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1 Introduction

In this paper, the following nonlinear semi-definite programming (NSDP) prob-

lem is considered:

(NSDP):






min
X,V

J(X)

s.t. H(X) = 0, Y(X, V) � 0, V � 0,
(1)

whereJ : Rp×r × Sn → R, H : Rp×r × Sn → Sn, Y : Rp×r × Sn × Sn → Sn

are assumed to be sufficiently smooth matrix functions andSn denotes the set of

real symmetricn×n matrices. This problem is a nonlinear matrix programming

problem and is generally nonconvex.
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The augmented Lagrangian function associated with the equality constraint

of (1) is defined as

Lσ (X, K ) = J(X) + 〈K , H(X)〉 +
σ

2
‖H(X)‖2, σ ≥ 0, (2)

where K ∈ Rn×n is the associated Lagrange multiplier andσ is the penalty

parameter.

Several problems in system and control theory can be reduced to some special

class of NSDPs (see, e.g., [3], [1], [10], [6], [12]). NSDP formulations of

control problems were made popular in the mid of 1990s. There were, however,

no computational methods for solving general nonconvex NSDPs. Recently,

nonlinear optimization techniques have been employed to solve NSDPs arising

in optimal control (see, e.g., [1], [10], [6], [12]).

The main goal of this paper is to propose an augmented Lagrangian sequential

quadratic programming (ALSQP) Algorithm that makes use of trust region for

finding an approximate solution to (1). ALSQP methods have shown to be quite

successful in solving nonlinear programming (NLP) problems. In particular, an

ALSQP approach is effective in solving NLP problems, even when the problem

is ill–conditioned or the constraints are highly nonlinear. We use trust region

strategies to globalize the ALSQP iteration, because they facilitate the use of

second derivative information when the problem is nonconvex. The reader is

referred, for instance, to the book of Conn, Gould and Toint [4] for a survey of

augmented Lagrangian methods and trust region methods.

The difficulties in solving (1) are due to the fact that this problem is a nonlinear

and nonconvex matrix programming problem. NSDP formulations of optimal

control applications own special structures that are desirably exploited. Having

this in mind, we seek in the proposed ALSQP method to combine ideas of SDP-

approaches, sequential quadratic programming, and trust region to construct an

optimization solver for (1) that exploits the inherent structure of the considered

NSDP problem.

This paper is organized as follows. In the next subsection we state the basic as-

sumptions imposed on the problem NSDP. In addition, we discuss the framework

of the ALSQP Algorithm. In §2 we present the formulation of the considered

problem. In §3 we introduce the constrained trust region Algorithm for solving
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the quadratic programming trust region subproblem associated with the problem

NSDP. In §4 we test numerically the performance of the ALSQP method through

several test problems from the benchmark collection COMPleib [8].

Notations. For a matrixM ∈ Rn×n the notationsM � 0, M � 0, M ≺ 0,

M � 0 denote thatM is positive definite, positive semi-definite, negative definite,

negative semi-definite, respectively. Sometimes the arguments as inH(∙) are

omitted, which should be obvious from the context. Throughout the paper,‖ ∙ ‖

denotes the Frobenius norm given by‖M‖ =
√

〈M, M〉, where〈∙, ∙〉 is the inner

product defined by〈M1, M2〉 = Tr (MT
1 M2), andTr (∙) is the trace operator.

1.1 Outline of the Algorithm ALSQP and assumptions

In this subsection, we state the basic assumptions imposed on the problem NSDP.

In addition, we describe the framework of the ALSQP Algorithm.

Assumption 1.1. The following basic assumptions are used throughout the

paper:

AS1. J andH are twice continuously differentiable in an open neighborhood of

the local solutionX∗, and their second derivatives are Lipschitz continuous

at X∗.

AS2. There exist(X0, V0) ∈ Fs, where

Fs =
{
(X, V) ∈ Rp×r × Sn × Sn | Y(X, V) ≺ 0, V � 0

}
. (3)

AS3. The second-order sufficient optimality conditions hold at the solution, i.e.,

there exists a constantκ > 0 satisfying

L0
X X(X∗, K∗)(1X,1X) ≥ κ0 ‖1X‖2 ∀ 1X ∈ Rp×r × Rn×n

such thatHX(X∗)1X = 0.

AS4. The mapping∇H(X∗) is surjective.

AS5. There exists(X∗, V∗) solution of NSDP such thatV∗ � 0, Y(X∗, V∗) ≺ 0.

Comp. Appl. Math., Vol. 24, N. 3, 2005



“main” — 2006/3/9 — 17:35 — page 464 — #4

464 AN AUGMENTED LAGRANGIAN SQP METHOD

Note that the surjectivity assumption is the classical regularity assumption of

nonlinear programming.

ALSQP methods are iterative. The search directions in these methods are

obtained by solving a sequence of quadratic programs (QP). Each QP minimizes

at every iterationk a quadratic model of a certain augmented Lagrangian function

subject to linearized constraints; in our case the QP takes the form:

(QPTR):






min
(1X,1V)

Lσ
X(Xk, Kk)1X + 1

2L
σ
X X(Xk, Kk)(1X,1X)

s.t. HX(Xk)1X + H(Xk) = 0, ‖1X‖ ≤ δ,

(Xk + 1X, Vk + 1V) ∈ Fs,

(4)

where the trust region constraint‖1X‖ ≤ δ (δ > 0 is the trust-region radius) is

included to avoid possible unboundedness in the QP.

Given the current estimate(Xk, Vk) of the solution of the problem NSDP and

the Lagrange multiplierKk, the following Algorithm explains how to obtain the

new iterate(Xk + 1X, Vk + 1V).

Algorithm 1.1. (Algorithm ALSQP for solving the problem NSDP)

a. Choose(X0, V0) ∈ Fs, K0 ∈ Rn×n, andσ0 ≥ 0. Setk := 0 and go to the

next step.

b. If the prescribed stopping criterion is reached, then stop; otherwise con-

tinue with the next step.

c. At every iterationk compute an approximate solution(1X,1V) to the

problem QPTR such that(Xk + 1X, Vk + 1V) ∈ Fs.

d. Set(Xk+1, Vk+1) = (Xk + 1X, Vk + 1V), updateKk+1, setk = k + 1,

and go to step b.

Some comments are now in order.

• Obviously, it is not trivial how to obtain an initial(X0, V0) ∈ Fs (item a

of the ALSQP Algorithm). In §4, however, we describe a technique for

determining(X0, V0) ∈ Fs that relies on Lyapunov stability theory.
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• The multiplierK can be updated without extra calculations while taking

problem structure into consideration; see the end of §2 and the Algo-

rithm 3.2.

The Algorithm ALSQP terminates if the following criterion is satisfied

‖∇XL
σk(Xk, Kk)‖ + ‖H(Xk)‖ ≤ εtol, (5)

whereεtol > 0 is the tolerance.

2 Problem formulation/application

In optimal control, an important nonlinear and nonconvex application is the

problem of designing a static output feedback (SOF) control law that meets a

desired performance criterion. A typical instance of an output feedback control

system can be stated as follows. Consider a linear time-invariant state space

model of ordernx,

ẋ(t) = Ax(t) + Bu(t) + B1w(t),

y(t) = Cx(t),

z(t) = C1x(t) + D1u(t),

(6)

wherex ∈ Rnx , w ∈ Rnw , u ∈ Rnu , z ∈ Rnz, and y ∈ Rny denote the state,

the disturbance input, the control input, the regulated output, and the measured

output, respectively. Furthermore,A, B, B1, C, C1, andD1 are given constant

matrices of appropriate size.

The static output feedback control law is given by

u(t) = Fy(t), (7)

whereF ∈ Rnu×ny is unknown.

Substituting the control law (7) into our control system, then the closed loop

counterpart yields:

6cl :

{
ẋ(t) = A(F)x(t) + B(F)w(t),

z(t) = C(F)x(t),
(8)

where A(F) := A + BFC, B(F) := B1, C(F) := C1 + D1FC are the

augmented closed loop operators, respectively.
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The fixed orderH2/H∞ synthesis problem (see, e.g., [2], [5], [7]) is equivalent

to the following NSDP problem:

(NSDP1) :






min J(L) = Tr(L B1BT
1 )

s.t. H(F, L) = A(F)T L + L A(F) + C(F)TC(F)

+
1

γ 2
L B1BT

1 L = 0,

Y(F, L , V) = Ã(∙)T V + V Ã(∙) ≺ 0, V � 0,

(9)

where

Ã(∙) =
(

A(F) +
1

γ 2
B1BT

1 L

)
,

andγ > 0 is a given constant. Clearly, the problem NSDP is a generalization of

the problem NSDP1, whereX = (F, L) ∈ Rp×r × Sn.

Observe that, if we assign a large constant value toγ in (9), then we obtain the

following special case that corresponds to the fixed orderH2 synthesis problem

(see, e.g., [7], [9], [14]):

(NSDP2) :






min J(L) = Tr(L B1BT
1 )

s.t. Ĥ(F, L) = A(F)T L + L A(F) + C(F)TC(F) = 0,

Ŷ(F, V) = A(F)T V + V A(F) ≺ 0, V � 0.

(10)

Note, however, that the ALSQP method reduces to solving (10) by simply as-

signing a large constant value toγ in that method.

First and second–order derivatives of the augmented Lagrangian function (2)

are obtained in the following Lemma, which will be needed later on to construct

the trust region problem.

Lemma 2.1[10, lemma 2.1]. Let (F, L , V) ∈ Fs, K ∈ Rn×n be given. Then,

the functionJ and the constraint functionH are twice continuously differentiable

onFs. Furthermore, the first and the second order directional derivatives of
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Lσ (F, L , K ) are given by

Lσ
F (∙)1F ≡ 〈1F, ∇FL

σ (∙)〉 = 〈1F, 2N(F, L)(K + σ H(∙))CT 〉,

Lσ
L(∙)1L ≡ 〈1L , ∇LL

σ (∙)〉 = 〈1L , Ã(∙)(K + σ H(∙))

+ (K + σ H(∙)) Ã(∙)T + B1BT
1 〉,

Lσ
F F (∙)(1F,1F) ≡ 〈1F, ∇2

F FL
σ (∙)1F〉,

Lσ
F L(∙)(1F,1L) ≡ 〈1F, ∇2

F LL
σ (∙)1L〉 = Lσ

L F (∙)(1L ,1F),

Lσ
LL(∙)(1L ,1L) ≡ 〈1L , ∇2

LLL
σ (∙)1L〉

whereK is the solution of the adjoint equation,

∇2
F FL

σ (∙)1F = 2DT
1 D11FC(K + σ H(∙))CT + 2σ N(F, L)N(F, L)T1FCCT

+ 2σ N(F, L)CT1FT N(F, L)CT ,

∇2
F LL

σ (∙)1L = 2(BT1L(K + σ H(∙))CT + 2σ N(F, L)HL1LCT

∇2
LLL

σ (∙)1L = σ
(
Ã(∙)HL(∙)1L + HL(∙)1L Ã(∙)

T )

+ 2
γ 2

(
B1BT

1 1L(K + σ H(∙))
)
,

and the directional derivatives ofH(F, L) with respect toF andL are

HF (∙)1F ≡ 〈1F, ∇F H(∙)〉 = CT1FT N(F, L) + N(F, L)T1FC,

HL(∙)1L ≡ 〈1L , ∇L H(∙)〉 = 1L Ã(∙) + Ã(∙)T1L ,
(11)

where

Ã(∙) =
(

A(F) +
1

γ 2
B1BT

1 L

)
, N(F, L) = (BT L + DT

1 C(F)).

Moreover, the Hessian of the augmented Lagrangian is Lipschitz continuous.

Proof. The differentiability ofJ and H is straightforward. First and second

order directional derivatives ofLσ with respect toF and L yield the above

equations (See, e.g., [11] for a similar result, but with using the Lagrangian

function and not the augmented Lagrangian).
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However, it is also possible to obtain those derivatives ofLσ (X, K ) from their

corresponding counterparts ofL0(X, K ) according to the fact:

Lσ
X(∙, K ; ∙)1X = L0

X(∙, K + σ H ; ∙)1X,

Lσ
X X(∙, K ; ∙)(1X,1X) = L0

X X(∙, K + σ H ; ∙)(1X,1X).

�

By using the result of Lemma 2.1 the first–order necessary optimality condi-

tions for the problem NSDP1 are:

∇FL
σ (∙) = (BT L + DT

1 C(F))(K + σ H(∙))CT = 0, (12)

∇LL
σ (∙) = Ã(∙)(K + σ H(∙)) + (K + σ H(∙)) Ã(∙)

T
+ B1BT

1 = 0, (13)

H(∙) = L Ã(∙) + Ã(∙)T L + C(F)TC(F) = 0, (14)

where Ã(∙) =
(

A(F) + 1
γ 2 B1BT

1 L
)
. For optimal control problems (14) repre-

sents the state equation, (13) corresponds to the adjoint equation, and the left-

hand side of (12) corresponds to the gradient. It is worth noting that, forσ = 0

the adjoint equation (13) reduces to a Lyapunov equation that can be employed

to determine a new Lagrange multiplier estimate in the proposed method.

Observe that, if the penalty parameterσ is set to zero in (12)–(14), then the

Karush–Kuhn–Tucker (KKT) system for the problem NSDP1 is obtained. On

the other hand, ifγ → +∞ in (12)–(14) andσ = 0, the KKT system of the

problem NSDP2 is achieved. In this case,Ã(F, L) → A(F), H(F, L) →

Ĥ(F, L), andY(F, L , V) → Ŷ(F, V).

3 Constrained trust region method

Let the matrix variableX in the problem NSDP and consequently in the trust

region problem QPTR be decomposed asX = (F, L) ∈ Rp×r × Sn. Then, the

problem QPTR can be rewritten in the form:

min
1F,1L

qσ (1F,1L)

s.t. HF(∙)1F + HL(∙)1L + H(∙) = 0,

(F + 1F, L + 1L , V + 1V) ∈ Fs, ‖(1F,1L)‖ ≤ δ,

(15)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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where

qσ (1F,1L) = Lσ
F1F + Lσ

L1L +
1

2
(Lσ

F F(1F,1F)

+ 2Lσ
F L(1F,1L) + Lσ

LL(1L ,1L))

is the quadratic approximation ofLσ , andδ is the trust–region radius.

In order to avoid possible infeasibility when solving (15) we use the tangent

space approach (see, e.g., [4]). In this approach, the solution1X of the trust

region problem is a decomposition of a normal step1Xn and a tangential step

1Xt ; each one of them is obtained by solving an unconstrained trust region

subproblem.

The tangent space approach relies on the null space operator of the Jacobian of

the equality constraint. A drawback of the utilisation of directional derivatives

is the lack of an explicit form of the Jacobian matrix. In the following Lemma

we use a technique that is often used in optimal control to provide this null space

operator, which does not require such a matrix explicitly.

Lemma 3.1. Let (F, L , V) ∈ Fs, γ > 0, 1L ∈ Rn×n be given. The range

space of the linear operatorT (F, L) defined by

T (F, L) = (−H−1
L (F, L)HF(F, L), I),

coincides with the null spaceN (∇H T (F, L)) of the Jacobian of the equality

constraint, whereI is the identity operator.

Proof. The operatorHL(F, L) is linear (see (11) ) and is also bijective (see

[9, Lemma 5]), then HL(F, L) is invertible. Hence, the linearized equality

constraint in (15) implies

1L = −H−1
L (F, L)HF(F, L)1F − H−1

L (F, L)H(F, L).

This leads to the following decomposition of1X = (1L ,1F):

(1L ,1F) = T (F, L)1F + (−H−1
L (F, L)H(F, L), 0), (16)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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where 0 is the zero operator. The null space of the Jacobian∇H T is given by

N (∇H T ) =
{
(1F,1L) ∈ Rnu×ny × Rnx×nx | HF,L(F, L)(1F,1L) = 0

}

=
{
T (F, L)1F, 1F ∈ Rnu×ny

}
= R(T (F, L)),

whereR(T ) is the range space ofT . �

As seen above the step1X solution of (15) is decomposed as (see (16) ):

1X = (1L ,1F) = T (F, L)1F + (−H−1
L (F, L)H(F, L), 0)

= (1Lt ,1F) + (1Ln, 0) = 1Xt + 1Xn.
(17)

The following Lemma shows that the linearized equality constraint in the

problem (15) is splitted into two Lyapunov equations.

Lemma 3.2. Let (F, L , V) ∈ Fs, K ∈ Rn×n be given, and let(1F,1L) ∈

Rnu×ny ×Rnx×nx be the solution of(15), and letγ > 0 be a given constant. The

linearized equality constraint in(15) is decomposed into the following Lyapunov

equations

1Ln Ã(∙) + Ã(∙)T1Ln + H(F, L) = 0 (18)

1Lt(1F)Ã(∙) + Ã(∙)T1Lt(1F) + (1FC)T N(F, L)

+ N(F, L)T1FC = 0,
(19)

where

Ã(∙) =
(

A(F) +
1

γ 2
B1BT

1 L

)
,

A(F) = (A + BFC),

N(F, L) = (BT L + DT
1 C(F)).

Proof. (See also [10, Lemma 2.2] for a similar result but on the problem

NSDP2) From the step decomposition (17) the linearized equality constraint

of (15) can be rewritten as

HL(F, L)1Lt + HF(F, L)1F + HL(F, L)1Ln + H(F, L) = 0.
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Since1Xt = T (F, L)1F lies in the null space of the Jacobian∇H T (F, L),

then

HL(F, L)1Lt + HF(F, L)1F = 0,

which by using the derivatives (11) implies (19). Hence, the linearized equality

constraint reduces to

HL(F, L)1Ln + H(F, L) = 0,

and by using (11) gives (18). �

An important feature of the tangent space approach is the decomposition of

the trust region problem (15) into two unconstrained trust region subproblems.

The first subproblem is:

(NTR) min
‖1Ln‖≤δ

‖HL(F, L)1Ln + H(F, L)‖2. (20)

It is particularly desirable to obtain an approximate solution1Xn = (1Ln, 0)

to (20). An efficient solution can be obtained, however, by solving the linear

matrix equation

HL(F, L)1Ln + H(F, L) = 0, (21)

in 1L̂n followed by rescaling1L̂n to lie within the trust region, i.e.,1Ln →

υδ L̂n, where the scaling parameterυ is given by

υ =






1 if ‖1L̂n‖ ≤ δ,

δ

‖1L̂n‖
otherwise.

Observe that the linear matrix equation (21) is simply the Lyapunov equation

(18). Roughly speaking, the computation of1Xn reduces to solving one Lya-

punov equation per iteration.

Having computed1Xn, the tangential step1Xt(1F) = (1Lt(1F),1F) is

obtained as a solution of the following unconstrained trust region subproblem:

(TTR) :






min
1F

qσ (1F),

s.t. ‖1F‖ ≤ δ, (F + 1F, L + 1Ln + 1Lt , V + 1V) ∈ Fs,

Comp. Appl. Math., Vol. 24, N. 3, 2005
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where

qσ (1F) = Lσ
F1F + Lσ

L(1Lt(1F)) + Lσ
F L(1F,1Ln)

+ Lσ
LL(1Lt(1F),1Ln) +

1

2

[
Lσ

F F(1F,1F)

+ 2Lσ
F L(1F,1Lt(1F)) + Lσ

LL(1Lt(1F),1Lt(1F))
]
,

and1Lt(1F) solves the Lyapunov equation (19).

Applying first-order necessary optimality conditions on the subproblem TTR

give the following result.

Lemma 3.3 [10, lemma 2.5]. Let(F, L , V) ∈ Fs, σ, γ > 0 be given. Assume

that 1F ∈ Rnu×ny is a solution of TTR, then1F satisfies the linear matrix

equation

U(1F) ≡ N(F, L)(1K (1F) + σ N(F, L)T1FC

+ σ CT1FT N(F, L) + σ 1Lt (1F)Ã(∙) + σ Ã(∙)T1Lt (1F)

+ σ 1Z1(1F) +
2

γ 2
1Z2(1F))CT

+
(
BT1Lt (1F) + DT

1 D11FC
)
(K + σ H(∙))CT + λ1F

= − (BT1Ln + N(F, L))(K + σ H(∙))CT

− N(F, L)(Z0 + σ1K n + HL1Ln))CT ,

(22)

whereN(F, L) = (BT L + DT
1 C(F)), and K ,1Lt solve(13) (with σ = 0),

(19), respectively. Furthermore,Z0, 1K n, 1Lt , 1K t , 1Z1, and1Z2 solve the

Lyapunov equations(23)–(27), respectively, andλ is the Lagrange multiplier

associated with the trust–region constraint.

Z0A(F)T + A(F)Z0 + B1BT
1 + Ã(∙)(K + σ H(∙))

+ (K + σ H(∙)) Ã(∙)T = 0,

(23)

1K n A(F)T + A(F)1K n + Ã(∙)Ã(∙)T1Ln + 1Ln Ã(∙)T Ã(∙)

+ (K + σ H(∙))1LnB1BT
1 + B1BT

1 1Ln(K + σ H(∙))

+ 2 Ã(∙)1Ln Ã(∙)T = 0,

(24)
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1K t(1F)A(F)T + A(F)1K t(1F) + (K + σ H(∙))(B1FC)T

+ B1FC(K + σ H(∙)) = 0,

(25)

1Z1A(F)T + A(F)1Z1 + CT1FT
(
N(F, L)Ã(∙) + Ã(∙)N(F, L)

)

+
(
Ã(∙)N(F, L) + N(F, L)T Ã(∙)T

)
1FC

+ 2Ã(∙)Ã(∙)T1Lt(1F) + 21Lt(1F)Ã(∙)Ã(∙)T = 0,

(26)

1Z2A(F)T + A(F)1Z2 + Ã(∙)1Lt(1F)Ã(∙)

+ Ã(∙)T1Lt(1F)Ã(∙)T = 0,

(27)

where

Ã(∙) =
(

A(F) +
1

γ 2
B1BT

1 L

)
,

A(F) = (A + BFC),

N(F, L) = (BT L + DT
1 C(F)).

Proof. By using the results of Lemma 2.1, the direct differentiation of

qσ (1F) with respect to1F yields Newton’s equation (22) coupled with the

aforementioned associated Lyapunov equations. The following two properties

of trace derivatives have been particularly used to derive that equation

∂ Tr (M11F M2)

∂1F
= MT

1 MT
2 ,

∂ Tr (M11FT M2)

∂1F
= M2 M1,

whereM1 andM2 are matrices of appropriate dimensions.

Observe that, the coupled Lyapunov equations (23)–(27) arise as a result of

differentiating all those terms of1Lt(1F) in the quadratic modelqσ (1F) with

respect to1F . �

The approximate solutions of the unconstrained trust region subproblems NTR

and TTR is described in the next Algorithm. The Algorithm starts by comput-

ing the normal step1Xn = (1Ln, 0) followed by solving the linear matrix

equation (22) coupled with the Lyapunov equations (19) and (23)–(27) to obtain

1Xt(1F) = (1Lt(1F),1F). A conjugate gradient trust region method is

considered to compute1Xt(1F) approximately.
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Within the CG trust region method the iterates are forced to satisfy the in-

equality constraints (3). This means that the computed step by the CG method

is enforced to fulfill the condition:

(F + 1F, L + 1Ln + 1Lt(1F), V + 1V) ∈ Fs.

If the computed trial step does not lie strictly withinFs, then such a step is

rejected and a decrease inδ takes place.

Remark 3.1. The problem NSDP1 can be simplified by leaving the variableL

to replaceV in both inequality constraints. This idea reduces the computations

in ALSQP to two Lyapunov equations for computingV and 1V(1F), and

clearly increases the efficiency of the method ALSQP. In this case the computed

step1X = (1F,1Ln + 1Lt(1F)) is forced to satisfy the coupled inequality

constraints in the compact form:

(F + 1F, L + 1Ln + 1Lt(1F)) ∈ Fs.

The following Algorithm describes the computation of the steps1Xn and

1Xt(1F), where1Xn is computed first followed by computing1Xt(1F).

Algorithm 3.1. (Computing1Xn and1Xt(1F) solutions of NTR and TTR)

I. Computing the normal step1Xn

Let (F, L) ∈ Fs, K ∈ Rn×n, σ > 0, and the constant matricesA, B, B1,

C, C1, D1 be given.

i. Solve the Lyapunov equation (18) for1Ln

ii. Scale1Ln so that‖1Ln‖ ≤ δ

II. Computing1Xt(1F)

Given 1Ln, solve (23)–(24), and (13) (withσ = 0) for Z0, 1K n,

K ∈ Rn×n, respectively. Let̃ε ∈ (0, 1). SetT0 = 0nu×ny , and com-

pute the residual (the R.H.S. of (22)):
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U0 = − N(F, L)
(
(K + σ H(∙)) + Z0 + σ1K n + HL1Ln)

)
CT

− BT1Ln(K + σ H(∙))CT .

Then, setD0 = U0.

Repeat at mostnu × ny times

1. Solve for1Lt(D), 1K t(D), 1Z1(D), and1Z2(D) the Lyapunov equa-

tions (19), (25)–(27), respectively.

2. Compute the ratioξ =
‖U‖2

〈D,U(D)〉
and then the parameter

τ̃ = max
{

τ > 0 : ‖T + τ D‖ ≤ δ, L + 1Ln + 1Lt(τ ) � 0,

− 1Y(τ ) � 0
}
,

where

1Y(τ ) = (A + B(F + T + τ D)C) 1Lt(τ )

+ 1Lt(τ ) (A + B(F + T + τ D)C)T

3. If ξ > τ̃ or ξ ≤ 0, then set1F = T + τ̃ D, and stop; otherwise, set

T+ = T + ξ D.

4. Update the residual:U+ = U − ξ U(D), and setεcg = min{ε̃, ‖U0‖}.

5. If
‖U+‖

‖U0‖
≤ εcg, set1F = T+ and stop; otherwise go to the next step.

6. Computeζ =
‖U+‖2

‖U‖2
, setD+ = U+ + ζ D, and go to step 1.

End (repeat)
Having computed the trial step1X = (1F,1Ln + 1Lt(1F)) and the new

multiplier estimateKk+1 it remains to accept or reject this step and to increase

or decrease the trust region radiusδk according to the strategy of the trust region

method (see [4]). The augmented Lagrangian function (2) is used as a merit

function. The quantitiesAred(1X; σ) and Pred(1X; σ) of the “actual” and
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“predicted” reductions of this merit function are used to measure progress made

by the computed trial step towards optimality and feasibility, which are defined as

Ared(1X; σ) = Lσ (Xk, Kk) − Lσ (Xk + 1X, Kk+1), (28)

and

Pred(1X; σ) = qk(0) − qk(1X)

+ σ
[
‖H(Xk)‖

2 − ‖H(Xk) + HL(Xk)1L + HF(Xk)1F‖2
]
,

where Xk = (Fk, Lk). Note that from the problem structure the last term in

Pred(1X; σ) is exactly the linearized model of the equality constraint of (15).

We know from Lemma 3.2 that the linearized equality constraint is decomposed

into the two Lyapunov equations (18)–(19), which are solved in every iteration

of the Algorithm ALSQP. As a result,Pred(1X; σ) reduces to the simpler form

Pred(1X; σ) = qk(0) − qk(1X) + σ‖H(Xk)‖
2. (29)

The ratiork = Ared(1X; σ)/Pred(1X; σ) is used to measure progress

towards optimality and feasibility. According to the value ofrk the computed trial

step1X is accepted or rejected, and consequentlyδk is increased or decreased.

The constrained trust region Algorithm is stated in the following lines, which

represents the major part of the Algorithm ALSQP, namely in itemc. The update

of the step and the multiplier mentioned in itemd of the Algorithm ALSQP are

stated more specifically below in the Algorithm.

Algorithm 3.2. (The constrained trust region Algorithm)

Given μi , i = 1, 2 with 0 < μ1 < μ2 < 1, σ̄ > 0, σ0 ≥ 1, choose

(F0, L0) ∈ Fs, andK0 solution of (13) (withσ = 0). Setk = 0.

While (5) is not satisfied,do

1. Compute1Ln
k and1Fk by the Algorithm 3.1. Given1Fk, solve (19)

to obtain1Lt(1Fk), and then set1Lk = 1Ln
k + 1Lt(1Fk).

2. Compute the new multiplier estimateKk+1, e.g., by (13) (withσ = 0).
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3. ComputeAredk andPredk by using (28) and (29), respectively. If

Predk <
σk−1

2
‖Hk‖

2,

then set

σk =
2(qk(Xk) − qk(0))

‖Hk‖2
+ σ̄ ;

otherwise, setσk = σk−1.

4. Compute the ratiork = Aredk/Predk, updateδk, and accept or reject the

step according to the following:

If rk < μ1,

setδk+1 =
δk

2
and reject the trial step.

Else ifμ1 ≤ rk < μ2,

setδk+1 = δk, Fk+1 = Fk +1Fk, Lk+1 = Lk +1Lk.

Else if rk ≥ μ2,

setδk+1 = 2δk, Fk+1 = Fk+1Fk, Lk+1 = Lk+1Lk.

End (If)

End (do)

In the computations the following values have been assigned to the parameters

in the Algorithm 3.2:μ1 = 0.1, μ2 = 0.7, andσ̄ = 1. We use the following

initial values:δ0 = 102, andσ0 = 1.

4 Numerical results

In this Section, an implementation for the Algorithm ALSQP is described. A

Matlab code was written corresponding to this implementation. The constant

γ > 0 of the problem NSDP1 is initially estimated using theMatlab function

hinflmi from the LMI Control System Toolbox. On the other hand, we need to

solve several Lyapunov equations during the computation of the trial step. The

Matlab function lyap(∙, ∙) from the Control System Toolbox is used to solve

approximately those equations.
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All considered test problems were chosen from the benchmark collection

COMPleib [8]. Obviously, for every test problem an initial point(F0, L0) ∈ Fs

is required. One successful approach is to choose anF0 from the following set:

Ds =
{
F ∈ Rp×r | Re(νi (A(F))) < 0, i = 1, . . . , nx

}
,

whereRe(νi (A(F))) are the real–parts of the eigenvalues ofA(F). From Lya-

punov stability theory, (see, e.g., [15, Theorem 11]) there is an equivalence

between the following:

1. There existsF ∈ Ds.

2. There existsL � 0 such thatY(F, L) ≺ 0.

3. For everyC(F)TC(F) there exists a unique solutionL of the Lyapunov

equation (14), and ifC(F)TC(F) � 0 thenL � 0.

Hence, by choosingF0 ∈ Ds such thatC(F0)
TC(F0) � 0, then theL0 solution

of the Lyapunov equation (14) is strictly feasible with respect to the inequality

constraints:

L0 � 0, Y(F0, L0) ≺ 0.

However, an initial F0 ∈ Ds can be determined, e.g., by using the code

slpmm [7].

The performance of the ALSQP method is compared numerically with the CTR

method developed in [9], the IPCTR method proposed in [10], and Newton’s

method combined with an Armijo stepsize rule as proposed in [16]. In the

numerical examples, we denote the Newton Algorithm byArmijo. Note that the

two methods CTR and IPCTR are based on the simpler problem NSDP2. On

the other hand, the problem NSDP2 was formulated in [16] as an unconstrained

minimization problem in the variableF and was solved by the above mentioned

method.

In the following we consider two numerical examples from [8] that can be cast

as nonlinear semi-definite programs of the form (1).

The ALSQP method terminates if the stopping criterion (5) reaches accuracy

of 10−7.
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Example 4.1. The first test problem describes the longitudinal motion of a

VTOL helicopter (see [8, HE1]). The data matrices of the continuous-time

linearized state space model (see (6)) are the following:

A =








−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 1.4200

0 0 1 0








,

B =








0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0 0








, B1 =








0.0468 0

0.0457 0.0099

0.0437 0.0011

−0.0217 0








,

CT =








0

1

0

0








, C1T =









√
2 0

0 1√
2

0 0

0 0









, D1 =
1

√
2

[
1 0

0 1

]

,

The main goal is to compute an optimal SOF gain matrixF∗ that meets a desired

performance criterion, and at the same time the computedF∗ must stabilize (in

the Lyapunov sense) the closed loop control system (8). Equivalent to this task is

to solve the optimization problem NSDP1 for finding a stationary point(F∗, L∗).

The zero matrixF0 = 0nu×ny is such that(F0, L0) /∈ Fs. Therefore, the

following point (F0, L0) is considered:

F0 =

[
−0.7674

1.4125

]

,

andL0 is the corresponding solution of the Lyapunov equation (14).

In Table 1 the convergence rate for the method ALSQP is shown. The computed

static output feedback gain matrix is

F∗ =

[
−1.6277

6.5100

]

.

Table 2 gives a comparison between ALSQP and the other solvers on this

problem for the same starting point(F0, L0). These results show that ALSQP is
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k Jk ‖∇Lσ
Fk

‖ + ‖Hk‖ i cg σk

0 1.5061e+001 1.313e+000 – 1

1 1.3683e+001 1.916e+000 1 1

2 1.3508e+001 2.304e+000 2 1

3 1.3314e+001 1.245e+000 2 1

4 1.3296e+001 1.339e-001 2 1

5 1.3306e+001 1.442e-001 2 1

6 1.3311e+001 4.787e-003 2 1

7 1.3311e+001 5.936e-006 2 1

8 1.3311e+001 4.535e-012 2 1

Table 1 – Performance of ALSQP on Example 4.1.

Method Armijo CTR IPCTR ALSQP

No. of iterations 10 19 15(4) 8

Table 2 – Comparison between the four methods on Example 4.1.

quite competitive with other solvers on this problem with respect to the number

of iterations.

Figure 1 shows the effect of the computed SOF gainF∗ on the closed-loop

control system (8). In particular,F∗ enforces all state variables to converge to

zero.

Example 4.2. The second test problem is the Tenyain following model (see [8,

TF1]). The given data matrices for this example are as follows:

A =
















−1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 −1 0 0

−0.088 0.0345 0 0 1 −0.0032 0

0 0 0.05 0 0 0 −1e− 5
















,
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Figure 1 – Uncontrolled and controlled state space models for Example 4.1.
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B =
















1 0

0 0

0 0

0 0.09

0 0

0 0

0 0
















, B1 =

[
06×1

−0.05

]

, C =








0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 0








,

C1 =








0 1

04×5 2.23 0

0 0

0 0








, D1 =








0 0

0 0

1.7321 0

0 0.5477








.

The zero matrixF0 = 0nu×ny implies that(F0, L0) = (0nu×ny, L0) /∈ Fs, where

L0 is the corresponding solution of the Lyapunov equation (14). Therefore, the

following F0 is chosen:

F0 =

[
−0.9497 −1.6632 −0.1110 0.5383

4.2917 2.0803 0.6584 −3.5890

]

.

Table 3 shows the performance of the method ALSQP on this example. The

computed SOF gain matrix is

F∗ =

[
−1.1897 −2.1666 −0.7124 0.8345

2.3381 −0.2038 1.2956 −2.1768

]

.

Table 4 gives a comparison between ALSQP and other solvers on this problem

starting from the same point(F0, L0).

Figure 2 shows the effect of the computed SOF feedback gain matrixF∗ on

the closed-loop control system (8).

The two examples show the fast local rate of convergence of the methodAL-
SQP starting from remote points.

In Table 5 some preliminary tests are given. For each example, we report the

problem name together with the problem dimensions(nx, nu, ny, nw, nz), and

the overall number of iterations. A dash indicates that the corresponding method
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Figure 2 – Uncontrolled and controlled state space models for Example 4.2.
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k Jk ‖∇Lσ
Fk

‖ + ‖Hk‖ i cg σk

0 7.6072e+002 1.242e+004 - 1

1 5.9498e+002 3.994e+003 1 1

2 5.1281e+002 1.671e+003 1 1

3 4.3950e+002 1.447e+003 2 1

4 3.6599e+002 4.220e+002 2 1
...

...
...

...
...

12 2.9670e+002 1.243e-001 6 1

13 2.9675e+002 1.275e-002 6 1.74e+000

14 2.9675e+002 8.174e-005 8 1.74e+000

15 2.9675e+002 3.542e-011 8 1.74e+000

Table 3 – Performance of ALSQP on Example 4.2.

Method Armijo CTR IPCTR ALSQP

No. of Iterations 17 17 27(4) 15

Table 4 – Comparison between the four methods on Example 4.2.

fails to find an approximate solution of the considered nonconvex NSDP prob-

lems with accuracyεtol = 10−7. In particular, ALSQP was tested by using the

test problem [8, REA1] from two different starting points; the results correspond-

ing to the second starting point are denoted by REA1∗. In all these problems the

four codes approached the same solution point.

The main conclusion that we can draw from the above results is that the method

ALSQP outperforms other methods on most of the considered nonconvex and

nonlinear semi-definite programming test problems.
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Problemdimension No. ofiterations

Name nx nu ny nw nz Armijo CTR IPCTR ALSQP

AC3 5 2 4 5 5 18 – 121(3) 17

AC6 4 2 2 7 7 9 9 21(3) 9

AC8 9 1 5 10 2 10 14 29(3) 9

AC9 10 4 5 10 2 – 15 36(4) 14

AC11 5 2 4 5 5 18 – 22(3) 11

AC15 4 2 3 4 6 – 31 – 28

AC17 4 1 2 4 4 12 16 192(3) 11

DIS3 6 4 4 6 6 15 17 16(4) 15

HE1 4 2 1 2 2 10 19 15(4) 8

HE2 4 2 2 4 4 15 12 22(3) 16

HF1 130 1 2 1 2 7 12 38(4) 6

PSM 7 2 3 2 5 10 12 12(4) 9

REA1 4 2 2 4 4 9 9 9(4) 8

REA1∗ 4 2 2 4 4 19 16 21(3) 16

TF1 7 2 4 1 4 17 17 27(4) 15

TG1 10 2 2 10 10 8 10 16(4) 7

TMD 6 2 4 1 3 10 8 9(3) 8

UWV 8 2 2 2 1 12 17 19(3) 10

WEC1 10 3 4 10 10 14 – 19(4) 11

NN4 4 2 3 4 4 5 4 7(3) 4

NN13 6 2 2 3 3 10 15 12(3) 9

Table 5 – Performance of ALSQP vs.Armijo, CTR and IPCTR on test problems from [8].
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