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Abstract. In the present paper, we propose a numerical method for solving the coupled

Lyapunov matrix equations

A P + P AT + B BT = 0 and AT Q + Q A + CT C = 0

where A is an n×n real matrix and B, CT are n×s real matrices with rank(B) = rank(C) = s and

s � n. Such equations appear in control problems. The proposed method is a Krylov subspace

method based on the nonsymmetric block Lanczos process. We use this process to produce low

rank approximate solutions to the coupled Lyapunov matrix equations. We give some theoretical

results such as an upper bound for the residual norms and perturbation results. By approximating

the matrix transfer function F(z) = C (z In − A)−1 B of a Linear Time Invariant (LTI) system

of order n by another one Fm(z) = Cm (z Im − Am)−1 Bm of order m, where m is much smaller

than n, we will construct a reduced order model of the original LTI system. We conclude this

work by reporting some numerical experiments to show the numerical behavior of the proposed

method.
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1 Introduction

Consider a stable linear multi-input multi-output (MIMO) state-space model of

the form: {
ẋ(t) = A x(t) + B u(t)

y(t) = C x(t),
(1.1)

where A ∈ Rn×n , B, CT ∈ Rn×s , x(t) ∈ Rn is the state vector, u(t) ∈ Rs is the

input vector and y(t) ∈ Rs is the output vector of the system (1.1). When dealing

with high-order models, it is reasonable to look for an approximate stable model
{

ẋm(t) = Am xm(t) + Bm u(t)

ym(t) = Cm xm(t),
(1.2)

in which Am ∈ Rm×m , Bm, CT
m ∈ Rm×s and xm(t), ym(t) ∈ Rm , with m � n.

Hence, the reduction problem consists in approximating the triplet {A, B, C} by

another one { Â, B̂, Ĉ} of small size. Several approaches in this area have been

used as Padé approximation [15, 33, 34], balanced truncation [29, 37], optimal

Hankel norm [16, 17] and Krylov subspace methods [3, 6, 11, 12, 21, 22]. These

approaches require the solution of coupled Lyapunov matrix equations [1, 13,

25, 27] having the form
{

A P + P AT + B BT = 0

AT Q + Q A + CT C = 0,
(1.3)

where P, Q are the controllability and the observability Grammians of the sys-

tem (1.1). For historical developments, applications and importance of Lya-

punov equations and related problems, we refer to [10, 13] and the references

therein. Throughout the paper, we will assume that λi (A) + λ̄ j (A) 6= 0 for all

i, j = 1, . . . , n where λk(A) and it’s conjugate λ̄k(A) are eigenvalues of A. In

this case, the equations (1.3) have unique solutions [26].

Direct methods for solving the Lyapunov matrix equations (1.3) such as those

proposed in [5, 18, 24] are attractive if the matrices are of moderate size. These

methods are based on the Schur or the Hessenberg decomposition. For large

problems, several iterative methods have been proposed; see [14, 22, 23, 32].

These methods use Galerkin projection technics to produce low-dimensional

Sylvester or Lyapunov matrix equations that are solved by using direct methods.
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For the single-input single-output (SISO) case, i.e., s = 1, two approaches

based on Arnoldi and Lanczos processes were proposed in [21, 22] to solve

large Lyapunov matrix equations. The Arnoldi and Lanczos processes were

also applied in order to give an approximate reduced order model to (1.1) [2, 6,

11, 13].

Our purpose in this paper is to describe a method based on the nonsymmet-

ric block Lanczos process [4, 15, 19, 36] for solving the coupled Lyapunov

matrix equations (1.3). In this method, we project the initial equations onto

block Krylov subspaces generated by the block Lanczos process to produce low-

dimensional Lyapunov matrix equations that are solved by direct methods. By

approximating the transfer function F(z) = C (z In − A)−1 B by another one

Fm(z) = Cm (z Im − Am)−1 Bm where Am ∈ Rm×m , Bm, CT
m ∈ Rm×s , and m is

much smaller than n, we will construct an approximate reduced order model of

the continuous time linear system (1.1).

The remainder of the paper is organized as follows. In the following section,

we review the nonsymmetric block Lanczos process and give the exact solutions

of the coupled Lyapunov matrix equations. In Section 3, we first show how to

extract low rank approximate solutions to (1.3). Then, we give some theoretical

results on the residual norms and demonstrate that the low rank approximate

solutions are exact solutions to a pair of perturbed Lyapunov matrix equations.

In Section 4, we consider the problem of obtaining reduced order models to

LTI systems by approximating the associated transfer function. This approach

is based on the nonsymmetric block Lanczos process. Finally, we will present

some numerical experiments.

2 The block Lanczos method and coupled Lyapunov matrix equations

2.1 The nonsymmetric block Lanczos process

Let V ∈ Rn×s and consider the block matrix Krylov subspace Km(A, V ) =

span{V, A V, . . . , Am−1 V }. Notice that Z ∈ Km(A, V ) means that

Z =
m−1∑

i=0

Ai V �i , �i ∈ Rs×s, i = 0, . . . m − 1.
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We also recall that the minimal polynomial P of A with respect to V is the

nonzero monic polynomial of lowest degree q such that

P(A) ◦ V =
q∑

i=0

Ai V �i ,

where �i ∈ Rs×s and �q = Is . The grade of V denoted by grad(V ) is the degree

of the minimal polynomial, hence grad(V ) = q.

In the sequel, we suppose that given two matrices V, W ∈ Rn×s of full rank,

we compute initial block vectors V1 and W1 using the Q R decomposition of

W T V . Hence, if W T V = δ β where δ ∈ Rs×s is an orthogonal matrix (i.e.,

δT δ = δ δT = Is) and β ∈ Rs×s is an upper triangular matrix, then

V1 = V β−1 and W1 = W δ. (2.1)

Given an n × n matrix A and the initial n × s block vectors V , W , the block

Lanczos process applied to the triplet (A, V, W ) and described by Algorithm 1,

generates sequences of n × s right and left block Lanczos vectors {V1, . . . , Vm}

and {W1, . . . , Wm}. These block vectors form biorthonormal bases of the block

Krylov subspaces Km(A, V1) and Km(AT , W1).

Algorithm 1. The nonsymmetric block Lanczos process [4]

• Inputs : A an n × n matrix, V, W two n × s matrices and m an integer.

• Step 0 . Compute the QR decomposition of W T V , i.e., W T V = δ β;

V1 = V β−1; W1 = W δ; Ṽ2 = A V1; W̃2 = AT W1;

• Step 1 . For j = 1, . . . , m

α j = W T
j Ṽ j+1; Ṽ j+1 = Ṽ j+1 − Vj α j ; W̃ j+1 = W̃ j − W j αT

j ;

Compute the QR decompositions of Ṽ j+1 and W̃ j+1, i.e.,

Ṽ j+1 = Vj+1 β j+1; W̃ j+1 = W j+1 δT
j+1;

Compute the singular value decomposition of W T
j+1 Vj+1, i.e.,

W T
j+1 Vj+1 = U j 6 j Z T

j ;

δ j+1 = δ j+1 U j 6
1/2
j ; β j+1 = 6

1/2
j V T

j β j+1;

Vj+1 = Vj+1 Z j 6
−1/2
j ; W j+1 = W j+1 U j 6

−1/2
j ;

Ṽ j+2 = A Vj+1 − Vj δ j+1; W̃ j+2 = AT W j+1 − W j βT
j+1;

end For.
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Specifically, after m steps, the block Lanczos procedure determines two block

matrices Vm = (V1, . . . , Vm) ∈ Rn×ms , Wm = (W1, . . . , Wm) ∈ Rn×ms and an

ms × ms block-tridiagonal matrix

Tm =










α1 δ2

β2 α2
. . .

. . .
. . . δm

βm αm










, (2.2)

that satisfy the following relations

AVm = Vm Tm + Vm+1 βm+1 ET
m = Vm Tm + Ṽm+1 E T

m , (2.3)

AT Wm = Wm T
T

m + Wm+1 δT
m+1 E T

m = Wm T
T

m + W̃m+1 E T
m , (2.4)

and

W T
m AVm = Tm, (2.5)

W T
m Vm = Ims, (2.6)

where E T
m = (0s, . . . , 0s, Is) ∈ Rs×ms .

Notice that, a breakdown may occur in Algorithm 1 if W̃ T
j Ṽ j is singular, or

if Ṽ j or W̃ j is not full rank. In [4], several strategies are proposed to overcome

breakdowns and near-breakdowns in order to preserve the numerical stability of

the block Lanczos process for eigenvalue problems. In the sequel, we assume

that m ≤ min{q, r} where q and r are the degrees of the minimal polynomials

of A with respect to V and of AT with respect to W respectively.

2.2 Exact solutions of coupled Lyapunov matrix equations

Before deriving exact expressions for the solutions of the coupled Lyapunov

matrix equations, let us give the following result which will be useful in the

sequel.

Lemma 2.1. Let q = grad(B), r = grad(CT ) and m ≤ min{q, r}. Assume

that m steps of Algorithm 1 are applied to the triplet (A, B, CT ), then we have

A j V1 = Vm T
j

m E1, for j = 0, . . . , m − 1, (2.7)

(AT ) j W1 = Wm (T T
m ) j E1, for j = 0, . . . , m − 1, (2.8)
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where E T
1 = (Is, 0s, . . . , 0s) ∈ Rs×ms.

Proof. Since Tm is a block tridiagonal matrix, then for 0 ≤ j ≤ m − 2, T j
m is

a block band matrix with j upper-diagonals and j lower-diagonals. Therefore,

letting E T
m = (0s, . . . , 0s, Is) we have

E T
m T

j
m E1 = E T

m (T T
m ) j E1 = 0, for j = 0, . . . , m − 2.

Using this last relation and the fact that E T
m E1 = 0, we can proof (2.7) and (2.8)

by induction.

A j+1 V1 = A (A j V1) = A (Vm T
j

m E1)

= (Vm Tm + Ṽm+1 E T
m)T j

m E1 = Vm T
j+1

m E1.

Using the same arguments, we obtain (2.8). �

Using the previous lemma, we next give the low rank approximate solutions

to (1.3). Let Qq be the minimal polynomial of A with respect to B and q =

grad(B), i.e.,

Qq(A) ◦ B =
q∑

i=0

Ai B �i = 0, with �i ∈ Rs×s and �q = Is,

and let Rr be the minimal polynomial of AT for CT where r = grad(CT ), i.e.,

Rr
(

AT
)
◦ CT =

r∑

i=0

(
AT

)i
CT 9i = 0, with 9i ∈ Rs×s and 9r = Is .

Define

Kq =













0s 0s ∙ ∙ ∙ 0s −�0

Is 0s
. . .

... −�1

0s
. . .

. . . 0s
...

...
. . .

. . . 0s
...

0s . . . 0s Is −�q−1













and Kr =













0s 0s ∙ ∙ ∙ 0s −90

Is 0s
. . .

... −91

0s
. . .

. . . 0s
...

...
. . .

. . . 0s
...

0s . . . 0s Is −9r−1













,

as the block companion polynomials of Qq and Rr . Denote by Mq and Nr

the following Krylov matrices

Mq =
(
B, A B, . . . , Aq−1 B

)
, Nr =

(
CT , AT CT , . . . ,

(
AT

)r−1
CT

)
.
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Then

A Mq = Mq Kq, and AT Nr = Nr Kr . (2.9)

We now give the following theorem

Theorem 2.2. The general solutions P and Q of the coupled Lyapunov matrix

equation (1.3) are given by

P = Mq X MT
q , (2.10)

Q = Nr Y N T
r , (2.11)

where X ∈ Rqs×qs and Y ∈ Rrs×rs satisfy

Kq X + X K T
q + E1 ET

1 = 0, (2.12)

Kr Y + Y K T
r + Ē1 Ē T

1 = 0, (2.13)

with E T
1 =

(
Is, 0s, . . . , 0s

)
∈ Rs×qs and Ē T

1 =
(
Is, 0s, . . . , 0s

)
∈ Rs×rs .

Proof. Premultiplying (2.10) by A, postmultiplying (2.11) by AT , using (2.9)

and the fact that B = Mq E1, we have

A P + P AT + B BT = A Mq X MT
q + Mq X MT

q AT + B BT

= Mq Kq X MT
q + Mq X K T

q MT
q + Mq E1 E T

1 MT
q

= Mq (Kq X + X K T
q + E1 E T

1 )MT
q

= 0.

By the same way, we prove (2.11). �

Again using Lemma 2.1, we have the following result which states that the

solutions of (1.3) could be obtained by using the block Lanczos process.

Theorem 2.3. Suppose that l = grad(B) = grad(CT ) and assume that l steps

of Algorithm 1 have been run. Then, the solutions P and Q of the coupled

Lyapunov matrix equations (1.3) could be expressed as follows

P = Vl 0V
T
l , (2.14)

Q = Wl 0̂W
T
l , (2.15)
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where 0 and 0̂ are the solutions of the following reduced Lyapunov matrix

equations

Tl 0 + 0T T
l + E1 β βT E T

1 = 0, (2.16)

T T
l 0̂ + 0̂Tl + E1 E T

1 = 0, (2.17)

and E T
1 =

(
Is, 0s, . . . , 0s

)
∈ Rs×ls .

Proof. Since B = V1 β, the general solution P of the first Lyapunov equation

in (1.3) can be expressed as follows

P = Ml X MT
l =

(
B, A B, . . . , Al−1 B

)
X









BT

BT AT

...

BT
(

AT
)l−1









,

=
(
V1, A V1, . . . , Al−1 V1

)
β X βT









V T
1

V T
1 AT

...

V T
1

(
AT

)l−1









.

Using (2.7), we get

P = Vl
(
E1,Tl E1, . . . ,T

l−1
l E1

)
β X βT









ET
1

E T
1 T

T
l

...

E T
1

(
T T

l

)l−1








V T

l ,

where E T
1 =

(
Is, 0s, . . . , 0s

)
is an s × ls matrix. Setting

0 =
(
E1,Tl E1, . . . ,T

l−1
l E1

)
β X βT









ET
1

E T
1 T

T
l

...

E T
1

(
T T

l

)l−1









,
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then P = Vl 0V
T
l and we have

A P + P AT + B BT = AVl 0V
T
l +Vl 0V

T
l AT + B BT ,

= AVl 0V
T
l +Vl 0V

T
l AT + V1 β βT V T

1 ,

= 0.

Multiplying the last equalities on the right by Wl , on the left by W T
l and using

(2.5) and (2.6) with m = l we obtain (2.16).

Note that (2.17) is obtained as above by using (2.8), (2.11) and the fact that

CT = W1 δT and δT δ = δ δT = Is . �

Before ending this section, we have to say that in general grad(B) 6= grad(CT ).

Hence, if l = min{grad(B), grad(CT )} and l steps of the nonsymmetric block

Lanczos process have been run, then only (2.14) and (2.16) are satisfied if l =

grad(B). Similarly, only (2.15) and (2.17) are satisfied if l = grad(CT ).

3 Solving the coupled Lyapunov matrix equations by the block Lanczos

process

Let q = grad(B), r = grad(CT ) and m ≤ min{q, r}. Assuming that m steps of

the nonsymmetric block Lanczos process have been run, we show how to extract

low rank approximate solutions of the coupled Lyapunov matrix equations (1.3).

The results given in the previous section show that the matrices given below

could be considered as approximate solutions to (1.3).

Pm = Vm Xm V
T
m , (3.1)

Qm = Wm Ym W
T
m , (3.2)

where Xm and Ym are solutions of the following reduced Lyapunov equations

Tm Xm + Xm T
T

m + E1 β βT ET
1 = 0, (3.3)

T T
m Ym + Ym Tm + E1 E T

1 = 0, (3.4)

and E1 =
(
Is, 0s, . . . , 0s

)T
∈ Rs×ms .

The low-dimensional Lyapunov equations (3.3) and (3.4) could be solved by

direct methods such those described in [5, 18, 24]. In the sequel, we assume
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that the eigenvalues λi (Tm) of the block tridiagonal matrix Tm constructed by

the nonsymmetric block Lanczos process satisfy λi (Tm) + λ̄ j (Tm) 6= 0, for

i, j = 1, . . . , m. This condition ensures the existence and uniqueness of Xm and

Ym the solutions of the reduced Lyapunov equations and that these solutions are

symmetric and positive semidefinite.

Next, we show how to compute an upper-bound for the Frobenius residual

norms in order to use it as a stopping criterion. Notice that the upper bound

given below will allow us to stop the algorithm without having to compute the

approximate solutions Pm and Qm . Hence, letting

R(Pm) = A Pm + Pm AT + B BT , (3.5)

R(Qm) = AT Qm + Qm A + CT C, (3.6)

be the residuals associated to Pm and Qm respectively, we have the following

result

Theorem 3.1. Let Pm, Qm be the approximate solutions defined by (3.1), (3.3)

and (3.2), (3.4) respectively. Let R(Pm) and R(Qm) be the corresponding resid-

uals defined by (3.5) and (3.6) respectively. Then

‖R(Pm)‖F ≤ 2 ‖Ṽm+1 X̃m V
T
m ‖F and

‖R(Qm)‖F ≤ 2 ‖W̃m+1 Ỹm W
T
m ‖F

(3.7)

where X̃m, Ỹm are the s × n matrices corresponding to the last s rows of Xm and

Ym respectively.

Proof. From (3.1) and (3.3), we have

R(Pm) = AVm XmV
T
m +Vm XmV

T
m AT + B BT ,

then using (2.3) and the fact that B = V1 β, we get

R(Pm) =
(
Vm Tm + Vm+1 βm+1 E T

m

)
Xm V

T
m

+ Vm Xm
(
T T

m V
T
m + Em βT

m+1 V T
m+1

)
+ V1 β βT V T

1

= Vm+1

(
Tm Xm

βm+1 E T
m Xm

)

V T
m
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+ Vm

(
Xm T T

m Xm Em βT
m+1

)
V T

m+1 + V1 β βT V T
1

= Vm+1

(
Tm Xm + Xm T T

m + E1 β βT E T
1 Xm Em βT

m+1

βm+1 E T
m Xm 0

)

V T
m+1.

Since Xm is the solution of the reduced Lyapunov equation (3.3) and Ṽm+1 =

Vm+1 βm+1, then

R(Pm) = Vm+1

(
0 Xm Em βT

m+1

βm+1 E T
m Xm 0

)

V T
m+1

= Vm+1 βm+1 E T
m Xm V

T
m +Vm Xm Em βT

m+1 V T
m+1

= Ṽm+1 E T
m Xm V

T
m +Vm Xm Em Ṽ T

m+1.

As Xm is a symmetric matrix, it follows that

‖R(Pm)‖F ≤ 2 ‖Ṽm+1 E T
m Xm V

T
m ‖F ≤ 2

∥
∥
∥Ṽm+1 X̃m V

T
m

∥
∥
∥

F
,

where X̃m = E T
m Xm represents the s last rows of Xm .

Similarly, from (2.4) and as CT = W1 δT , W̃m+1 = Wm+1 δT
m+1 and the fact

that Ym is symmetric and is the solution of the reduced Lyapunov equation (3.4),

we obtain the second inequality of (3.7). �

To reduce the cost in the coupled Lyapunov block Lanczos method, the solu-

tion of the low-order Lyapunov equations are computed every k0 iterations where

k0 is a chosen parameter. Note also that the approximate solutions are computed

only when

rm := 2
∥
∥
∥Ṽm+1 X̃m V

T
m

∥
∥
∥

F
≤ ε and sm = 2

∥
∥
∥W̃m+1 Ỹm W

T
m

∥
∥
∥

F
≤ ε,

where ε is a chosen tolerance. Summarizing the previous results, we get the

following algorithm

Algorithm 2. The coupled Lyapunov block Lanczos algorithm (CLBL)

• Inputs : A an n ×n stable matrix, B an n ×s matrix and C an s ×n matrix.

• Step 0 . Choose a tolerance ε > 0, an integer parameter k0 and set k = 0;

m = k0;
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• Step 1 . For j = k + 1, k + 2, . . . , m;

construct the block tridiagonal matrix Tm , the biorthonormal

bases {Vk+1, . . . , Vm}, {Wk+1, . . . , Wm}, Ṽm+1 and W̃m+1 by

Algorithm 1 applied to the triplet (A, B, CT );

end For

• Step 2 . Solve the low-dimensional Lyapunov equations:

Tm Xm + Xm T
T

m + E1 β βT E T
1 = 0;

T T
m Ym + Ym Tm + E1 E T

1 = 0;

• Step 3 . Compute the upper bounds for the residual norms:

rm = 2
∥
∥
∥Ṽm+1 X̃m V

T
m

∥
∥
∥

F
and sm = 2

∥
∥
∥W̃m+1 Ỹm W

T
m

∥
∥
∥

F
;

• Step 4 . If rm > ε or sm > ε, set k = k + k0; m = k + k0 and go to step 1.

• Step 5 . The approximate solutions are represented by the matrix product:

Pm = Vm Xm V
T
m and Qm = Wm Ym W

T
m .

We end this section by the following result which shows that the approximate

solutions Pm and Qm are the exact solutions of two perturbed Lyapunov matrix

equations.

Theorem 3.2. Suppose that m steps of Algorithm 2 have been run. Let Pm,

Qm be the approximate solutions defined by (3.1), (3.3) and (3.2), (3.4) re-

spectively. Then Pm and Qm are the exact solutions of the perturbed Lyapunov

matrix equations

(A − 11) Pm + Pm(A − 11)
T + B BT = 0, (3.8)

(A − 12)
T Qm + Qm (A − 12) + CT C = 0, (3.9)

where

11 = Ṽm+1 W T
m and 12 = Vm W̃ T

m+1. (3.10)
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Proof. Multiplying (3.3) on the left by Vm , on the right by V T
m , we obtain

Vm Tm Xm V
T
m +Vm Xm T T

m V
T
m +Vm E1 β βT E T

1 V
T
m = 0.

Using (2.3), we have

[
AVm − Vm+1 βm+1 E T

m

]
Xm V

T
m

+Vm Xm
[
V T

m AT − Em βT
m+1 V T

m+1

]
+ B BT = 0,

and since W T
m Vm = Ims , then

[
A − Vm+1 βm+1 E T

m W
T
m

]
Vm Xm V

T
m

+Vm Xm V
T
m

[
AT −Wm Em βT

m+1 V T
m+1

]
+ B BT = 0.

Hence,

(
A − 11

)
Pm + Pm

(
A − 11

)T
+ B BT = 0,

where

11 = Vm+1 βm+1 E T
m W

T
m = Vm+1 βm+1 W T

m = Ṽm+1 W T
m .

We use the same arguments to show (3.9). �

4 Reduced order models via the nonsymmetric block Lanczos process

In this section, we consider the following state formulation of a multi-input and

multi-output linear time invariant system (LTI)
{

ẋ(t) = A x(t) + B u(t)

y(t) = C x(t),
(4.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rs is the input, y(t) ∈ Rs is the out-

put of interest and A ∈ Rn×n, B, CT ∈ Rn×s . Applying the Laplace transform

to (4.1), we obtain
{

z X (z) = A X (z) + B U (z)

Y (z) = C X (z),
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where X (z), Y (z) and U (z) are the Laplace transforms of x(t), y(t) and u(t)

respectively.

The standard way of relating the input and output vectors of (4.1) is to use

the associated transfer function F(z) such that Y (z) = F(z) U (z). Hence, if we

eliminate X (z) in the previous two equations, we get:

F(z) = C
(
z In − A

)−1
B. (4.2)

We recall that most of model reduction techniques, like the moment-matching

approaches, are based on this transfer function [2, 13, 15, 20, 22]. Moreover,

if the number of state variables of the previous LTI system is very high, (i.e., if

n the order of A is large), direct computations of F(z) becomes inefficient or

even prohibitive. Hence, it is reasonable to look for a model of low order that

approximates the behavior of the original model (4.1). This low-order model

can be expressed as follows
{

ẋm(t) = Am xm(t) + Bm u(t)

ym(t) = Cm xm(t),
(4.3)

where Am ∈ Rm×m , Bm and CT
m ∈ Rm×s with m � n.

In [22] and for the single-input single-output case (i.e., s = 1), the authors

proposed a method based on the classical Lanczos process to construct an ap-

proximate reduced order model to (4.1). The aim of this section is to generalize

some of the results given in [22] to the multi-input multi-output case.

More precisely, let us see how to obtain an efficient reduced model to (4.1) by

using the nonsymmetric block Lanczos process. This is done by computing an

approximate transfer function Fm(z) to the original one F(z). In fact, writing

F(z) = C X where X = (z In − A)−1 B ∈ Rn×s and considering the block

linear system
(
z In − A

)
X = B, (4.4)

we see that, approximating F(z) can be achieved by computing an approximate

solution Xm to X by using the block Lanczos method for solving linear systems

with multiple right-hand sides [19].

LettingVm ,Wm and Tm be the biorthonormal bases and the block tridiagonal

matrix, respectively, given by the nonsymmetric block Lanczos process applied
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to the triplet (A, B, CT ) and starting from an initial guess X0 = 0, we can show

that

Xm = Vm
(
z Ims − Tm

)−1
E1 β.

Since

C = δ W T
1 and W T

1 Vm =
(
Is, 0, . . . , 0

)T
= E T

1 ∈ Rs×ms,

the transfer function F(z) can then be approximated by

Fm(z) = C Xm = δ E T
1

(
z Ims − Tm

)−1
E1 β. (4.5)

The above result allows us to suggest the following reduced order model to (4.1)
{

ẋm(t) = Tm xm(t) + E1 β u(t)

ym(t) = δ E T
1 xm(t),

(4.6)

Next, we show that the reduced order model (4.5) proposed in the above ap-

proach approximates the behavior of the original model (4.1). Moreover, we give

an upper bound for ‖Fm(z) − F(z)‖ which enable us to monitor the progress of

the iterative process at each step. More precisely, we have the following results

Theorem 4.1. The matrices Tm, β and δ generated by the block Lanczos pro-

cess applied to the triplet (A, B, CT ) are such that the first 2m − 1 Markov

parameters of the original and the reduced models are the same, that is,

C A j B =
(
δ E T

1

)
T k

m

(
E1 β

)
for j = 0, 1, . . . , 2(m − 1).

Proof. For j ∈ {0, 1, . . . , 2m − 1}, let j1, j2 ∈ {0, 1, . . . , m − 1} such that

j = j1 + j2. Using the results of Lemma 2.1 and the fact that C = δ W T
1 ,

W T
1 Vm = E T

1 , we have

C A j B = δ W T
1 A j1+ j2 V1 β = δ

[
(AT ) j2 W1

]T [
A j1 V1

]
β

= δ
[
Wm (T T

m ) j2 E1
]T [

Vm T
j1

m E1
]

β

= δ E T
1 T

j2
m

[
W T

m Vm
]
T j1

m E1 β = δ E T
1 T

j1+ j2
m E1 β

= (δ E T
1 )T j

m (E1 β).

�

Before giving an upper bound for ‖Fm(z) − F(z)‖, we have to recall the

definition of the Schur complement [35] and give the first matrix Sylvester iden-

tity [28].
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Definition 4.2. Let M be a matrix partitioned into four blocks

M =

(
A B

C D

)

,

where the submatrix D is assumed to be square and nonsingular. The Schur

complement of D in M, denoted by (M/D), is defined by

(M/D) = A− BD−1C.

If D is not a square matrix then a pseudo-Schur complement of D in M can

still be defined [7, 8]. Now, considering the matrices K and M̂ partitioned as

follows

K =






A B E

C D F

G H L




 M̂ =

(
D F

H L

)

,

we have the following property

Proposition 4.3. If the matrices L and M̂ are square and nonsingular, then

(
K/M̂

)
=

(
(K/L)/(M̂/L)

)
=

((
A E

G L

)

/L

)

−

((
B E

H L

)

/L

)
(
M̂/L

)−1

((
C F

G L

)

/L

)

.

Theorem 4.4. Let αi , β, βi , δ, δi (1 ≤ i ≤ m), Ṽm+1 and W̃m+1 be the matrices

obtained after m steps of the nonsymmetric block Lanczos process applied to

the triplet (A, B, CT ). If (z Ims − Tm), (z In − A) are nonsingular and z is such

that |z| > ‖A‖2, then

‖F(z) − Fm(z)‖2 ≤
‖δ‖2 ‖01,m(z)‖2 ‖W̃m+1‖2 ‖Ṽm+1‖2 ‖0m,1(z)‖2 ‖β‖2

|z| − ‖A‖2
, (4.7)

where
0m,1(z) = E T

m (z Ims − Tm)−1 E1

= Dm βm Dm−1 βm−1 ∙ ∙ ∙ D2 β2 D1,
(4.8)
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01,m(z) = E T
1 (z Ims − Tm)−1 Em

= D1 δ2 D2 ∙ ∙ ∙ δm−1 Dm−1 δm Dm,
(4.9)

and

Dm = (z Is − αm)−1, D j−1 = (z Is − α j−1 − δ j D j β j )
−1 for j = m, . . . , 2.

Proof. As C = δ W T
1 and B = V1 β, we have

F(z) − Fm(z) = C (z In − A)−1 B − δ E T
1 (z Ims − Tm)−1 E1 β

= δ W T
1 (z In − A)−1 V1 β − δ ET

1 (z Ims − Tm)−1 E1 β

= δ G(z) β,

where G(z) = W T
1 (z In − A)−1 V1 − E T

1 (z Ims − Tm)−1 E1. Now, from (2.3),

we have

Vm (z Ims − Tm)−1 = (z In − A)−1(z In − A)Vm (z Ims − Tm)−1

= (z In − A)−1 (zVm − AVm) (z Ims − Tm)−1

= (z In − A)−1 (zVm −Vm Tm − Ṽm+1 ET
m) (z Ims − Tm)−1

= (z In − A)−1Vm − (z In − A)−1 Ṽm+1 ET
m (z Ims − Tm)−1.

Multiplying the last relation on the left by W T
1 , on the right by E1 we obtain

G(z) = W T
1 (z In − A)−1 Ṽm+1 E T

m (z Ims − Tm)−1 E1. (4.10)

Similarly, by using (2.4), we have

(z Ims − Tm)−1W T
m = (z Ims − Tm)−1W T

m (z In − A) (z In − A)−1

= (z Ims − Tm)−1 (zW T
m −W T

m A)(z In − A)−1

= (z Ims − Tm)−1(zW T
m − Tm W

T
m − Em W̃ T

m+1) (z In − A)−1

= (W T
m (z In − A)−1 − (z Ims − Tm)−1 Em W̃ T

m+1 (z In − A)−1

and again, multiplying the last equality on the left by E T
1 , on the right by Ṽm+1,

we have

W T
1 (z In − A)−1 Ṽm+1 − ET

1 (z Ims − Tm)−1 Em W̃ T
m+1 (z In − A)−1 Ṽm+1 = 0. (4.11)
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Combining the formulas (4.10), (4.11) and letting

0m,1(z) = E T
m (z Ims − Tm)−1 E1, 01,m(z) = E T

1 (z Ims − Tm)−1 Em,

we get

G(z) = 01,m(z) W̃ T
m+1 (z In − A)−1 Ṽm+1 0m,1(z),

and then

F(z) − Fm(z) = δ
[
01,m(z) W̃ T

m+1 (z In − A)−1 Ṽm+1 0m,1(z)
]

β.

Finally, using the inequality ‖(z In − A)−1‖2 ≤ 1
|z|−‖A‖2

for |z| > ‖A‖2, we have

‖F(z) − Fm(z)‖2

≤ ‖δ‖2 ‖01,m(z)‖2 ‖W̃m+1‖2 ‖(z In − A)−1‖2 ‖Ṽm+1‖2 ‖0m,1(z)‖2 ‖β‖2

≤
‖δ‖2 ‖01,m(z)‖2 |W̃m+1‖2 ‖Ṽm+1‖2 |0m,1(z)‖2 ‖β‖2

|z| − ‖A‖2
.

Next, set Dm = (z Is − αm)−1 and remark that 0m,1(z) is the Schur comple-

ment of

(z Ims − Tm) in

(
0 −E T

m

E1 z Ims − Tm

)

.

Hence, using the result of Proposition 4.3, we have

0m,1(z) =

((
0 −E T

m

E1 z Ims − Tm

)

/(z Ims − Tm)

)

=











0 0 −Is

E1 z I(m−1)s − Tm−1 −δm Em−1

0 −βm E T
m−1 z Is − αm




 /(z Ims − Tm)






=

((
0 −Is

0 D−1
m

)

/D−1
m

)

−

((
0 −Is

−βm E T
m−1 D−1

m

)

/D−1
m

)

×

((
z I(m−1)s − Tm−1 −δm Em−1

−βm E T
m−1 D−1

m

)

/D−1
m

)−1

×

((
E1 −δm Em−1

0 D−1
m

)

/D−1
m

)

= Dm βm E T
m−1

[
z I(m−1)s − Tm−1 − δm Em−1 Dm βm E T

m−1

]−1
E1

= Dm βm E T
m−1 (z I(m−1)s − T̂m−1)

−1 E1,

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/7/2 — 12:45 — page 229 — #19

M. HEYOUNI, K. JBILOU, A. MESSAOUDI and K. TABAA 229

where

E T
1 =

(
Is, 0s, ∙ ∙ ∙ , 0s

)
∈ Rs×(m−1)s, E T

m−1 =
(
0s, ∙ ∙ ∙ , 0s, Is

)
∈ Rs×(m−1)s

and T̂m−1 is a block tridiagonal matrix having the same elements that Tm−1

except the (m − 1, m − 1) block which is equal to (αm−1 + δm Dm βm).

Again, applying Proposition 4.3 to compute E T
m−1 (z I(m−1)s − T̂m−1)

−1 E1,

and so on, we finally obtain (4.8). Similarly, we remark that 01,m(z)T is the

Schur complement of

(
z Ims − T T

m

)
in

(
0 −E T

m

E1 z Ims − T T
m

)

.

Then, using the same arguments as for 0m,1(z) we get (4.9). �

Summarizing the previous results, we get the following algorithm

Algorithm 4. Model reduction via the block Lanczos process

• Inputs : A the system matrix, B the input matrix, C the output matrix.

• Step 0 . Choose a tolerance ε > 0, an integer parameter k0 and set k = 0;

m = k0.

• Step 1 . For j = k + 1, k + 2, . . . , m

construct the block tridiagonal matrix Tm , Ṽm+1 and W̃m+1 by

Algorithm 1 applied to the triplet (A, B, CT ).

compute the matrices 01,m(z) and 0m,1(z) using (4.8), (4.9).

end For

• Step 2 . Compute the upper bound for the residual norm:

rm =
‖δ‖2 ‖01,m(z)‖2 ‖W̃m+1‖2 ‖Ṽm+1‖2 ‖0m,1(z)‖2 ‖β‖2

|z| − ‖A‖2
.

• Step 3 . If rm > ε, set k = k + k0; m = k + k0 and go to step 1.

• Step 4 . The reduced order model is Am = Tm , Bm = E1 β and Cm =

δ E T
1 .
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5 Numerical experiments

In this section, we present some numerical experiments to illustrate the behavior

of the block Lanczos process when applied to solve coupled Lyapunov equations.

We also applied the block Lanczos process for model reduction in large scale

dynamical systems. All the experiments were performed on a computer of Intel

Pentium-4 processor at 3.4GHz and 1024 MBytes of RAM. The experiments

were done using Matlab 6.5.

Experiment 1. In this first experiment, we compared the performance of the

coupled Lyapunov block Lanczos (CLBL) and the coupled Lyapunov block

Arnoldi (CLBA) algorithms [21]. Notice that:

• In all the experiments, the parameter k0 used to compute the solutions of

the low-order Lyapunov equations is k0 = 5.

• For the coupled Lyapunov block Arnoldi algorithm, the tests were stopped

when the residual given in [21] was less than ε = 10−6.

• For the coupled Lyapunov block Lanczos algorithm, the iterations were

stopped when

max
{
‖Ṽm+1 X̃m‖F , ‖W̃m+1 Ỹm‖F

}
≤ ε = 10−6. (5.1)

We note that Res1 =‖ A Pm + Pm AT + B BT ‖F and Res2 =‖ AT Qm +

Qm A + CT C ‖F are the exact Frobenius residual norms for the first and the

second Lyapunov equations (1.3) respectively. The number I ter of iterations

required for CLBA corresponds to the total number of iterations needed for

solving separately the two Lyapunov equations (1.3) by the Lyapunov block

Arnoldi method.

The matrices A1 and A2 tested in this experiment comes from the five-point

discretization of the operators [30]

L1(u) = 1u − (x − y)
∂u

∂x
− sin (x + y)

∂u

∂y
− 103 ex y u,

L2(u) = 1u −
1

2

√
x + y

∂u

∂x
− (cos(x) + cos(y))

∂u

∂y
− (x + y) u,
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on the unit square [0, 1] × [0, 1] with homogeneous Dirichlet boundary condi-

tions. The dimension of each matrix is n = n2
0 where n0 is the number of inner

grid points in each direction. The obtained stiffness matrices A1 and A2 are

sparse and nonsymmetric with a band structure [30]. The entries of the matrices

B and C were random values uniformly distributed on [0, 1].

(Ai , n0, s) Algorithm I ter Res1 Res2 flops

(A1, 60, 3) CLBA 45 6.96 10−8 8.87 10−8 2.89 108

nnz(A1) = 17760 CLBL 55 7.49 10−7 4.80 10−8 9.57 107

(A1, 50, 4) CLBA 35 3.73 10−7 3.94 10−7 2.29 108

nnz(A1) = 12300 CLBL 45 7.49 10−7 4.80 10−8 9.51 107

(A1, 50, 3) CLBA 35 3.08 10−7 2.86 10−7 2.29 108

nnz(A1) = 12300 CLBL 50 1.05 10−8 1.72 10−9 6.11 107

(A2, 60, 3) CLBA 60 1.34 10−7 1.21 10−7 5.25 108

nnz(A2) = 17760 CLBL 75 1.14 10−6 2.65 10−7 1.97 108

(A2, 60, 2) CLBA 50 1.96 10−7 2.72 10−7 2.28 108

nnz(A2) = 17760 CLBL 55 1.51 10−8 2.88 10−8 7.47 107

(A2, 50, 4) CLBA 50 5.84 10−8 9.74 10−8 4.65 108

nnz(A2) = 12300 CLBL 55 4.03 10−8 3.01 10−9 1.51 108

Table 5.1 – Effectiveness of the coupled Lyapunov block Lanczos and coupled Lya-

punov block Arnoldi methods.

Experiment 2. The dynamical system used in this experiment is a non trivial

constructed model (FOM) from [9, 31]. Originally, the system obtained from

the FOM model is SISO and is of order n = 1006. So, in order to get a MIMO

system, we modified the inputs and outputs. The state matrices are given by

A =








Ã1

Ã2

Ã3

Ã4








, B =
[
b1, b2, . . . , b6

]
, CT =

[
c1, c2, . . . , c6

]
,
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where

Ã1 =

(
−1 100

−100 −1

)

, Ã2 =

(
−1 200

−200 −1

)

, Ã3 =

(
−1 400

−400 −1

)

and Ã4 = diag(−1, . . . , −1000). The columns of B and C are such that

bT
1 = c1 = (10, . . . , 10︸ ︷︷ ︸

6

, 1, . . . , 1︸ ︷︷ ︸
1000

), and b2, . . . , b6; c2, . . . , c6

are random column vectors.

The response plot and error plot given below show the singular values

σmax(F( ω)) and σmax(Fm( ω) − F( ω)) as a function of the frequency ω re-

spectively, where σmax(.) denotes the largest singular value and ω ∈ [10−1 105].

As a stopping criterion, we used the upper bound (4.7). More precisely, we

stopped the computation when

max
w

(
‖δ‖2 ‖01,m(z)‖2 ‖W̃m+1‖2 ‖Ṽm+1‖2 ‖0m,1(z)‖2 ‖β‖2

|z| − ‖A‖2

)

≤ η = 10−7.

The frequency response (solid line) of the modified FOM model is given in the

top of Figure 5.1 and is compared to the frequencies responses of order m = 12

when using the block Arnoldi process (dash-dotted line) and the block Lanczos

process (dashed line). The exact errors ‖F(z) − F12(z)‖2 produced by the two

processes are shown in the bottom of Figure 5.1.

6 Conclusion

In this paper, we applied the block Lanczos process for solving coupled Lya-

punov matrix equations and also for model reduction. We gave some new theo-

retical results and showed the effectiveness of this process with some numerical

examples.
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Figure 5.1 – Top: ‖F(ω)‖2 (solid line) and it’s approximations ‖F B A
12 (ω)‖2 and

‖F BL
12 (ω)‖2. Bottom: Exact errors ‖F(ω) − F B A

12 (ω)‖2 (dashed-dotted line) and

‖F(ω) − F BL
12 (ω)‖2 (dashed line).
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