhood N ◦ of x∗ and positive constants ε, ν and κ ,

such that for all xk ∈ S ∩ N ◦ and all ρ for which

νV (xk) ≤ ρ ≤ κ, (3.22)

it follows that QP(xk, Bk, σk, ρ) with 8(xk, σk) = 0 has a feasible solution d at

which the predicted reduction satisfies

4q(d) ≥
1

3
ρε, (3.23)

the sufficient reduction condition (2.12) holds, and the actual reduction satisfies

4 f (d) ≥ γ2V (xk + d). (3.24)
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Proof. Since x∗ is a feasible point at which MFCQ holds but it is not a KKT

point, it follows that the vectors ∇ci (x∗), i ∈ E are linearly independent, and

there exists a vector s∗ that satisfies

∇ f (x∗)T s∗ < 0, (3.25)

∇ci (x∗)T s∗ = 0, i ∈ E, (3.26)

∇ci (x∗)T s∗ < 0, i ∈ A(x∗) = {i : ci (x∗) = 0, i ∈ I}, (3.27)

where ‖s∗‖ = 1. Let ∇cE(xk)
+ =

(
∇cE(xk)

T ∇cE(xk)
)−1

∇cE(xk)
T and

∇cE(xk) denote the matrix with columns ∇ci (xk), i ∈ E. It follows from

linear independence and continuity that there exists a neighborhood of x∗ in

which ∇cE(xk)
+ is bounded. Let P = −∇cE(xk)

+T cE(xk) and s =
(
I −

∇cE(xk)∇cE(xk)
+
)
s∗/‖

(
I − ∇cE(xk)∇cE(xk)

+
)
s∗‖ if E is not empty, other-

wise P = 0 and s = s∗. Let p = ‖P‖. It follows from (3.25) and (3.27) by

continuity that there exists a (smaller) neighborhood N ∗ and a constant ε > 0

such that

∇ f (xk)
T s∗ < −ε and ∇ci (xk)

T s∗ < −ε, i ∈ A(x∗), (3.28)

when xk ∈ N ∗. By definition of P , it follows that p = O(V (xk)), and thus

we can choose the constant ν in (3.22) sufficiently large so that ρ > p for all

xk ∈ N ∗.

We now consider the solution of (1.1). The line segment defined by

dα = P + α(ρ − p)s, α ∈ [0, 1], (3.29)

for a fixed value of ρ > p. Since ρ > p, and P and s are orthogonal, it implies

‖d1‖∞ ≤ ‖d1‖ =
√

p2 + (ρ − p)2 =
√

ρ2 − 2ρp + 2p2 ≤ ρ. (3.30)

From (3.29) and the definitions of P , s, dα satisfies the equality constraints

cE(xk) + ∇cE(xk)
T dα = 0 of (1.1) for all α ∈ [0, 1].

If xk ∈ N ∗ ∩ S and i ∈ I\A(x∗), then there exists positive constants c̄ and

ā, independent of ρ, such that

ci (xk) ≤ −c̄ and ∇ci (xk)
T s ≤ ā
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for all vectors s such that ‖s‖∞ ≤ 1, by the continuity of ci (xk) and bounded-

ness of ∇ci (xk) on S. It follows that

ci (xk) + ∇ci (xk)
T d ≤ −c̄ + ρā, i ∈ I\A(x∗)

for all vectors d such that ‖d‖∞ ≤ ρ. Therefore, inactive constraints do not

affect the solution of (1.1) if ρ satisfies ρ ≤ c̄/ā.

For active inequality constraints i ∈ A(x∗), it follows from (3.28) and (3.29)

that ci (xk)+∇ci (xk)
T d1 = ci (xk)+∇ci (xk)

T P + (ρ − p)∇ci (xk)
T s ≤ ci (xk)+

∇ci (xk)
T P − (ρ − p)ε ≤ 0 if ρ ≥ p + (ci (xk) + ∇ci (xk)

T P)/ε. We obtain

from the definition of P that

∃ν0 > 0 s.t.
1

ε

(
ci (xk) + ∇ci (xk)

T P
)

≤ ν0V (xk).

Thus we can choose the constant ν in (3.22) sufficiently large so that ci (xk) +

∇ci (xk)
T d1 ≤ 0, i ∈ A(x∗). Therefore d1 is feasible in (1.1) with respect

to the active inequality constraints, and hence to all the constraints by above

results. Combining with the fact that (1.1) is equivalent to QP(xk, Bk, σk, ρ)

with 8(xk, σk) = 0, we obtain that QP(xk, Bk, σk, ρ) with 8(xk, σk) = 0 is

consistent for all xk ∈ N ∗ and all ρ satisfying (3.22) for any value of κ̄ ≤ c̄/ā.

Next we aim to obtain a bound on the predicted reduction 1q(d). We note

that q(0) − q(d1) = −∇ f (xk)
T (P + (ρ − p)s) − 1

2 dT
1 Bkd1. Using (3.28),

bounds on Bk and P , and ρ > p = O(V (xk)), we have

q(0) − q(d1) ≥ (ρ − p)ε −
1

2
ρ2nM + O(V (xk))

= ρε −
1

2
ρ2nM + O(V (xk)).

If ρ < ε
nM , then q(0) − q(d1) ≥ 1

2ρε + O(V (xk)). Since d1 is feasible and

p = O(V (xk)), it follows that the predicted reduction (2.9) satisfies

1q(d) ≥ 1q(d1) ≥
1

2
ρε + O(V (xk)) ≥

1

2
ρε − ξV (xk)

for some ξ sufficiently large and independent of ρ. Hence, (3.23) is satisfied if

ρ ≥ 6ξV (xk)/ε. This condition can be achieved by making the constant ν in

(3.22) sufficiently large.

Comp. Appl. Math., Vol. 28, N. 2, 2009



“main” — 2009/6/12 — 18:10 — page 185 — #19

CHUNGEN SHEN, WENJUAN XUE and DINGGUO PU 185

Next we aim to prove (3.24). By (3.20) and (3.23), we have

1 f (d)

1q(d)
≥ 1 −

nρ2 M

1q(d)
≥ 1 −

3nρ2 M

ρε
= 1 −

3nρM

ε
.

Then, if ρ ≤ (1−η)ε/(3nM), it follows that (2.12) holds. By (2.12), (3.21) and

(3.23), we have f (xk) − f (xk + d) − γ2V (xk + d) = 1 f (d) − γ2V (xk + d) ≥
1
3ηρε − 1

2γ2mnρ2 M ≥ 0 if ρ ≤ 2
3ηε/(γ2mnM). Therefore, we may define the

constant κ̄ in (3.22) to be the least of 2
3ηε/(γ2mnM) and the values (1 − η)ε/

(3nM), ρ < ε
nM and c̄/ā, as required earlier in the proof. �

Lemma 3.12. Suppose Assumptions (A1)-(A3) hold and let x∗ ∈ S be a feasi-

ble point of problem (NLP) at which MFCQ holds but which is not a KKT point.

Then there exists a neighborhood N ◦ of x∗ and a positive constant ν, such that

for all xk ∈ S ∩ N ◦, all ρ and all σk for which

νV (xk) ≤ σk < ρ, (3.31)

it follows that 8(xk, σk) = 0 and QP(xk, Bk, σk, ρ) has a feasible solution d at

which the predicted reduction satisfies

4q(d) > 0. (3.32)

Proof. By Lemma 3.11, there exists a neighborhood N 1 of x∗ and positive

constants ν, κ̄ such that for all xk ∈ S ∩ N ◦ and all ρ and σk for which νV (xk) ≤

ρ ≤ κ̄ , it follows that the QP subproblem (1.1) has a feasible solution d at

which the predicted reduction satisfies (3.32). Since the global optimality of

d ensures that 1q(d) decreases monotonically as ρ decreases, the predicted

reduction satisfies (3.32) whenever νV (xk) ≤ ρ.

From the earlier proof, if νV (xk) ≤ σk ≤ κ̄ , we also have that the QP sub-

problem (1.1) is consistent by taking ρ = σk . It means that the problem (2.4)

has the optimal value 0. If σk increases to a value larger than κ̄ , then the feasible

region of the problem (2.4) with ρ = σk is also enlarged correspondingly and

the optimal value is still 0. Therefore, 8(xk, σk) = 0 whenever νV (xk) ≤ σk .

The above two conclusions complete the proof. �

As a last preparation for the proof of Theorem 3.14, we proceed as in [8] and

show that the loops 2-(4.1)-2 and 2-(4.3)-2 terminate finitely.
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Lemma 3.13. Suppose Assumptions (A1)-(A3) hold, then the loops 2-(4.1)-2

and 2-(4.3)-2 terminate finitely.

Proof. If xk is a KKT point for the problem (NLP), then d = 0 is the solution

of QP(xk, Bk, σk, ρ), and Algorithm 2.1 terminates, so do the loops 2-(4.1)-2

and 2-(4.3)-2. If V (xk) > 0 and 8(xk, σk) − V (xk) = 0, then stop by Step 3

of Algorithm 2.1. In fact, it follows from [2, Lemma 2.1] that V (xk) > 0 and

0 ∈ ∂V (xk), which means that xk is a stationary point of V (x) and not feasible

for the problem (NLP). If both above situations do not occur, and the loops 2-

(4.1)-2 and 2-(4.3)-2 do not terminate finitely, then ρ → 0 from Algorithm 2.1.

There are two cases to be considered.

Case (i). V (xk) > 0 and 0 /∈ ∂V (xk).

(a) If i ∈ E and ci (xk) > 0, then for all d (‖d‖∞ ≤ ρ),

ci (xk) + ∇ci (xk)
T d ≥ ci (xk) − ρ‖∇ci (xk)‖ > 0, (3.33)

if either ‖∇ci (xk)‖ = 0 or ρ < ci (xk )

‖∇ci (xk )‖
. Thus, for sufficiently small

ρ, the equality constraints cannot be satisfied and (1.1) is inconsistent.

Therefore, 8(xk, σk) > 0.

(b) If i ∈ I and ci (xk) > 0, a similar conclusion is obtained.

(c) If i ∈ E and ci (xk) < 0, a similar conclusion is also obtained.

So, for some ρ sufficiently small, 8(xk, σk) > 0 and 0 /∈ ∂V (xk). By Step 4,

the procedure executes at 4.2 of Step 4. It follows from Lemma 3.4 that (2.13)

holds. By the mechanism of Algorithm 2.1, the loop 2-(4.1)-2 terminates finitely.

Case (ii). V (xk) = 0. Then 8(xk, σk) = 0.

For the inactive constraints at xk , by a similar argument, it will still be inactive

for sufficiently small ρ. Thus, we only need to consider the active constraints.

Since xk is not a KKT point, there exists a vector s, ‖s‖ = 1, and a scalar ε > 0

such that ∇ f (xk)
T s < −ε, ∇ci (xk)

T s = 0, i ∈ E and ∇ci (xk)
T s ≤ 0, i ∈

A(xk) = {i : ci (xk) = 0, i ∈ I}. We note that q(0)− q(ρs) = −ρ∇ f (xk)
T s −
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1
2ρ2sT Bks. Using bound on Bk , we have q(0) − q(ρs) ≥ ρε − 1

2ρ2nM . If

ρ < ε
nM , then q(0) − q(ρs) ≥ 1

2ρε. Since ρs is feasible for QP(xk, Bk, σk, ρ),

it follows that the predicted reduction (2.9) satisfies

1q(d) ≥ 1q(ρs) ≥
1

2
ρε,

where d is the solution of QP(xk, Bk, σk, ρ). If ρ ≤ (1−η)ε

2nM , it follows with (3.20)

that 1 f (d) ≥ η1q(d) > 0. So the sufficient reduction condition (2.12) for an

f -t ype iteration is satisfied. Moreover, by (3.21), we have

f (xk) − f (xk + d) − γ2V (xk + d) = 1 f (d) − γ2V (xk + d)

≥
1

2
ηρε −

1

2
γ2mnρ2 M

≥ 0

if ρ ≤ ηε/(γ2mnM). Thus, xk + d is acceptable to xk . Of course, the upper

bound condition (2.8) is satisfied.

Finally, it follows with Lemma 3.9 that for a sufficiently small ρ, an f -type

iteration is generated and the loop 2-(4.3)-2 terminates finitely. �

Lemma 3.13 together with Lemma 3.4 implies that Algorithm 2.1 is well-

defined. We are now able to adapt [8, Theorem 7] to Algorithm 2.1.

Theorem 3.14. Let Assumptions (A1)-(A3) hold. {xk} is a sequence generated

by Algorithm 2.1, then there is an accumulation point that is a KKT point for

the problem (NLP), or a non-MFCQ point for the problem (NLP) or a stationary

point of V (x) that is infeasible for the problem (NLP).

Proof. Since the loops 2-(4.1)-2 and 2-(4.3)-2 are finite, we only need to con-

sider that the loop 2-6-2 is infinite. All iterates lie in S, which is bounded, so it

follows that the iteration sequence has at least one accumulation point.

Case (i). Step 4.2 of Algorithm 2.1 is invoked finitely many times. Then Step

4.2 of Algorithm 2.1 is not invoked for all sufficiently large k.

Sub-case (i). There are infinite V -type steps in the main iteration sequence.

Then, from Lemma 3.7, V (xk) → 0 and τk → 0 on this subsequence. Moreover,
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there exists a subsequence indexed by k ∈ Sφ of V -type iterations for which

xk → x∗, V (xk) → 0 and τk+1 < τk . One consequence is that x∗ is a feasible

point for the problem (NLP). If MFCQ is not satisfied at x∗, then x∗ is a non-

MFCQ point for the problem (NLP). We therefore assume that MFCQ is satisfied

at x∗ and consider the assumption that x∗ is not a KKT point (to be contradicted).

From Lemma 3.12, we know that 8(xk, σk) = 0 and the step d is an f -type

step for all sufficiently large k if ρ ≥ γ V (xk). So, xk +d is acceptable to the filter

for sufficiently large k from Lemma 3.9 if ρ2 ≤ 2τk
mnM(1+γ1)

. Thus, by Lemma

3.11 we deduce that if ρ satisfies

νV (xk) ≤ ρ ≤ min

{√
2τk

mnM(1 + γ1)
, κ

}

, (3.34)

then k is an f -type iterate for sufficiently large k.

Now we need to show that a value of ρ ≥ νV (xk) can be found in the loop

2-(4.3)-2 such that k is an f -type iterate for sufficiently large k. Since τk → 0

when k(∈ Sφ) → +∞, the range (3.34) becomes

νV (xk) ≤ ρ ≤

√
2τk

mnM(1 + γ1)
. (3.35)

From the definition of Sφ , we know that τk+1 = V (xk) < τk . Because of

the square root, the upper bound in (3.35) can be greater than twice the lower

bound. From Algorithm 2.1, a value ρ ≥ ρmin is chosen at the beginning of each

iteration, then it will be greater than the upper bound in (3.35) for sufficiently

large k. We can see that successively halving ρ in the loops 2-(4.1)-2 and 2-

(4.3)-2 will eventually locate in the range of (3.35), or the right of this interval.

Lemma 3.12 implies that it is not possible for any value of ρ ≥ νV (xk) to

produce an V -type step. Thus if k(∈ Sφ) is sufficiently large, an f -type iteration

is generated, which contradicts the definition of Sφ . So x∗ is a KKT point.

Sub-case (ii). There are finite V -type steps in the main iteration sequence. Then,

there exists a positive integer K , such that for all k > K , xk is an f -type iteration.

So { f (xk)}k>K is strictly monotonically decreasing. It follows from Lemma 3.6

that V (xk) → 0 and hence, any accumulation point x∗ of the main iteration
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sequence is a feasible point. Since f (x) is bounded, we get that

∑

k>K

1 f (dk) < +∞. (3.36)

It follows that 1 f (dk) → 0, k > K as k → +∞.

Now we assume that MFCQ is satisfied at x∗ and x∗ is not a KKT point.

Similarly to sub-case (i), when

νV (xk) ≤ ρ ≤ κ̄, (3.37)

f -type iterations are generated. The right-hand side of (3.37) is a constant,

independent of k. Since the upper bound of (3.37) is a constant and the lower

bound converges to zero, the upper bound must be more than twice the lower

bound. So a value of ρ will be located in this interval, or a value to the right

of this interval. Hence, ρ ≥ min{ 1
2 κ̄, ρmin}. Since the global optimality of d

ensures that 1q(d) decreases monotonically as ρ decreases, by Lemma 3.11,

1q(d) ≥ 1
3ε min{ 1

2 κ̄, ρmin} holds even if ρ is greater than κ̄ . This together with

(2.12) yields that 1 f (dk) ≥ 1
3ηε min{ 1

2 κ̄, ρmin}, which is a contradiction. Thus,

x∗ is a KKT point.

Case (ii). Step 4.2 of Algorithm 2.1 is invoked infinitely many times. Then it

follows from Lemma 3.5 that there exists an accumulation point x∗ of {xk}K such

that 0 ∈ ∂V (x∗), where K is an infinite index set satisfying that any k ∈ K is a

V -type iteration number and Uk+1 = V (xk + tkdk). If V (x∗) > 0, then x∗ is a

stationary point of V (x) that is infeasible for the problem (NLP). If V (x∗) = 0

and MFCQ fails to be satisfied at x∗, then x∗ is a non-MFCQ point for the

problem (NLP). If V (x∗) = 0 and MFCQ holds at x∗, then we prove that x∗ is

a KKT point for the problem (NLP).

Suppose x∗ is not a KKT point for the problem (NLP), but V (x∗) = 0, and

MFCQ holds at x∗. Then, from Lemma 3.5, Uk → 0 on this sequence. There-

fore, for all k ∈ K, V (xk) ≤ Uk → 0 and Uk+1 = V (xk + tkdk). By Step

4.4, at any new iteration the first trial radius ρ is greater than or equal to ρmin.

So σk ≥ γρmin is true from the fact σk ∈ (γρ, ρ). Combining this with the

fact V (xk) → 0 as k(∈ K) → ∞ yields νV (xk) ≤ σk < ρ for all sufficiently
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large k. It follows with Lemma 3.12 that 8(xk, σk) = 0 and (3.32) is satisfied

for all sufficiently large k ∈ K. Similar to Sub-case (i) of Case (i), k is an

f -type iterate for sufficiently large k ∈ K. Hence Step 4.2 could not be invoked

at this iteration and Uk+1 = Uk which contradicts the definition of K. So x∗

is a KKT point. �

4 Numerical results

We give some numerical results of Algorithm 2.1 coded in Matlab for the con-

strained optimization problems. The details about the implementation are de-

scribed as follows:

(a) Termination criteria. Algorithm 2.1 stops if

V (xk) ≤ ε and ‖∇ f (xk) + ∇cE(xk)μk + ∇cI(xk)λk‖∞ ≤ ε.

(b) Update Bk . Initiate B0 = I , where I is the identity matrix with appropri-

ate dimension. Update Bk by the BFGS formula with Powell’s modifica-

tions [19], which is described as following:

set

Bk+1 = Bk −
BksksT

k Bk

sT
k Bksk

+
yk yT

k

sT
k yk

,

where

yk =






ŷk, ŷT
k sk ≥ 0.2sT

k Bksk,

θ k ŷk + (1 − θ k)Bksk, otherwise,

and





sk = xk+1 − xk,

ŷk = ∇ f (xk+1) − ∇ f (xk) +
(
∇cE(xk+1) − ∇cE(xk)

)
μk

+
(
∇cI(xk+1) − ∇cI(xk)

)
λk,

θ k = 0.8 sT
k Bksk/(sT

k Bksk − sT
k ŷk).

Comp. Appl. Math., Vol. 28, N. 2, 2009



“main” — 2009/6/12 — 18:10 — page 191 — #25

CHUNGEN SHEN, WENJUAN XUE and DINGGUO PU 191

(c) The parameters are chosen as: ρ0 = 5.0, ρmin = 10−4, η = 0.1, γ1 =

γ2 = 2 × 10−4, ε = 10−6, U0 = 10 max{1, V (x0)}, σk = 0.9ρ for all

k = 0, 1, 2 ∙ ∙ ∙ and all ρ > 0.

Firstly, the following examples is from [29]. Since EXAMPLE 3 in [29]

is unbounded below, we do not give it here. The numerical results of other

examples are described in the following.

EXAMPLE 1
min f (x) = x − 1

2 + 1
2 cos2 x,

s.t. x ≥ 0.
(4.38)

x∗ = 0, f (x∗) = 0. The iteration number of Algorithm 2.1 is 2.

EXAMPLE 2
min f (x) =

∑4
i=1 x2

i ,

s.t. 6 −
∑4

i=1 x2
i ≤ 0.

(4.39)

x∗ = (1.224745, 1.224745, 1.224745, 1.224745)T , f (x∗) = 6. The iteration

number of Algorithm 2.1 is 6.

EXAMPLE 4

min f (x) = 4
3

(
x2

1 − x1x2 + x2
2

) 3
4 − x3,

s.t. −xi ≤ 0, i = 1, 2, 3,

x3 ≤ 2.

(4.40)

x∗ = (0, 0, 2)T , f (x∗) = −2. The iteration number of Algorithm 2.1 is 4.

Compared with the results in [29, 28], the computation at each iteration in this

paper is less than those in them.

Except for above numerical experiments, we also test some examples from

[12]. We compare these numerical results with those in [13]. The detailed

results of the numerical tests on these problems are summarized in Table 1, where

NIT, NF, and NG represent the numbers of iterations, function, and gradient

calculations, respectively. The problems are numbered in the same way as in

Hock and Schittkowski [12]. For example, HS022 represents problem 22 in

Hock and Schittkowski [12].
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Algorithm 2.1 Algorithm in [13]

Problem n m1 m NIT-NF-NG NIT-NF-NG

HS007 2 1 1 10-11-11 9-18-10

HS014 2 1 2 5-6-6 5-6-6

HS022 2 0 2 4-6-5 5-7-7

HS038 4 0 8 24-29-25 38-64-39

HS043 4 0 3 11-16-12 12-15-15

HS052 5 3 3 6-7-7 5-9-9

HS063 3 2 5 8-9-9 7-8-8

HS086 5 0 15 5-7-6 4-7-5

HS113 10 0 8 13-22-14 14-20-15

Table 1 – Numerical results.

For Problem HS022, 8(x0) = 0.3941 implies that QP problem is inconsistent

at the first iteration. After this, all QP problems are consistent in the subsequent

iterations. Similarly, for Problem HS063, only 8(x0) = 1.25 implies the same

situation as Problem HS022. Except for Problem HS022 and HS063, for all the

other problems in Table 1, their QP problems are consistent in all iterations.

The above analysis shows that our algorithm deals with inconsistent QP prob-

lem effectively and is comparable to the algorithm in [13]. So, the numerical

tests confirm the robustness of our algorithm.
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