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1 Introduction

In this paper, the following nonlinear semi-definite programming (NSDP) prob-
lem is considered:
min  J(X)

(NSDP): | XV (1)
st. H(X) =0, Y(X,V) <0,V > 0,

whered : RP*F x " > R, H:RPX x §" = SN Y : RPN x §" x §" — §"

are assumed to be sufficiently smooth matrix functions&mtenotes the set of
real symmetric x n matrices. This problem is a nonlinear matrix programming
problem and is generally honconvex.
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462 AN AUGMENTED LAGRANGIAN SQP METHOD

The augmented Lagrangian function associated with the equality constraint
of (1) is defined as

£"(X,K)=J(X)+<K,H(X)>+% IHOOI?, o >0, )

where K € R™" is the associated Lagrange multiplier amds the penalty
parameter.

Several problems in system and control theory can be reduced to some special
class of NSDPs (see, e.g., [3], [1], [10], [6], [12]). NSDP formulations of
control problems were made popular in the mid of 1990s. There were, however,
no computational methods for solving general nonconvex NSDPs. Recently,
nonlinear optimization techniques have been employed to solve NSDPs arising
in optimal control (see, e.g., [1], [10], [6], [12]).

The main goal of this paper is to propose an augmented Lagrangian sequential
guadratic programming (ALSQP) Algorithm that makes use of trust region for
finding an approximate solution to (1). ALSQP methods have shown to be quite
successful in solving nonlinear programming (NLP) problems. In particular, an
ALSQP approach is effective in solving NLP problems, even when the problem
is ill-conditioned or the constraints are highly nonlinear. We use trust region
strategies to globalize the ALSQP iteration, because they facilitate the use of
second derivative information when the problem is nonconvex. The reader is
referred, for instance, to the book of Conn, Gould and Toint [4] for a survey of
augmented Lagrangian methods and trust region methods.

The difficulties in solving (1) are due to the fact that this problem is a nonlinear
and nonconvex matrix programming problem. NSDP formulations of optimal
control applications own special structures that are desirably exploited. Having
this in mind, we seek in the proposed ALSQP method to combine ideas of SDP-
approaches, sequential quadratic programming, and trust region to construct an
optimization solver for (1) that exploits the inherent structure of the considered
NSDP problem.

This paper is organized as follows. In the next subsection we state the basic as-
sumptions imposed on the problem NSDP. In addition, we discuss the framework
of the ALSQP Algorithm. In 82 we present the formulation of the considered
problem. In 83 we introduce the constrained trust region Algorithm for solving
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the quadratic programming trust region subproblem associated with the problem
NSDP. In 84 we test numerically the performance of the ALSQP method through
several test problems from the benchmark collection CGNIH8].

Notations. For a matrixM € R™ " the notationdl >~ O, M > 0, M < O,

M =< Odenote tha is positive definite, positive semi-definite, negative definite,
negative semi-definite, respectively. Sometimes the argumentstdg jrare
omitted, which should be obvious from the context. Throughout the pgpér,
denotes the Frobenius norm given|dy | = /(M, M), where(-, -) is the inner
product defined byM;, Mz) = Tr (M My), andTr (-) is the trace operator.

1.1 Outline of the Algorithm ALSQP and assumptions

Inthis subsection, we state the basic assumptions imposed on the problem NSDP.
In addition, we describe the framework of the ALSQP Algorithm.

Assumption 1.1. The following basic assumptions are used throughout the

paper:

AS1. J andH are twice continuously differentiable in an open neighborhood of
the local solutiorX.., and their second derivatives are Lipschitz continuous
at X,.

AS2. There existXg, Vo) € Fs, Wwhere

Fs={(X, V) eRP" x §"x S"|Y(X,V) <0, V>0}. (3)

AS3. The second-order sufficient optimality conditions hold at the solution, i.e.,
there exists a constant> 0 satisfying

L95Xi, KOAX, AX) > ko |AX]2 ¥V AX e RPXF x R™N
such thatHx (X,)AX = 0.

AS4. The mapping/H (X,) is surjective.

AS5. There existéX,, V,) solution of NSDP such that, >~ 0, Y(X,, V.) < 0.
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464 AN AUGMENTED LAGRANGIAN SQP METHOD

Note that the surjectivity assumption is the classical regularity assumption of
nonlinear programming.

ALSQP methods are iterative. The search directions in these methods are
obtained by solving a sequence of quadratic programs (QP). Each QP minimizes
at every iteratiotk a quadratic model of a certain augmented Lagrangian function
subject to linearized constraints; in our case the QP takes the form:

(Ar)giAnV) L5 (X, KOAX + 2L 5 (Xie, K (AX, AX)
(QPTR): s.t. Hx (X)) AX + H(Xy) =0, [[AX] <3, 4

Xk + AX, Vi + AV) € Fs,

where the trust region constraifph X|| < § (§ > 0 is the trust-region radius) is
included to avoid possible unboundedness in the QP.

Given the current estimate&Xy, Vi) of the solution of the problem NSDP and
the Lagrange multiplieKy, the following Algorithm explains how to obtain the
new iterate(Xx + AX, Vx + AV).

Algorithm 1.1.  (Algorithm ALSQP for solving the problem NSDP)

a. ChooséXg, Vo) € Ts, Kg € R™", andog > 0. Setk := 0 and go to the
next step.

b. If the prescribed stopping criterion is reached, then stop; otherwise con-
tinue with the next step.

c. At every iteratiork compute an approximate solutign X, AV) to the
problem QPTR such thai, + AX, Vx + AV) € Fs.

d. Set(Xki1, Vki1) = (Xk + AX, Vi + AV), updateKy, 1, setk = k + 1,
and go to step b.

Some comments are now in order.

» Obviously, it is not trivial how to obtain an initiglXy, Vo) € Fs (itema
of the ALSQP Algorithm). In 84, however, we describe a technique for
determining(Xo, Vo) € Fs that relies on Lyapunov stability theory.
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» The multiplierK can be updated without extra calculations while taking
problem structure into consideration; see the end of §2 and the Algo-
rithm 3.2.

The Algorithm ALSQP terminates if the following criterion is satisfied
IVx L7 (X, Kioll + ITHX Il < €tol, (5)

wheree; > 0 is the tolerance.

2 Problem formulation/application

In optimal control, an important nonlinear and nonconvex application is the
problem of designing a static output feedback (SOF) control law that meets a
desired performance criterion. A typical instance of an output feedback control
system can be stated as follows. Consider a linear time-invariant state space
model of ordemny,

Xt) = AX({t)+ Bu(t) + Byw(t),
yt) = Cx(), (6)
z(t) = Cix(t) + Dyu(t),

wherex € R™, w € R™,u € R™, z € R", andy € R"™ denote the state,
the disturbance input, the control input, the regulated output, and the measured
output, respectively. Furthermord, B, By, C, C, andD; are given constant
matrices of appropriate size.

The static output feedback control law is given by

u(t) = Fy(), ()

whereF € R"™*" js unknown.
Substituting the control law (7) into our control system, then the closed loop
counterpart yields:

. X = AF)X®) + B(Fw(®),

- _ (8)
zt) = C(F)xM,

where A(F) := A+ BFC, B(F) := By, C(F) := C; + D,FC are the
augmented closed loop operators, respectively.
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The fixed orderH,/ H , synthesis problem (see, e.g., [2], [5], [7]) is equivalent
to the following NSDP problem:

min  J(L) = Tr(LBB])

st. H(F,L)=AF)TL+ LAF)+C(F)TC(F)
(NSDPY) : 1 9)
+ —LBiB{L =0,

Y

Y(F,L,V)=AO)TV +VA() <0, V>0,

where 1
A() = (A(F) + ﬁ&BIL),

andy > 0Ois agiven constant. Clearly, the problem NSDP is a generalization of
the problem NSDP1, wherng€ = (F, L) € RP*" x §".

Observe that, if we assign a large constant valyeito(9), then we obtain the
following special case that corresponds to the fixed afdesynthesis problem
(see, e.qg., [7], [9], [14]):

min  J(L) = Tr(LBB)
(NSDP2 : { st. H(F,L)=AF)TL+LAF)+C(F)TC(F)=0, (10)
Y(F,V)=AF)TV+VAF) <0, V=>D0.
Note, however, that the ALSQP method reduces to solving (10) by simply as-
signing a large constant value ain that method.
First and second—order derivatives of the augmented Lagrangian function (2)

are obtained in the following Lemma, which will be needed later on to construct
the trust region problem.

Lemma 2.1[10, lemma 2.1]. Let(F, L, V) € Fs, K € R™" be given. Then,

the functionJ and the constraint functioH are twice continuously differentiable
on Fs. Furthermore, the first and the second order directional derivatives of
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L7(F, L, K) are given by
LI()AF = (AF,VEL(-)) = (AF,2N(F, L)(K + o H(-)CT),
LT ()AL = (AL, VLL7()) = (AL, A()(K + o H())
+ (K +oH)AOT + B1B]),
LI ()(AF,AF) = (AF,VELLO()AF),
LI, (NAF, AL) = (AF, V2 L7()AL) = L ()(AL, AF),
L7 ()(AL, AL) = (AL, V2 Lo()AL)
whereK is the solution of the adjoint equation,
V2. L9()AF = 2D] D1AFC(K + o H(-))CT + 20 N(F, L)N(F, L)TAFCCT
+20N(F, L)CTAFTN(F, L)CT,
V2, £7()AL =2(BTAL(K +oH(-))CT + 20 N(F, L)H_ALCT
V2, £7()AL = o(A(OHLOAL + HL()ALA()')
+ (BBl AL(K +oH())),
and the directional derivatives ¢f (F, L) with respect td- and L are

He()AF = (AF,VEH())=CTAFTN(F, L)+ N(F,L)TAFC,
s s (11)
HL(DAL = (AL,VLH())=ALAC) +AG)TAL,

where
A _ i T _ T T
AG) = A(F) + z BiB,L |, N(F,L)=(B' L+ D;C(F)).
Moreover, the Hessian of the augmented Lagrangian is Lipschitz continuous.

Proof. The differentiability ofJ andH is straightforward. First and second
order directional derivatives af” with respect toF and L yield the above
equations (See, e.g., [11] for a similar result, but with using the Lagrangian
function and not the augmented Lagrangian).
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However, it is also possible to obtain those derivativestfX, K) from their
corresponding counterparts 6%(X, K) according to the fact:

%G K )AX = LY, K +0H; )AX, _
LY K (AX, AX) = L35, K +oH; ) (AX, AX).

By using the result of Lemma 2.1 the first—order necessary optimality condi-
tions for the problem NSDP1 are:

VEL°() =(B"L+ D{C(F))(K +oH(-)C" =0, (12)
VL) = AOK +oHE) + (K +oH()AG + BBl =0,  (13)
H()=LAM) +AOTL+C(F)TC(F) =0, (14)

whereA(:) = (A(F) + y—lzBlBlT L). For optimal control problems (14) repre-
sents the state equation, (13) corresponds to the adjoint equation, and the left-
hand side of (12) corresponds to the gradient. It is worth noting thad, for0
the adjoint equation (13) reduces to a Lyapunov equation that can be employed
to determine a new Lagrange multiplier estimate in the proposed method.
Observe that, if the penalty parameters set to zero in (12)—(14), then the
Karush—Kuhn—Tucker (KKT) system for the problem NSDP1 is obtained. On
the other hand, iy — 400 in (12)—-(14) and> = 0, the KKT system of the
problem NSDP2 is achieved. In this cas®&F,L) — A(F), H(F,L) —
H(F,L),andY(F,L,V) — Y(F,V).

3 Constrained trust region method

Let the matrix variableX in the problem NSDP and consequently in the trust
region problem QPTR be decomposeddas- (F, L) € RP*' x S". Then, the
problem QPTR can be rewritten in the form:

min  q°(AF, AL)
AF,AL
st. HE()AF + H ()AL + H() =0, (15)

(F+AF, L+ AL,V +AV) e Fs, [(AF, AL)| <34,
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where

1
O°(AF,AL) = LEAF+L7AL + S (LEe(AF, AF)
+2L2 (AF,AL) + £9, (AL, AL))

is the quadratic approximation @df , ands is the trust—region radius.

In order to avoid possible infeasibility when solving (15) we use the tangent
space approach (see, e.g., [4]). In this approach, the solatirof the trust
region problem is a decomposition of a normal ste}d" and a tangential step
AX!: each one of them is obtained by solving an unconstrained trust region
subproblem.

The tangent space approach relies on the null space operator of the Jacobian of
the equality constraint. A drawback of the utilisation of directional derivatives
is the lack of an explicit form of the Jacobian matrix. In the following Lemma
we use a technique that is often used in optimal control to provide this null space
operator, which does not require such a matrix explicitly.

Lemma 3.1. Let(F,L,V) € Fs, ¥y > 0, AL € R™" be given. The range
space of the linear operatar (F, L) defined by

T(F,L) = (—H YF, L)HE(F, L), D),

coincides with the null spac&v(VHT (F, L)) of the Jacobian of the equality
constraint, wherd is the identity operator.

Proof. The operatoH, (F, L) is linear (see (11)) and is also bijective (see
[9, Lemma J), thenH_ (F, L) is invertible. Hence, the linearized equality
constraint in (15) implies

AL = —H*(F, L)Hg(F, L)AF — H *(F, L)H(F, L).
This leads to the following decomposition afX = (AL, AF):

(AL, AF) = T (F, L)AF + (—H *(F, L)H(F, L), 0), (16)
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where 0 is the zero operator. The null space of the Jaccblah is given by
N(VHT) = [(AF, AL) € R™™ x R™™ | Hg | (F, L)(AF, AL) = 0}
= {T(F,L)AF, AF eR™"™}=R(T(F, L)),
whereR (7)) is the range space df. O
As seen above the stepX solution of (15) is decomposed as (see (16)):
AX = (AL,AF)=T(F,L)AF + (—Hl__l(F, LH(F,L),0
= (ALY AF) 4+ (AL",0) = AX" + AX". G
The following Lemma shows that the linearized equality constraint in the

problem (15) is splitted into two Lyapunov equations.

Lemma 3.2. Let(F,L,V) € Fs, K € R™" be given, and letAF, AL) €
RNy » R™*"™ phe the solution of15), and lety > 0 be a given constant. The
linearized equality constraint i(iL5) is decomposed into the following Lyapunov
equations
AL"AC) + A(O)TAL" + H(F,L) = 0 (18)
ALYAF)AC) + AG)TALY(AF) + (AFC)TN(F, L) (19)
+ N(F,L)TAFC = 0,

where

AL = <A(F)+%BlBlTL),
A(F) = (A+BFOC),
N(F,L) = (B'L + D] C(F)).

Proof. (See also [10, Lemma 2.2] for a similar result but on the problem
NSDP2) From the step decomposition (17) the linearized equality constraint
of (15) can be rewritten as

HL(F, L)AL' + He (F, L)AF + H_(F, L)AL"+ H(F,L) = 0.
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SinceAX! = T'(F, L)AF lies in the null space of the Jacobi&H T (F, L),
then
H.(F, L)AL' + He(F, L)AF =0,

which by using the derivatives (11) implies (19). Hence, the linearized equality
constraint reduces to

H (F,L)AL"+ H(F,L) =0,

and by using (11) gives (18). O

An important feature of the tangent space approach is the decomposition of
the trust region problem (15) into two unconstrained trust region subproblems.
The first subproblem is:

(NTR) ”Arpni{]s IHL(F, L)YAL™ + H(F, L)|1. (20)

It is particularly desirable to obtain an approximate soluttod” = (AL", 0)
to (20). An efficient solution can be obtained, however, by solving the linear
matrix equation

HL(F, L)AL"+ H(F,L) =0, (21)

in AL" followed by rescalingAL" to lie within the trust region, i.eAL" —

vSL", where the scaling parameteis given by

1 if JAL") <,

vV = .
otherwise

IALD

Observe that the linear matrix equation (21) is simply the Lyapunov equation
(18). Roughly speaking, the computation®X" reduces to solving one Lya-
punov equation per iteration.
Having computedh X", the tangential step X'(AF) = (AL'(AF), AF) is
obtained as a solution of the following unconstrained trust region subproblem:
min q°(AF),

(TTR): { AF
st. ||AF| <8, (F+AF,L4+AL"+ ALYV +AV) e Fs,
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where
q°(AF) = LIAF + LT(ALY(AF)) + L%, (AF, ALM)

1
+ LU (ALYAR), ALY + 5 [LEp(AF, AF)

+ 2L (AF, ALY (AF)) + L7, (ALY(AF), ALY(AF))],
andAL'(AF) solves the Lyapunov equation (19).

Applying first-order necessary optimality conditions on the subproblem TTR
give the following result.

Lemma3.3[10, lemma 2.5]. Let(F,L,V) € Fs, 0,y > 0be given. Assume
that AF € R"™*" s a solution of TTR, ther\ F satisfies the linear matrix
equation

U(AF) = N(F, L)(AK(AF)+0o N(F,L)TAFC

+ o CTAFTN(F, L) + 0 ALYAF)A() + 0 AC)TALYAF)
2 T

+ 0 AZ1(AF) + S AZy(AF))C
14

(22)
+ (BTAL'(AF) + D{ D1AFC)(K + o H(-))CT + AAF

= — (BTAL"+ N(F, L))(K 4+ 0 H(-))CT

— N(F,L)(Zo+ o AK" + H_AL™)CT,

whereN(F, L) = (B'L + D{C(F)), andK, AL" solve(13) (with o = 0),
(19), respectively. FurthermoreZy, AK", ALY, AK', AZ;, andAZ, solve the
Lyapunov equation§23)—(27), respectively, and. is the Lagrange multiplier
associated with the trust-region constraint.

ZoA(F)T + A(F)Zo + BiB] + A()(K +aH(-)
+ (K+oHO)AOT =0, )
AK"A(F)T + A(F)AK" + A(AG)TAL" + AL"AGTA()
+ (K +0H@))AL"B1B] + BiB]AL"K +oH(-) (24)
+ 2AGAL"AG)T = 0,
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AKYAR)A(F)T + A(F)AKYAF) + (K +oH()(BAFC)T

(25)
+ BAFC(K +oH()) = 0,
AZIA(F)" + A(F)AZ; + CTAFT(N(F, L)A() + ACN(F, L))
+ (ACN(F, L) + N(F,L)TAO)T)AFC (26)
+ 2A0)AOTALYAF) + 2ALYAF)AGALT = 0,
AZ,A(F)T + A(F)AZy 4+ ACALYAF)A() o

+ AOTALYARAGT =0,

where
- 1 T
AC) = [ A(F) + ﬁBlBl L),

A(F) = (A+BFOQ),
N(F,L) = (BTL 4+ D{C(F)).

Proof. By using the results of Lemma 2.1, the direct differentiation of
g° (AF) with respect toAF yields Newton’s equation (22) coupled with the
aforementioned associated Lyapunov equations. The following two properties
of trace derivatives have been particularly used to derive that equation

T
aTr(g/IAléFMz) _ MM, aTr('\;lAA,:F M>) — M, My,
whereM; and M, are matrices of appropriate dimensions.

Observe that, the coupled Lyapunov equations (23)—(27) arise as a result of
differentiating all those terms af L' (AF) in the quadratic modej° (A F) with

respect taA F. O

The approximate solutions of the unconstrained trust region subproblems NTR
and TTR is described in the next Algorithm. The Algorithm starts by comput-
ing the normal steA X" = (AL", 0) followed by solving the linear matrix
equation (22) coupled with the Lyapunov equations (19) and (23)—(27) to obtain
AX'(AF) = (ALY(AF), AF). A conjugate gradient trust region method is
considered to comput& X' (AF) approximately.
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Within the CG trust region method the iterates are forced to satisfy the in-
equality constraints (3). This means that the computed step by the CG method
is enforced to fulfill the condition:

(F+AF, L+ AL"+ ALY(AF),V + AV) € Fs.

If the computed trial step does not lie strictly withifs, then such a step is
rejected and a decreaseditakes place.

Remark 3.1. The problem NSDP1 can be simplified by leaving the varidble

to replaceV in both inequality constraints. This idea reduces the computations
in ALSQP to two Lyapunov equations for computing and AV (AF), and
clearly increases the efficiency of the method ALSQP. In this case the computed
stepAX = (AF, AL" + ALY (AF)) is forced to satisfy the coupled inequality
constraints in the compact form:

(F+AF, L+ AL"+ ALY(AF)) € Fs.

The following Algorithm describes the computation of the steps" and
AX'(AF), whereA X" is computed first followed by computiny X! (AF).

Algorithm 3.1. (ComputingA X" andA X!(AF) solutions of NTR and TTR)

|. Computing the normal step X"
Let(F,L) € Fs, K € R™" ¢ > 0, and the constant matricés B, By,
C, Cy4, D1 be given.
i. Solve the Lyapunov equation (18) farL"
ii. ScaleAL" sothat|AL"|| <6

II. ComputingAX!(AF)

Given AL", solve (23)—(24), and (13) (wittm = 0) for Zy, AK",
K € R™", respectively. Le€ € (0,1). SetTo = On,xn,, and com-
pute the residual (the R.H.S. of (22)):
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Up = — N(F,L) ((K+0 H() + Zo+ 0 AK" + H . ALM) CT
— BTAL"(K + o H(-))CT.

Then, setDg = Ug.
Repeat at mostn, x ny times

1. Solve forALY(D), AK'(D), AZ;(D), andAZ,(D) the Lyapunov equa-
tions (19), (25)—(27), respectively.

, U
2. Compute the rati¢ = ——————— and then the parameter
P ® (D, U(D)) P

T =max{t>0:|T+7D| <68 L+AL"+AL'(x) »0,
—AY(I)>0},

where
AY(t) = (A+B(F+T +1tD)C) ALY (1)

+ ALY () (A+B(F+T+tD)C)T

3.If¢& > 1toré& <0,thensetAF = T + D, and stop; otherwise, set
Tt=T+E&D.

4. Update the residuall™ = U — & U(D), and setqq = min{¢, [[U°]|}.

U+t .
||||U0|||| < €cq, SEtAF = T and stop; otherwise go to the next step.
Ut o
6. Compute = IR setD* =U* +¢D, and go to step 1.
End (repeat)

Having computed the trial stefpX = (AF, AL" + AL'(AF)) and the new
multiplier estimateKy ;1 it remains to accept or reject this step and to increase
or decrease the trust region raddysiccording to the strategy of the trust region
method (see [4]). The augmented Lagrangian function (2) is used as a merit
function. The quantitiefAred(A X; o) and Pred(A X; o) of the “actual” and
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“predicted” reductions of this merit function are used to measure progress made
by the computed trial step towards optimality and feasibility, which are defined as

Ared(AX; o) = £"(Xk, Kk) — .ﬁa(Xk + AX, Kk+1), (28)
and

Pred(AX;o) = q(0) — a(AX)
+ o[ IHWIZ = IH X0 + HL X AL + He (XOAF 2]

where Xy = (Fk, Ly). Note that from the problem structure the last term in
Pred(AX; o) is exactly the linearized model of the equality constraint of (15).
We know from Lemma 3.2 that the linearized equality constraint is decomposed
into the two Lyapunov equations (18)—(19), which are solved in every iteration
of the Algorithm ALSQP. As aresulRred(A X; o) reduces to the simpler form

Pred(AX; o) = qk(0) — ak(AX) + o [H (X% (29)

The ratiory, = Ared(AX;o)/Pred(AX; o) is used to measure progress
towards optimality and feasibility. According to the value pthe computed trial
stepA X is accepted or rejected, and consequesitlg increased or decreased.

The constrained trust region Algorithm is stated in the following lines, which
represents the major part of the Algorithm ALSQP, namely in iteifhe update
of the step and the multiplier mentioned in itehof the Algorithm ALSQP are
stated more specifically below in the Algorithm.

Algorithm 3.2. (The constrained trust region Algorithm)

Givenpui, i = 1,2with0 < u; < up < 1,6 > 0,00 > 1, choose
(Fo, Lo) € Fs, andKg solution of (13) (witho = 0). Setk = 0.
While (5) is not satisfieddo

1. ComputeALy and AFy by the Algorithm 3.1. Givem\F, solve (19)
to obtainAL'(AFy), and then seA Ly = AL] + ALY (AFy).

2. Compute the new multiplier estimaig 1, €.9., by (13) (withv = 0).
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3. ComputeAred, andPred, by using (28) and (29), respectively. If
Pred, < 252yl

then set
_ 200X — ak(0)) nps

IIH 2 ’

Ok
otherwise, sety = oy_1.

4. Compute the ratio, = Ared,/Pred,, updatelx, and accept or reject the
step according to the following:

If re < pa,
setéki1 = 8—2" and reject the trial step.

Elseifuy <rg < up,
setdki 1 = 8k, Fka1 = Fk+ AFk, Lkr1 = L+ ALk

Else ifry > up,
Setxt1 = 20k, Fry1 = Fk+AFy, Lkp1 = L+ALy.

End (If)

End (do)
In the computations the following values have been assigned to the parameters

in the Algorithm 3.2:u; = 0.1, up, = 0.7, ando = 1. We use the following
initial values: 8y = 10?, andog = 1.

4 Numerical results

In this Section, an implementation for the Algorithm ALSQP is described. A
Matlab code was written corresponding to this implementation. The constant
y > 0 of the problem NSDPL1 is initially estimated using tiatlab function
hinflmi from the LMI Control System Toolbox. On the other hand, we need to
solve several Lyapunov equations during the computation of the trial step. The
Matlab functionlyap(-, -) from the Control System Toolbox is used to solve
approximately those equations.
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All considered test problems were chosen from the benchmark collection
COMPIeib [8]. Obviously, for every test problem an initial poitfg, Lo) € Fs
is required. One successful approach is to choode,drom the following set:

Ds={F e R”" | Re(wi(A(F))) <0, i =1,...,n,},

whereRe(v; (A(F))) are the real—parts of the eigenvaluesfgf). From Lya-
punov stability theory, (see, e.g., [15, Theorem 11]) there is an equivalence
between the following:

1. There exist$ € Ds.
2. There existd > 0 such thatv(F, L) < 0.

3. For everyC(F)TC(F) there exists a unique solutidnof the Lyapunov
equation (14), and i€(F)"C(F) > 0 thenL > 0.

Hence, by choosingy € Ds such thaC (Fy)TC(Fg) > 0, then thel g solution
of the Lyapunov equation (14) is strictly feasible with respect to the inequality
constraints:
Lo > 0, Y(Fo, Lo) =< 0.

However, an initial F € Dg can be determined, e.g., by using the code
slpmm [7].

The performance of the ALSQP method is compared numerically with the CTR
method developed in [9], the IPCTR method proposed in [10], and Newton’s
method combined with an Armijo stepsize rule as proposed in [16]. In the
numerical examples, we denote the Newton Algorithr\byijo. Note that the
two methods CTR and IPCTR are based on the simpler problem NSDP2. On
the other hand, the problem NSDP2 was formulated in [16] as an unconstrained
minimization problem in the variablé and was solved by the above mentioned
method.

In the following we consider two numerical examples from [8] that can be cast
as nonlinear semi-definite programs of the form (1).

The ALSQP method terminates if the stopping criterion (5) reaches accuracy
of 107,
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Example 4.1. The first test problem describes the longitudinal motion of a
VTOL helicopter (see [8, HE1]). The data matrices of the continuous-time
linearized state space model (see (6)) are the following:

 —0.0366 00271 00188 —0.4555
A 0.0482 —1.0100 Q0024 —4.0208
- 0.1002 03681 —0.7070 14200 |’
i 0 0 1 0
0.4422 Q1761 0.0468 0]
B_ 3.5446 —7.5922 Bl 0.0457 Q0099
| =5.5200 44900 |’ N 0.0437 Q0011 |’
i 0 0 ~0.0217 0 |
T 0 V2 0
1 0o L 1[1 0]
c’ = , c1’ = v2 | D= — 0 ,
0 0 O V2| 0 1]
0 0 O

The main goal is to compute an optimal SOF gain mdgithat meets a desired
performance criterion, and at the same time the compkEfedust stabilize (in
the Lyapunov sense) the closed loop control system (8). Equivalent to this task is
to solve the optimization problem NSDP1 for finding a stationary p@tatL..).

The zero matrixFg = On,xn, is such that(Fo, Lo) ¢ Fs. Therefore, the
following point (Fg, L) is considered:

—0.7674
Fo = ,
1.4125
andL is the corresponding solution of the Lyapunov equation (14).

In Table 1 the convergence rate for the method ALSQP is shown. The computed
static output feedback gain matrix is

F_ —-1.6277
| 65100 |
Table 2 gives a comparison between ALSQP and the other solvers on this

problem for the same starting poiffo, Lo). These results show that ALSQP is
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k K IVLEN + I1Hl | icg | ok
0| 1.5061e+001 1.313e+000 | — | 1
1| 1.3683e+00]] 1.916e+000 | 1 | 1
2| 1.3508e+001] 2.304e+000 | 2 | 1
3| 1.3314e+001] 1.245e+000 | 2 | 1
4 | 1.3296e+00] 1.339e-001 21
51 1.3306e+001] 1.442e-001 2|1
6 | 1.3311e+001 4.787e-003 21
7| 1.3311e+001 5.936e-006 2|1
8 | 1.3311e+001  4.535e-012 2|1

Table 1 — Performance of ALSQP on Example 4.1.

Method Armijo | CTR | IPCTR | ALSQP
No. ofiterations| 10 19 15(4) 8

Table 2 — Comparison between the four methods on Example 4.1.

quite competitive with other solvers on this problem with respect to the number
of iterations.

Figure 1 shows the effect of the computed SOF dairon the closed-loop
control system (8). In particulaF, enforces all state variables to converge to
zero.

Example 4.2. The second test problem is the Tenyain following model (see [8,
TF1]). The given data matrices for this example are as follows:

-1 0 00 O 0 0
1 0 00 O 0 0
0 1 00 O 0 0
A= 0 0 00 O 0 0],
0 0 01 -1 0 0
—0.088 Q0345 0 0 1 -0.0032 0
0 0 005 0 O 0 —-1e-5

Comp. Appl. Math., Vol. 24, N. 3, 2005



EL-SAYED M.E. MOSTAFA 481

Uncontrolled state variables x(t)

0 2 4 6 8 10 12 14 16 18 20

Q Time t

0.15

0.1

0.05

e e e e

Controlled state variables x(t)

-0.05 =

0.1}

0 2 4 6 8 10 12 14 16 18 20

@ Time t

Figure 1 — Uncontrolled and controlled state space models for Example 4.1.
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1 0
0 0 0010000
0 0 0 0100000
B=| 0 009 |, Bl= >l Cc= ,
o o —0.05 000O0O0GO0 1
0000O0T10
0 o0
0 0
B 0 1 0 0
5 2.2
cr o Oavs 3O,D1= 0 0
0 0 1.7321 0
00 0 05477

The zero matri¥o = Op, xn, iImpliesthat(Fo, Lo) = (On,xn,, Lo) ¢ Fs, Where
L is the corresponding solution of the Lyapunov equation (14). Therefore, the
following Fq is chosen:

_ | —0.9497 -16632 -0.1110 05383
0~ 42917 20803 06584 —3.5890 |

Table 3 shows the performance of the method ALSQP on this example. The
computed SOF gain matrix is

_ | —11897 —-21666 —0.7124 (08345
o 23381 —0.2038 12956 —2.1768 |’

Table 4 gives a comparison between ALSQP and other solvers on this problem
starting from the same poiliEo, Lo).

Figure 2 shows the effect of the computed SOF feedback gain nfgtrin
the closed-loop control system (8).

The two examples show the fast local rate of convergence of the mathod
SQP starting from remote points.

In Table 5 some preliminary tests are given. For each example, we report the
problem name together with the problem dimensiams n,, ny, n,, n;), and
the overall number of iterations. A dash indicates that the corresponding method
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Figure 2 — Uncontrolled and controlled state space models for Example 4.2.
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k N IVLEN + IH | icg Ok
0 | 7.6072e+002 1.242e+004 - 1
1 | 5.9498e+002 3.994e+003 | 1 1
2 | 5.1281e+002 1.671e+003 | 1 1
3 | 4.3950e+002 1.447e+003 | 2 1
4 | 3.6599e+002 4.220e+002 | 2 1
12 | 2.9670e+002  1.243e-001 6 1
13| 2.9675e+002 1.275e-002 6 | 1.74e+000
14 | 2.9675e+002  8.174e-005 8 | 1.74e+000
15| 2.9675e+002 3.542e-011 8 | 1.74e+000

Table 3 — Performance of ALSQP on Example 4.2.

Method Armijo | CTR | IPCTR | ALSQP
No. of lterations| 17 17 27(4) 15

Table 4 — Comparison between the four methods on Example 4.2.

fails to find an approximate solution of the considered nonconvex NSDP prob-
lems with accuracy;, = 1077. In particular, ALSQP was tested by using the
test problem [8, REA1] from two different starting points; the results correspond-
ing to the second starting point are denoted by REA# all these problems the
four codes approached the same solution point.

The main conclusion that we can draw from the above results is that the method
ALSQP outperforms other methods on most of the considered nonconvex and
nonlinear semi-definite programming test problems.
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Problemdimension No. ofterations
Name Nk Ny, ny n, n;|Armijo CTR IPCTR ALSQP
AC3 5 2 4 5 5 18 - 121(3) 17
AC6 4 2 2 17 7 9 9 21(3) 9
AC8 9 1 5 10 2 10 14 29(3) 9
AC9 10 4 5 10 2 - 15  36(4) 14
AC11 5 2 4 5 5 18 - 22(3) 11
AC15 4 2 3 4 6 - 31 - 28
AC17 4 1 2 4 4 12 16 192(3) 11
DIS3 6 4 4 6 6 15 17  16(4) 15
HE1 4 2 1 2 2 10 19 15(4) 8
HE2 4 2 2 4 4 15 12 22(3) 16
HF1 130 1 2 1 2 7 12 38(4) 6
PSM 7 2 3 2 5 10 12 12(4) 9
REA1 4 2 2 4 4 9 9 9(4) 8
REALx 4 2 2 4 4 19 16 21(3) 16
TF1 7 2 4 1 4 17 17 27(4) 15
TG1 10 2 2 10 10 8 10 16(4) 7
TMD 6 2 4 1 3 10 8 9(3) 8
uwv 8 2 2 2 1 12 17 19(3) 10
WEC1 10 3 4 10 10 14 - 19(4) 11
NN4 4 2 3 4 4 5 4 7(3) 4
NN13 6 2 2 3 3 10 15  12(3) 9

Table 5—Performance of ALSQP vArmijo, CTR and IPCTR on test problems from [8].
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