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Abstract. This paper deals with the modelling of injection moulding processes taking into

account the deformability of the preform and the polymerisation of the resin. The coupled

flow– deformation problem in the infiltrated and dry region is formulated with the correspond-

ing boundary conditions and with the proper evolution equations determining the motion of the

boundaries. An approximated analytical discussion is performed to obtain some estimates on the

infiltration velocity, helping in identifying a window of applicability in the parameters space (i.e.,

the mouldability diagram), which fits well with the numerical simulations.
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1 Introduction

The high fluid pressure required in resin transfer moulding, Rudd et al. [32],

and the high compliance of the porous preform can determine a significant de-

formation of the preform during infiltration, Danis et al. [13], Kim et al. [19],

Michand et al. Michaud et al. [27], Yamauchi and Nishida [37]. Such a defor-

mation has great influence in the rate of the flow of the infiltrating resin and in

the microstructure of the final product, Sommer and Mortensen [35]. Indeed the

permeability of the preform depends strongly on the pore volume fraction and

reduces more and more as the preform is compressed. The effects of deformation
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are also important in the case of sandwich structure, with the displacement and

deformation of foam cores during infiltration, Al-Hamdan et al. [5]. A recent

review paper which considers the problem of deformation is Lacoste et al. [21].

In order to identify in advance possible inhomogeneities and damages in the

reinforcing network, it is important to consider a detailed mathematical model

which takes into account the deformation of the solid constituent. One possible

framework to address the modelling of the infiltration of a fluid in a deformable

porous medium is to adopt the mixture theory or, more precisely, the porous

media theory. The first examples of this type of applications is in Preziosi et al.

[30] and Preziosi [28].

In this paper, I assume that the preform is saturated (the case of a solid-liquid-

air mixture is dealt with in Antonelli and Farina [2]). On the other hand, we take

the effect of curing into account since it strongly affects the process increasing

the viscosity of the resin, preventing the whole infiltration if the process pa-

rameters are not chosen properly. These effects combined with the deformation

of the solid preform have been studied in Farina and Preziosi [14], Farina and

Preziosi [15]. The inertial effects can be neglected, since they are important only

in processes induced by the sudden imposition of the injection pressure during

the initial compression, giving rise to quickly decaying small oscillations of the

wet border of the preform, as studied in Ambrosi [1], Ambrosi and Preziosi [3],

Ambrosi and Preziosi [4], Mesin and Ambrosi [25].

The main focus of this paper is the deduction of some estimates which can help

evaluating the process parameters generating a successful process and the iden-

tification of a window of applicability in the process parameters called mould-

ability diagram. This problem has been proposed by several authors, Clyne and

Mason [12], Gonzales-Romero and Macosko [17], Gonzales-Romero and Ma-

cosko [18], Reboredo and Rojas [31], Rudd et al. [32], who put in evidence

the importance of identifying, by the use of modelling and simulation, a win-

dow of process pressures and temperatures for a particular process of interest,

for which full infiltration can be obtained. The temperature upper and lower

limits are mainly due to the choice of the resin system; the upper limit of the

pressure is given by either the maximum pump output or the flow rate at which

mat tearing or fibre washing occurs. The pressure lower limit, which is the min-
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imum pressure that provides the full infiltration at a certain process temperature,

can be obtained by a deep study of the infiltration problem, which requires the

mathematical modelling and the quantitative analysis of the process.

The aim of this work is then to study a mathematical model of the injection

moulding process, and to perform an analytical and numerical discussion in order

to help in improving the manufacturing procedure identifying the optimum set

of operating parameters. The paper shows how a mathematical model can help

identifying the mouldability diagram.

The model used is non linear and presents coupled equations modelling the

inflow of a reactive resin undergoing polymerisation into a deformable preform.

The coupling between the curing equation and the porous media equations mod-

elling the preform causes the mathematical analysis of the problem to be fairly

involved. Some analytical results can be found in the literature, under the sim-

plifying assumption of a rigid preform, Billi [6], Billi [7], Billi and Farina [8].

In this paper some analytical results on the infiltration rate are obtained in the

one-dimensional isothermal case, but considering both the deformation of the

preform and the polymerisation of the resin. An upper bound for the infiltration

velocity (and hence also a lower bound for the infiltration time) is given. A fur-

ther analytical estimate for the infiltration velocity is also given, which fits well

with the numerical simulations and allows to find out very simply the optimal

values for the process parameters. The numerical analysis regards the full non-

isothermal model and puts in evidence the quality of the isothermal estimates

(see also Liu [24], for other results in the isothermal approximation).

After this introduction, the paper is organised as follows:

– the second section is devoted to a short introduction of the classical frame-

work in which the model is developed;

– the third section illustrates the model in the one dimensional case and

presents the mathematical problem;

– in the fourth section, the numerical analysis is explained and the numerical

results are shown;

– in the fifth section, under some approximations, analytical approximate
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expressions for the motion of the infiltration front and some estimates on

the mouldability diagram are given.

2 Mathematical model

A proper theoretical framework to model the injection moulding process is the

theory of deformable porous media, which can be obtained on the basis either of

mixture theory or of others averaging methods.

The physical assumptions of the mathematical model considered are the fol-

lowing:

A1. inertia is negligible if compared to the stresses;

A2. the principle of constituent separation is assumed, which means that the

Helmholtz free energy densities depend only on quantities related to their own

constituent variable;

A3. surface tension and capillary effects are neglected;

A4. small departures from thermal equilibrium are studied;

A5. the motion of the fluid through the skeleton is slow, in order to neglect the

viscous effects compared to the pressure gradient;

A6. all the constituents have the same temperature.

Based on the previous assumptions, the classical model for a porous medium

can be recovered introducing conservation laws for the mass, the momentum and

the energy.

In the model a fundamental role is played by the fact that the resin undergoes a

polymerisation process usually referred to as curing cycle. The polymerisation

process consists in an exothermic cross-linking chemical reaction which links

monomers to build longer and longer polymers. The state of the reaction is

described by the so-called degree of cure (or resin conversion) δc(x, t) defined

as the ratio of the amount of heat H released by the curing reaction over the

total heat of reaction Hc: δc(x, t) = H(x,t)
Hc

[0, 1]. As the liquid is moving, the

evolution of the degree of cure can be modelled by

∂ δc

∂ t
+ v f · grad δc = fc (δc, �) , (2.1)

where fc is a curing function describing the chemical reaction which is measured

experimentally.

Comp. Appl. Math., Vol. 26, N. 1, 2007



LUCA MESIN 71

The curing reaction enters the model of the infiltration process by the two

following effects:

– a supply term R = φ f Hc fc(δc,�), where φ f is the resin volume fraction,

is introduced in the energy balance, due to the heat released by the reaction;

– a viscosity increase, which becomes dramatic (it blows up) as the resin

approaches a stage known as gelation, indicted by δg.

Referring to Preziosi and Farina [29], in the Eulerian framework, the mathe-

matical model for the wet (or infiltrated) region writes

∂φs

∂t
+ div (φsvs) = 0 ,

div vc = div(φsvs + φ f v f ) = 0 ,

φ f (v f − vs) = −K
µ

grad P ,

div T′
w − grad P = 0 ,

ρ C

(
∂�

∂t
+ vs · grad �

)
= ρ f C f

K
µφ f

grad P · grad �

+ div(k grad �) + 1

µ
grad P · K grad P

+tr (T′
w grad vs) + φ f Hc fc ,

∂ δc

∂ t
+ v f · grad δc = fc ,

(2.2)

where the index f refers to the fluid component (a resin) and s to the solid

preform, φ denotes the volume fractions (φ f = 1−φs , which corresponds to the

saturation assumption), K the permeability tensor of the preform, T′
w the excess

stress tensor in the wet region, P the pore pressure, ρ the density of the mixture

as a whole, C (C f ) the total (fluid) heat capacity, k the heat conductivity tensor.

For the dry region, neglecting air, the following model is considered
∂φs

∂t
+ div (φsvs) = 0 ,

div T′
d = 0 ,

ρs Cs

(
∂�

∂t
+ vs · grad �

)
= div(ks grad �) + tr (T′

d grad vs) ,

(2.3)
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where Cs is the solid heat capacity, ks is the solid heat conductivity, T′
d is the

excess stress tensor in the dry region.

The previous model must be closed by specialising the constitutive relations

for the viscosity µ and the permeability tensor K, the stress tensors in both the

wet and the dry region, and the particular form of the curing function fc.

3 One dimensional problem

We’ll consider the infiltration process to be pressure driven, with a constant pres-

sure jump �P applied over the wet region. A one dimensional approximation is

studied. Such a model can approximate an infiltration process concerning gen-

erally flat mould cavities, when edge effects are negligible; the flow simulation

for arbitrary component geometries requires to take into account two or three

dimensional models Rudd et al. [32]. The one dimensional model, even if feasi-

ble to more restricted applications, allows to obtain some interesting analytical

estimates.

Referring to Figure 1, the preform is considered to be fixed with a net on the

right and the fluid to enter from the left solid border of the preform.

Figure 1 – Representation of the infiltration problem. The infiltrated (wet) region is

delimited by the two moving boundaries of the problem. The right border of the preform,

instead, is fixed by a web, which allows only the liquid to go through.

The resin is supposed to infiltrate a matrix initially compressed, presenting

a constant volume fraction corresponding to the applied pressure (referring to

Ambrosi and Preziosi [4], Mesin and Ambrosi [25], considering inertial terms

and starting from a relaxed matrix, rapidly decaying oscillations affect the system

only at the early times). The length of the compressed preform is denoted by

L = φr
φc

l, where φr and φc are the volume fraction in the relaxed and compressed

preform, respectively, and l is the length of the relaxed preform. This means that
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the left solid border moves as a consequence of the relaxation of the matrix in the

infiltrated region. Referring to Gurtin [16] and Wilmanski [36], the Lagrangian

framework is introduced on the solid constituent, in order to fix the left solid

border. Its position is indicated with X = 0.

In the Lagrangian formulation it is convenient to introduce the so-called void

ratio e(X, t) as dependent variable, in place of the volume fraction:

e := 1 − φs

φs
. (3.1)

Furthermore, the following constitutive assumptions are considered:

– the stress tensor of the preform is elastic; the elasticity assumption is made

in order to get a simpler model, for which some analytical estimates can

be obtained (for a mathematical discussion of the viscoelastic case, see

Ambrosi and Preziosi [4]); this assumption requires to neglect relaxation

phenomena during the process considered (lasting less than 10s, see Fig-

ure 3); for metal preforms, due to their elastic-plastic behavior, such an

assumption is more critical; preforms constituted by glass fibres can be

better approximated by an elastic model; in the one dimensional case,

the elastic assumption means that the stress tensor is a function (which is

supposed to be one to one) of the void ratio only;

– the permeability depends only on the void ratio (this is another approxi-

mation, as permeability is in general also a function of the temperature).

The one dimensional mathematical model in Lagrangian coordinates in the

wet region is the following

∂e

∂t
= ∂

∂ X

(
G(e)

µ(δc, �)

∂e

∂ X

)
ρC

∂�

∂t
= ρ f C f

K (1 + e)

µ e

(1 + er )
2

(1 + e)2

∂T ′
w

∂ X

∂�

∂ X

+ 1 + er

1 + e

∂

∂ X

(
k

1 + er

1 + e

∂�

∂ X

)
+ 1

µ

(1 + er )
2

(1 + e)2
K

(
∂T ′

w

∂ X

)2

+ T ′
w

1 + er

1 + e

∂

∂ X

(
K

µ

∂T ′
w

∂ X

)
+ e

1 + e
Hc fc(δc,�)

∂ δc

∂ t
= 1

e

G(e)

µ(δc, �)

∂δc

∂ X
+ fc (δc, �)

(3.2)
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where T ′
w = T ′

w(e) is the excess stress tensor in the wet region (note that it is

positive in compression contrary to the customary convention) and the following

function is introduced

G(e) = −(1 + er )
2

(1 + e)

dT ′
w(e)

de
K (e) , (3.3)

where er is the void ratio corresponding to the relaxed preform.

We note that equation (3.2.I) is parabolic, since the function G(e)
µ(δc,�)

is positive.

However, its value approaches zero when δc → δg (near gelation). Furthermore

it is assumed that the derivative of G(e) is a negative function of the void ratio,

as it is usually the case in applications.

From equation (2.3.II), written in the one dimensional case, we have that the

void ratio is constant in the dry region in space and time. Hence, the model for

the dry region reduces to the energy balance

ρsCs
∂�

∂t
= (1 + er )

2

(1 + ed
c )2

∂

∂ X

(
k

∂�

∂ X

)
. (3.4)

Let’s obtain now the constant value of the void ratio in the dry region. As the

excess stress is constant across the infiltration front, we have

T ′
d(e

d
c ) = T ′

w(ew
c ) , (3.5)

where T ′
d is the excess stress in the dry region and ed

c , ew
c are the value of the

void ratio at the dry and wet side of the infiltration front, respectively. Being the

excess stress a one to one function of the void ratio, we can obtain ed
c once we

know ew
c . Integrating in space equation (2.2.IV), in its one dimensional form,

from zero to Xi , we have

T ′
w(e(t, X = Xi )) − T ′

w(e(t, X = 0)) = −�P . (3.6)

The preform is stress free at the left border of the preform, so that

T ′
w(ew

c ) = −�P . (3.7)

From (3.5) and (3.7) we can then determine ed
c and ew

c , which are constant in

time if �P is time independent.
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In the one dimensional case an evolution equation for the infiltration front Xi (t)

can be given: its velocity is a Lagrangian velocity, Wilmanski [36]; referring to

Ambrosi [1] it can be written as

Ẋi (t) = − 1

ew
c

G(ew
c )

µ(δc, �)

∂e

∂ X

∣∣∣∣
X−

i

. (3.8)

Referring to Liu [23], Muller [26], Preziosi and Farina [29], the following

boundary conditions are considered

e(t, X = 0) = er ,

�w(t, 0) = �in(t) ,

δc(t, 0) = δin(t) ,

ew(t, Xi ) = ew
c ,

�w(t, Xi (t)) = �d(t, Xi (t)) ,

ks + ew
c k f

1 + ew
c

[
∂�w

∂ X

]
Xi (t)

= ks

1 + ed
c

[
∂�d

∂ X

]
Xi (t)

,

�d(t, L) = �out(t) .

(3.9)

The initial conditions are{
�d(0, X) = �o(X) ,

Xi (0) = 0 .
(3.10)

In what follows, the following conditions are considered

– �in(t) = �out(t) = �o(X) = �0, a constant;

– δin(t) = 0, the curing develops inside the preform.

Summarising, the mathematical problem under consideration is given by the

system of equations (3.2) in the wet region, the equation (3.4) in the dry region,

(3.8) for the motion of the infiltration front, supplemented by the boundary and

initial conditions (3.9) and (3.10).
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4 Numerical simulations

The free boundary problem introduced in the previous section is integrated using

a front tracking method, Crank [11]. The space interval was uniformly sampled

(100 samples). The front tracking method has the advantage of setting smaller

time steps (defined as the time needed for the infiltration front to move to the next

spatial sample point) when the infiltration velocity is higher and larger time steps

when infiltration is slowing down, e.g. near gelation. When gelation occurs, the

infiltration process and the numerical simulation stop.

Due to the variable time step, an unconditionally stable method has to be used,

Bellomo and Preziosi [9]. An implicit finite difference method (a backward

Euler method) for each equation was used.

Concerning the degree of cure equation, an implicit upwind method is used for

the central nodes. The infiltration front, instead, is a characteristic of the hyper-

bolic equation and then the degree of cure there is obtained by direct integration

along such a characteristic.

Domain decomposition techniques, Bellomo and Preziosi [9], are used to in-

terface the problems for the temperature in the two regions.

The numerical analysis refers to the infiltration of a thermosetting resin in a

network of glass fibers. Referring to Kamal and Sourour [20], Lin et al. [22],

Sourour and Kamal [34], I use the following specific expression for the isothermal

cure rate of a thermosetting resin (a general purpose unsaturated polyester, see

Kamal and Sourour [20] for details)

fc (δc, �) :=
[

c1 exp

(
− E1

R �

)
+ c2 exp

(
− E2

R �

)
δmc

c

]
(1 − δc)

nc , (4.1)

and for the viscosity of the resin

µ (�, δc) =

 µ̄ exp

(
Eµ

R �

)(
δg

δg − δc

)cµ+dµ δc

, if δc < δg ,

∞ if δc ≥ δg ,

(4.2)

where mc, nc describe the order of reaction and are independent of temperature,

c1, c2 are the reaction rate constants, E1, E2, Eµ are the activation energies, R

is the gas constant.
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Regarding the permeability, referring to Young et al. [38], the following rela-

tion is used

K (φs) = K0eα(φ1−φs ) . (4.3)

The stress-strain relation is extrapolated from the data reported in Kim et al. [19]

T ′ = β(eγφ − eγφr ) , (4.4)

where β and γ are coefficients taking different values passing from the wet region

to the dry one.

Table 1 summarizes all the parameters used in the simulations.

Figure 2 shows typical diagrams of the void ratio and the degree of cure. The

discontinuity in the void ratio corresponds to the fact that different stress - void

ratio relations are used in the wet and dry regions, according to the measurements

in Kim et al. [19]. Continuity would be recovered if a viscoelastic model was

used, Ambrosi and Preziosi [4].

However, in this paper I want to focus on the following features of the manu-

facturing process:

– mouldability diagram;

– infiltration time;

– deformation of the preform.

The mouldability diagram presents the window of parameters for which the

industrial process is successful. The key parameters under consideration are the

injection pressure �P and the process temperature �0.

The infiltration time is the time taken by the infiltration process to be completed,

in the case in which it is successful. After such a time the mould can be possibly

heated to speed up the curing reaction.

Finally, knowing the deformation of the preform as a function of the parameters

is important to determine the initial length of the preform needed to obtain a final

product of a specified dimension. The numerical evaluation of the length of the

final product is performed considering the first sudden compression due to the

applied pressure (which is the initial condition for the model, because inertial

terms are neglected) and the subsequent relaxation, due to the infiltration of the
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78 INFILTRATION CONDITION AND MOULDABILITY DIAGRAM

Variable Value

ρs 2560 K g/m3

ρl 1100 K g/m3

Cs 670 J/K g

Cl 16801 J/K g

ks 0.168 W/mk

kl 0.0335 W/mk

β (wet region) 0.09 Pa

γ (wet region) 26.4

α 16

Hc 1.54 108 J/m3

c1 3.7833 105 s−1

c2 6.7833 105 s−1

Eµ 18000 J/mole

E2 54418 J/mole

E2 50232 J/mole

β (dry region) 0.3 Pa

γ (dry region) 25

φ1 0.6

mc 0.3

nc 1.7

δg 0.1

µ 2.78 10−4 Pa · s

cµ 1.5

dµ 1

φr 0.4

K0 10−9 m2

l 0.3 m

Table 1 – Numerical values of the physical parameters.
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Figure 2 – Void ratio and degree of cure as a function of space (given in percent of L).

The pressure is 1.2 · 105 Pa and the (constant) process temperature 350o K . In this case

gelation occurs after the preform was infiltrated for the 99% of its length.

resin. Such a relaxation is studied integrating in time the velocity of the left solid

border, that, referring to Billi and Farina [8], Preziosi and Farina [29], is given by

vl = K

µ

∂T ′
w

∂φ

∂φ

∂x

∣∣∣∣
x=xi

− K

µ

∂T ′
w

∂φ

∂φ

∂x

∣∣∣∣
x=xe

, (4.5)

where xi and xe are the Eulerian positions of the infiltration front and the left

preform border, respectively. It needs to be mentioned that, because of the

boundary conditions, deformation necessarily implies inhomogeneity in the final

product.

The simulations suggest that the process temperature affects only weakly the

length of the final product (unless gelation occurs), which can then be put in
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correspondence with the injection pressure only.

In Figure 3 the mouldability diagram resulting from the simulations is shown.

The left vertical axis reports the applied pressure, the horizontal one the constant

environmental temperature in which the process takes place. The vertical axis

on the right reports the deformation (which is in a one to one relation with the

applied pressure). The five decreasing lines correspond to five different constant

process times (time in which the infiltration is fulfilled), which can be named

isochrones lines. The grey line is the limit below which gelation occurs: if we

start from a point on such a line and increase the temperature and/or decrease

the pressure then gelation occurs before the full infiltration is fulfilled. The

grey line corresponds to processes for which the gelation time is equal to the

infiltration time. It can be argued that from the operative viewpoint the best

choice of injection pressure and temperature is that corresponding to a point

just above the grey line, because it would minimize inhomogeneities in the final

product. As suggested by Gonzales-Romero and Macosko [17] the diagram

can be completed by adding the dash lines in Figure 3, corresponding to the

lower limiting process temperature, the upper temperature limit above which

degradation occurs, and the upper limit for the pressure, which accounts for the

limited value for the injection unit and for mat tearing.

5 Estimates on the infiltration process

In order to obtain some useful estimates on the infiltration process and on the

mouldability diagram, the isothermal case is considered, which is a simplifica-

tion of the full model suggested by the numerical simulations. Indeed in all

the simulations considered the maximum temperature increase during infiltra-

tion is of the order of 3– 4 degrees. It is possible to give an estimate of the

temperature increase due to the exothermic reaction. The total heat of reaction

Hc = 1.54 108 J/m3 enters the temperature equation multiplied by fc, taking

values of the order of 10−4. To evaluate the influence of the exothermic reaction

to the temperature increase, the term Hc fc (of the order of 104) has to be divided

by the multiplication of the heat capacity and the density (which is of the order

of 106). The rate of increase of the temperature due to the exothermic reaction is

then of the order of 10−2, justifying that in a maximum of 10 s of process dura-
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Figure 3 – Mouldability diagram. The grey line represents the points for which the

infiltration time is equal to the gelation time, as a function of the temperature and the

pressure (corresponding to the percentage deformation shown on the right). Below this

line gelation occurs before completing the infiltration process. Along the full black

lines the infiltration time is the reported constant value. The dashed lines show the

lower temperature, the upper temperature limit (due to degradation) and the limit in the

pressure (due to the injection unit or to mat tearing). These latter dashed lines are not

studied in the paper.

tion the isothermal model is a good approximation. The isothermal assumption

allows to simplify the model as follows

(
∂e

∂t

)
s

= ∂

∂ X

(
G(e)

µ(δc)

∂e

∂ X

)
X ∈ (0, Xi ), t ∈ (0, t f ),(

∂ δc

∂ t

)
s

= 1

e

G(e)

µ(δc)

∂e

∂ X

∂δc

∂ X
+ fc (δc) X ∈ (0, Xi ), t ∈ (0, t f ),

Ẋi = − 1

ew
c

G(ew
c )

µ(δc)

∂e

∂ X

∣∣∣∣
Xi

e(0, t) = er

e(Xi (t), t) = ew
c

δc(X = 0, t) = 0 ,

Xi (t = 0) = 0 ,

(5.1)

where the final time t f is such that Xi (t f ) = L or δc(Xi , t f ) = δg. I recall that

the viscosity µ(δc) and the curing function fc(δc) depend on the temperature;

however, since in this section the isothermal case is considered, I removed �
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from the arguments of the functions µ and fc to simplify the notation.

In what follows I first study the equation for the degree of cure, then the prop-

erties of the degree of cure are used to obtain some estimates for the void ratio.

The velocity of the infiltration front is then studied to estimate the infiltration

time. Such a time is compared to the gelation time to know if the infiltration

process is successful.

5.1 Some features of the equation for the degree of cure

The curing equation is hyperbolic with characteristics which go along the liquid.

In particular the infiltration front is a characteristic. It is useful then to write this

equation along the characteristics:
dδc

d t
= fc(δc)

δc(t = τ) = 0 ,

(5.2)

where the time derivative indicates total derivative along the characteristic, d
d t =

∂
∂ t + V f

∂
∂ X , where V f = − 1

e
G(e)
µ(δc)

∂e
∂ X is the Lagrangian velocity of the resin, τ is

the instant in which the characteristic enters the infiltrated domain from the left

preform border. The solution of the previous problem is

t − τ =
∫ δc

0

1

fc(δ)
dδ = F(δc) . (5.3)

Being F(δc) an increasing function (as fc is a positive function), the previous

equation is a one to one correspondence between time t and degree of cure δc

with a parameter τ . If we fix τ and study (5.3) for increasing values of time, we

readily notice that the degree of cure increases. On the other hand, fixing the

time t , the degree of cure increases choosing smaller values of the parameter τ ,

which means considering a characteristic that entered the boundary X = 0 at an

earlier time. This means that δc is also an increasing function of space and that

the maximum always occurs at the infiltration front. We can then evaluate the

gelation time as

tg =
∫ δg

0

dδ

fc(δ)
, (5.4)

and state that if gelation occurs during the process it starts at the infiltration front.
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For the following, it is also important to study the derivative of the degree of

cure w.r.t. X at the infiltration front. The ratio �δc
�X is studied at the early instant

of time and then the limit �t → 0 is taken. We can evaluate the variation in δc

studying equation (5.2) along the infiltration front

�δc =
∫ �t

0
fc(δc(τ )) d τ ∼= fc(0)�t . (5.5)

During the same time interval the advancement of the infiltration front can be

obtained approximating (5.1.III):

�X ∼=
√

2

ew
c

G(ew
c )

µ(0)
�e

√
�t , � e = er − ew

c , (5.6)

where the void ratio in the infiltration region is approximated by a straight line,

which is justified by the fact that at early times the thickness of the wet region

is very small. The result is coherent with the results obtained in Billi and Farina

[8] for the case without curing.

We can now approximate the derivative of the degree of cure at early times as

∂δc

∂ X
∼= fc(0)

√
�t√

2ew
c G(ew

c )µ(0)�e
, (5.7)

which goes to zero as �t goes to zero.

Now I study the evolution of the space derivative of the degree of cure at the

infiltration front. Evaluating the derivative of (5.1.II) w.r.t. X , we can obtain the

following equation for the space derivative of the degree of cure δX along the

characteristics
dδX

dt
=

(
d fc

dδc
− ∂V f

∂ X

)
δX , (5.8)

where the total time derivative on the l.h.s. means derivation along a character-

istic. The initial condition for δX must be non negative, since the degree of cure

increases in space. Furthermore, the initial condition vanishes at the infiltration

front, as shown by (5.7). Hence for the infiltration front

δX (Xi (t), t) = 0 , ∀t , (5.9)

which means that the derivative w.r.t. X of the degree of cure at the infiltration

front is always zero, as is also evident in the simulations reported in Figure 2.
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Regarding the space derivative of the degree of cure in all the wet region, we

can obtain some qualitative information studying the ratio between the variation

of δc on two characteristics and the distance between such characteristics.

The variation of δc depends only on the difference between the times in which

the characteristics enter the domain. Considering the choice of characteristic

function fc(δc) introduced in Section 4, and evaluating numerically the integral

in (5.3), we obtain that the increasing of δc in time along a characteristic is well

approximable with a straight line, for all the range of temperatures considered

(from 300◦K to 400◦K ).

The resin velocity is the velocity of the characteristics of the equation for the

degree of cure. If curing is neglected, the infiltration velocity depends on time

as a square root, Billi & Farina [8]. In such a case the resin covers one half of the

length of the preform in one fourth of the infiltration time. Considering curing,

the infiltration velocity reduces more and more in time: from the simulations

reported in Figure 2, we can argue that the time taken by the resin to infiltrate

the first half of the preform is of the order of 1
10 of the infiltration time. This

means that initially the degree of cure is almost constant in a neighbour of the

infiltration front with an extent of L
2 . As a consequence, also the viscosity is

almost constant in that neighbour of the infiltration front, and, as the gradient

of the resin velocity would be positive in the case of constant viscosity, we can

argue that the dimensions of the neighbour of the infiltration front in which the

degree of cure is almost constant are not reduced as the process proceeds.

This suggests that the derivative of the degree of cure w.r.t. X is small in a

neighbour of the infiltration front of the order of one half of the wet preform. A

larger variation of the degree of cure occurs near the left border of the preform.

We can note that the property that the degree of cure is an increasing function

in space depends only on the assumption that the isothermal cure rate is positive,

which means that it is a general result. The gelation time is given by (5.4)

(requiring only the integral at the r.h.s. to be well defined). For the property

of the vanishing space derivative of the degree of cure at the infiltration front it

is sufficient for fc to have a bounded derivative. This means that all the main

results of this section do not depend on the specific choice of the isothermal cure

rate, but can be applied to more general cases.
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5.2 Estimates on the void ratio near the infiltration front and on the infiltration

process

The first step in our discussion of the evolution of the void ratio consists in fixing

the moving boundary with the following Landau’s transformation

(X, t) 
−→
(

Y = X

Xi (t)
, t

)
, (5.10)

so that X ∈ (0, Xi (t)] is mapped onto Y ∈ (0, 1] (see Figure 1). In order

to avoid division by zero in the definition of Y in (5.10), we can consider the

preform to be initially infiltrated in an arbitrary small region [0, b), b � L . The

limit b → 0 is finally discussed. Equation (5.1.I) becomes

∂ ẽ

∂t
= Y

Ẋi

Xi

∂ ẽ

∂Y
+ 1

X2
i µ(δ̃c)

∂

∂e
G (̃e)

(
∂ ẽ

∂Y

)2

+ G (̃e)

X2
i

∂

∂δ̃c

(
1

µ(δ̃c)

)
∂δ̃c

∂Y

∂ ẽ

∂Y
+ G (̃e)

X2
i µ(δ̃c)

∂2ẽ

∂Y

2

,

(5.11)

where ẽ and δ̃c are the void ratio and the degree of cure evaluated in the new

variables (Y, t), respectively. An interesting qualitative result can be obtained

from equation (5.11): the void ratio ranges between the boundary values and

the extreme values are taken only at the boundary. Indeed it cannot have any

maximum or minimum point in the interior of the domain by the maximum

principle for parabolic equations (if a maximum point exists, its value has to

decrease, and vice versa for the minimum; given the monotonous initial data,

maxima and minima cannot exist). This means that the infiltration velocity is

non negative in all the wet region and can only stop as an effect of the increasing

of the viscosity, since the pressure gradient does not vanish at any point in the

wet region.

Now a bound on the infiltration velocity is obtained. We can note that the

infiltration velocity depends only on the derivative of the void ratio w.r.t. X

at the infiltration front (since the degree of cure at the infiltration front can

be obtained from equation (5.3) with τ = 0). Referring to Figure 2, we can

note that the simulations suggest that the void ratio in the wet region near the

infiltration front is under the straight line connecting the boundary values. I can
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give some suggestions of the mathematical reason why this happens studying the

following problem for the difference w between the void ratio and the straight

line v connecting the boundary points

w(t, Y ) = e(t, Y ) − v(Y ) where v(Y ) = er − �e Y , �e = er − ec ,

∂w

∂t
= G

X2
i µ

∂2w

∂Y 2
+

(
∂w

∂Y
− �e

)[
G ′

X2
i µ

(
∂w

∂Y
− �e

)

− Y

X2
i

1

ec

[
G

µ

(
∂w

∂Y
− �e

)]
Y=1

− Gµ′

X2
i µ

2

∂δc

∂Y

]
w(t = 0, Y ) = 0 , w(t, Y = 0) = 0 , w(t, Y = 1) = 0

(5.12)

where I supposed to approximate with a straight line the initial condition in

the initially infiltrated region [0, b). The first term in the r.h.s. accounts for

diffusion; the other three terms can be considered as sources. The first two

sources are negative, whereas the last is non negative: this means that the void

ratio is under the straight line till the positive source remains smaller than the

negative ones. This condition is verified at the beginning of the infiltration

process, since ∂δc
∂Y

∼= 0. This means that the void ratio is initially under the straight

line v(Y ) (for the maximum principle). The positive source is proportional to the

derivative w.r.t. Y of the degree of cure so that it vanishes at the infiltration front.

This means that there is always a neighbour of the infiltration front in which the

source term is negative. Furthermore, at the end of Section 5.1 I argued that in

a neighbour of the infiltration region with dimensions of the order of a half of

the infiltrated preform the contribution due to this term is expected to be smaller

than the other ones, and therefore in the same neighbour the total source term is

negative.

On the other hand, with respect to what happens at the infiltation front, near

the left border, the derivative of the degree of cure can be quite high; furthermore

the importance of the second (negative) source term is less important, since it

is proportional to Y ; hence near the left border the source can become positive.

This happens next to gelation, when the wet region is almost equal to the length

of the preform, for a critical case in which the infiltration time is close to the

infiltration time. This is the reason why in Figure 2 the void ratio overcomes
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the straight line between the boundary values near the left border only for large

times.1

The positive source, if sufficiently large, can affect also the region near the

infiltration front, due to diffusion. Nevertheless, the simulations suggest that

this cannot happen, for all the parameters of interest.

In this way we can obtain a bound for the derivative of e(t, X) w.r.t. X and,

as a consequence, the following bound for the velocity of the infiltration front

Ẋi < − 1

ew
c

G(ew
c )

µ(δ̃c)

ec − er

Xi
, (5.13)

where I used the fact that the space derivative of e(X, t) at the infiltration front is

less in modulus than the slope of the straight line between the boundary values.

From the previous estimate we obtain the following bound for the evolution of

the infiltration front

Xi (t) <

√
2
�e

ew
c

G(ew
c )

∫ t

0

1

µ(δc(τ ))
dτ + b , (5.14)

where δc(t) is recovered studying the equation for the degree of cure along the

infiltration front. The term b in the expression (5.14) can be dropped, as it is

arbitrarily small.

An important information can be obtained from the previous analysis: we

can determine if the infiltration will be successful or not, controlling if the full

infiltration is achieved. In fact computing (5.14) for t = tg, where tg is the

gelation time given by (5.4), we can conclude that if

L = l
1 + ec

1 + er
>

√
2
�e

ew
c

G(ew
c )

∫ tg

0

1

µ(δc(τ ))
dτ (5.15)

then full infiltration cannot be achieved.

1It is worth noticing the dependence of the qualitative shape of the void ratio and the parameters.

Let’s consider only critical situations, in which the infiltration time is almost equal to the gelation

time. We can note that the negative sources present a quadratic dependence on �e, whereas the

positive one depends only linearly on it. This means that for lower pressure the effect of the

positive term is more important.
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Another useful relation can be obtained merging (5.2) and (5.14): in fact, one

can deduce the following estimate

Xi (δc) <

√
2
�e

ew
c

G(ew
c )

∫ δc

0

1

µ(δ) fc(δ)
dδ , (5.16)

that is if

L >

√
2
�e

ew
c

G(ew
c )

∫ δg

0

1

µ(δ) fc(δ)
dδ (5.17)

the process is certainly incomplete.

In order to give a better approximation of the velocity of infiltration I study

further the problem (5.1) in a neighbour of the infiltration front. For example, a

second order approximation of the solution e(X, t) can be used near the infiltra-

tion front, substituting the first and second derivative in equation (5.11). In this

case two parameters need to be determined, but only one equation is available.

One way to proceed is to fix a constraint, choosing a particular kind of solution.

In the following we examine as a set of trial solutions the family of parabolas

connecting the conditions (5.1.IV) and (5.1.V), with a positive slope at Y = 1

h(Y ) = −�eY + er + αY (Y − 1) , α ∈ [0, �e] . (5.18)

Indeed, from the simulations we can note that the void ratio at a fixed time can be

approximated well by a parabola, except when the resin is about to gel. I choose

the parabola with convexity such that the r.h.s. of equation (5.11) evaluated at

the infiltration front (i.e., in a point in which the void ratio is constant in time)

vanishes. This occurs when

−β(ew
c )(α − �e)2 + 2αG(ew

c ) = 0 , (5.19)

where

β(ew
c ) = − ∂

∂ ẽ
G (̃e)

∣∣∣∣
ew

c

+ G(ew
c )

ew
c

> 0 . (5.20)

The unique solution of (5.19) belonging to [0, �e] (hence giving a positive

infiltration velocity) is

α0 = β(ew
c )�e + G(ew

c ) − √
G(ew

c )2 + 2β(ew
c )�eG(ew

c )

β(ew
c )

. (5.21)
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The following estimates are obtained for the infiltration velocity

Ẋi
∼= G(ew

c )

ew
c µ(δc(Xi , t))

�e − α0

Xi
; (5.22)

and for the infiltration front

Xi (t) ∼=
√

2
�e − α0

ew
c

G(ew
c )

∫ t

0

1

µ(δc(τ ))
dτ . (5.23)

It is worth noticing that the value of α0 only depends on the value of the void

ratio at the infiltration front. It does not depend on the degree of cure, because

the derivative of the degree of cure w.r.t. Y vanishes at the infiltration front.

Since the void ratio at the infiltration front is constant in time, α0 is also constant

in time.

Figure 4 shows a comparison between the numerical results concerning the

full model and the estimates (5.14) and (5.23), for two representative examples

of process.

Substituting �e with �e − α0 in equation (5.16) we can obtain the following

approximated expression to test if the full infiltration can be obtained

Xi (δc) ∼=
√

2
�e − α0

ew
c

G(ew
c )

∫ δc

0

1

µ(δ) fc(δ)
dδ . (5.24)

Figure 5 shows the limiting lines for which the gelation time is equal to the

infiltration time: the full line refers to the approximation for the velocity of the

front given by the correspondent equation of the inequality (5.16), the dashed

line refers to equation (5.24), the grey line to the numerical analysis of the full

model. Comparing the grey with the dash line, we can argue that estimate (5.24)

gives a quite good approximation for the infiltration velocity. Comparing the

grey with the full line we can say that the bound for the infiltration velocity

(5.13) is close to the numerical results only for low pressure values.

Remark. As mentioned in the introduction, another way to drive the process

is imposing the inflow velocity uin of the fluid instead of applying a pressure. If

uin is constant in time, referring to Ambrosi [1], the final time of infiltration is

given by

T f in = er L

(1 + er )uin
. (5.25)
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Figure 4 – Lagrangian position of the infiltration front as a function of time: comparison

between the numerical solution (full line) and those obtained using the estimates (5.14)

(dot line) and (5.23) (dash line). Figure above a successful process is shown, figure

below an unsuccessful one (the length of the compressed preform L is indicated by the

horizontal grey line).

In the case of non constant inflow velocity, the final time can be obtained from

the following implicit expression∫ T f in

0
uin(τ )dτ = er L

1 + er
. (5.26)

Such a time can be compared to gelation time tg, given by (5.4), to know if the

process is successful. For example, in the case of constant inflow velocity, we
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Figure 5 – Results on the analytical estimates for the production process: the grey line

is obtained by numerical simulations; the dashed line refers to the approximation of the

void ratio with a parabola (see equation (5.23)); the full line refers to the approximation

of the void ratio with a straight line (see (5.13); under such a line gelation occurs for

sure).

have the following condition for the process to be successful

uin >
er L

(1 + er )
∫ δg

0
dδ

fc(δ)

. (5.27)

6 Conclusions

A one dimensional mathematical model of the infiltration of an incompressible

resin through a deformable solid porous medium (modelling a preform) has been

considered, in the framework of mixture theory. The model has been applied to

the industrial process of pressure driven resin injection moulding, considering

an elastic preform.

The model presents a strong coupling between the infiltration of the resin, its

polimerisation, the temperature variations due to the dispersion of mechanical

and chemical power. From the numerical analysis we can argue that the influence

of the temperature variations is not very important. This suggests to study a

simpler model in which the energy balance equation is neglected, that allows

to obtain an approximate analytical expression for the motion of the infiltration

front.
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Finally the numerical analysis gives the mouldability diagram, presenting the

window of applicability in the parameter space.

It is worth noticing that in injection processes, the resin, the fibres and the

mould are usually preheated at different temperatures. In such a case, assumption

A6 (see Section 2) is not satisfied and an isothermal model would be a row

approximation. It can be expected that obtaining analytical estimates for the

case of non-isothermal models is a very difficult task, beyond the aims of this

papers. Nevertheless, on the basis of the results of this paper, an approximate

analysis of the non-isothermal model is suggested. Numerical analysis of non-

isothermal models have been developed in the literature of non-isothermal liquid

moulding processes (see for example Bruschke and Advani [10], Shojaei et al.

[33]).

In conclusion, the main contribution of the paper is the mathematical analysis

of a one dimensional mathematical model of the infiltration of an incompressible

resin through a deformable solid porous medium introduced in previous works

(see Ambrosi [1], Ambrosi and Preziosi [4]). Such an analysis provides some

estimates of the infiltration process in the isothermal case. Further analytical

analysis (supported by numerical simulations) is needed to extend the results of

the paper to the three dimensional, non-isothermal case.
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