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Abstract. We consider electromagnetic evasion-interrogation games wherein the evader can
use ferroelectric material coatings to attempt to avoid detection while the interrogator can manip-
ulate the interrogating frequencies (wave numbers) and angles of incidence of the interrogating
inputs to enhance detection and identification. The resulting problems are formulated as two
player games in which one player wishes to minimize the reflected signal while the other wishes
to maximize it. Simple deterministic strategies are easily defeated and hence the players must
introduce uncertainty to disguise their intentions and confuse their opponent. Mathematically,
the resulting game is carried out over spaces of probability measures which in many cases are

appropriately metrized using the Prohorov metric.
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1 Introduction

In [8] the authors demonstrated that it is possible to design ferroelectric materi-
als with appropriate dielectric permittivity and magnetic permeability to signifi-
cantly attenuate reflections of electromagnetic interrogation signals from highly
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conductive targets such as airfoils and missiles. This was done under assump-
tions that the interrogating input signal is uniformly likely to come from a sector
ofinterrogating angles € [ao, 1] (@ = 7 —¢ whereg is the angle of incidence

of the input signal) but that the evader has knowledge of the interrogator’s input
frequency or frequencies (denoted in the presentations below edehegator
design frequencieky). These results were further sharpened and illustrated in
[9] where a series of different material designs were considered to minimize over
a given set of input design frequencigsthe maximum reflected field from input
signals. In addition, a second critical finding was obtained in that it was shown
that if the evader employed a simple counter interrogation design based on a
fixed set (assumed known) of interrogating frequentigshen by a rather sim-

ple counter-counter interrogation strategy (use an interrogating frequency little
more than 10% different from the assumed design frequencies), the interrogator
can easily defeat the evader’s material coatings counter interrogation strategy to
obtain strong reflected signals.

From the combined results of [8, 9] it is thus rather easily concluded that
the evader and the interrogator must each try to confuse the other by introducing
significantuncertaintyin their design and interrogating strategies, respectively.
This concept, which we refer to asixed strategiein recognition of previous
contributions to the literature on games (von Neumafimite mixed strategie®
be explained below), leads to two player non-cooperative games with probabilis-
tic strategy formulations. These can be mathematically formulated as two sided
optimization problems over spaces of probability measures, i.e., minmax games
over sets of probability measures. The purpose of this paper is to provide a math-
ematically precise formulation of such a class of two sided optimization problems
and to discuss our initial computational efforts on such problems. Approxima-
tion methods are introduced and their computational efficacy is demonstrated
with several simple examples.

2 Problem formulation

We consider electromagnetic interrogation of objects in the context of minmax
evader-interrogator games where each player has uncertain information about
the adversary’s capabilities. The minmax cost functional is based on reflected
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fields from an object such as an airfoil or missile and can be computed in one of

several ways [8, 9].
[
z
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z=d

Figure 1 — Interrogating high frequency wave impinging (angle of incidefjcen
coated (thicknesg) perfectly conducting surface.

The simplest is the reflection coefficient based on a simple planar geometry
(e.g., see Figure 1) using Fresnel's formula for a perfectly conducting half plane
which has a coating layer of thicknegsvith dielectric permittivitye and mag-
netic permeabilityx. A normally incident ¢ = 0) electromagnetic wave with
the frequencyf is assumed to impinge the half plane. Then the corresponding
wavelengthi in air is A = ¢/, where the speed of light s= 0.3 x 10°. The
reflection coefficienR for the wave is given by

a+b
R= —— 1
1+ab’ @)
where
=S VE and p=eMnvenfdic ()
€+ JeEu

This expression can be derived directly from Maxwell’s equation by considering
the ratio of reflected to incident wave for example in the case of parallel polarized
(T Ex) incident wave (see [8, 20]).
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An alternative and much more computationally intensive approach (which may
be necessitated by some target geometries) employs the far field pattern for re-
flected waves computed directly using Maxwell’s equations. In two dimensions,
for a reflecting body2 with coating layeK2; and computational domain with
an interrogating plane wave®, the scattered fiel&® satisfies the Helmholtz
equation [15]

1 1 . . . _
V. <—VE(S)> + ew’E® = —v. (—VE(')> — ew’E® in M\ Q
w w
E® = —g® on 9
10E
9E® i 92E®
— — —ikE® - — =0 on 911
an 2k 9s?
IE® 3
oS —|k§E(S)=O at C,

where the Silver-Mdiller radiation condition has been approximated by a second-
order absorbing boundary condition éll as described in [2, 17, 18]. The
vectorsn ands denote the normal and tangential directions on the bourtdary
respectively, and is the set of the corner points ®f. Here[ -] denotes the
jumps at interfaces. The incident field in air is given by

E® _ gk(xicosu+x;sina)

whereq is the interrogation anglex(= 7 — ¢) andk = 27 f/c = w/cis the
interrogation wave number corresponding to the interrogating frequentihe
corresponding far field pattern is given by [8, 15]

Fola +m;¢e, u, 0, T)

, 4
= lim ( 8rkr e ' K+1/9 EG) (1 coqa + ), T Sin(e + 7); €, 1, @, f)), @

r—oo

where E® (xy, Xo; €, i, «, f) is the scattered electromagnetic field. This can
be used as a measure of the reflected field intensity instead of the reflection
coefficientR of (1)—(2).

The evader and the interrogator are each subject to uncertainties as to the ac-
tions of the other. The evader wants to choose a best coating design (i.e., best
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e's and u's ) while the interrogator wants to choose best angles of interroga-
tion « and interrogating frequencies. Each player must act in the presence

of incomplete information about the other’s action. Partial information regard-
ing capabilities and tendencies of the adversary can be embodied in probability
distributions for the choices to be made. That is, we may formalize this by
assuming the evader may choose (with an as yet to be determined set of proba-
bilities) dielectric permittivity and magnetic permeability parameteys) from
admissible set& x M while the interrogator chooses angles of interrogation and
interrogating frequencidg, f)from setsAa x F. The formulation here is based

on themixed strategieproposals of von Neumann [1, 22, 23] and the ideas can be
summarized as follows. The evader does not choose a single coating, but rather
has a set of possibilities available for choice. He only chooses the probabilities
with which he will employ the materials on atarget. This, in effect, disguises his
intentions from his adversary. By choosing his coatings randomly (according to
a best strategy to be determined in, for example, a minmax game), he prevents
adversaries from discovering which coating he will use—indeed, even he does
not know which coating will be chosen for a given target. The interrogator, in

a similar approach, determines best probabilities for choices of frequency and
angle in the interrogating signals. Note that such a formulation tacitly assumes
that the adversarial relationship persists with multiple attempts at evasion and
detection.

The associated minmax problem consists of the evader choosing distributions
Pe(e, ) over £ x M to minimize the reflected field while the interrogator
chooses distributionB, («, f) over A x F to maximize the reflected field. If
Br(e, 1, a, f) is the chosen measure of reflected field @d= P(E x M)
and?; = P(A x F) are the corresponding sets of probability distributions or
measures ovef x M and A x T, respectively, then the cost functional for the
minmax problem can be defined by

J(Pe,m:f / |Bre, i1, @, HPdPs(e, AR, ). (5)
ExM JAXF

The problems thus formulated are special cases of clasditid zero—sum
two player non-cooperative gamék, 12] where the evader minimizes over
P. € P. and the interrogator maximizes over € P;. In such games one
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definesupperandlower valuedor the gameby

J=inf supJ(Ps,P) and J = sup inf J(Pe, P).
PeePe P e?; P e, PeePe
The first represents a security level (worst case scenario) for the evader while
the latter is a security level for the interrogator. It is readily argued dhat J
and if the equality* = J = J holds, thenJ* is calledthe valueof the game.
Moreover, if there exisP; € P, andP* € P; such that

J*=J(P;,P") = IgenEiQeJ(Pe, P*) = lrjpec':ng(P;‘, P),

then (P, P*) is a saddle point solutioror non-cooperative equilibriunof
the game.

To investigate theoretical, computational and approximation issues for these
problems, itis necessary to put a topology on the space of probability measures.
Given a sel, a natural choice foP(1) is the Prohorov metric topology [14, 19,

21] as used for minimization/inverse problems in [3, 4, 7, 11]. Prohorov metric
(p) convergence imeak* convergence i when? is considered as a subset of
the topological duaCj (1) of the spac&€g(l) of bounded continuous functions
on |. More precisely, convergengg P, P) — 0 in the Prohorov metric is
equivalent to

/| F(6)dR (&) — /| f(6)dP(E)

for all bounded, uniformly continuou$ : | — R

It is known [3, 4] that if| is a complete metric space, thénhtaken with the
Prohorov metric is a complete metric space. Moreovel, i compact, then

so is?. Using these properties and arguments similar to those in [3, 6, 7, 10,
11], one can develop well-posedness and approximation results for the minmax
problems defined above. Efficient computational methods that correspond to von
Neumann’'dinite mixed strategiefl] can readily be presented in this context.
These can be based on several approximation theories that have been recently de-
veloped and used. The first, developed in [3] and based on Dirac delta measures,
is summarized in the following theorem.
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Theorem 2.1. Letl be a complete, separable metric spaBehe class of all
Borel subsets of and (1) the space of probability measures 0n B). Let
lo = {§j}52; be a countable, dense subset ofThen the set oP € P(l) such
that P has finite support iny and rational masses is dense (1) in the p

metric. That s,

k

Po(l) = {Pe’P(I):P:ijAEj,keNﬂ
=1

k
& € lo. pj rational, Y~ p; = 1}
j=1
is dense inP(1) taken with thep metric, whereA; is the Dirac measure with
atom atg;.

It is rather easy to use the ideas and results associated with this theorem to
develop computationally efficient schemes. Given

la=J I with 1w={e"}",
M=1

(a “partition” of 1) chosen so thalty is dense i, define

M
PM) = {Pe’P(I): P:ijAst,st €,
i=1

M
p; rational ¥ " p; = 1}.
j=1
Then we find
(i) PM(1)is a compact subset ¢f(1) in the p metric,
(i) PM(1) c PM*L(1) whenever y 1 is a refinement of y,

(iiiy “PM(1) — P(1)" in the p topology; that is, forM sufficiently large,
elements irP(1) can be approximated in thhemetric by elements aPM.

A second class of approximations, based on linear splines, was developed and
used in [11] for problems where one assumes that the probability distributions
to be approximated possess densitiesin
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Theorem 2.2. Let F be a weakly compact subsetlo(1), | compact and let
Pr(l)={P eP(l): P =p, pe F}. ThenPx(l)is compactinP(l) inthe

o metric. Moreover, if we defir{é}‘" } to be the linear splines ohcorresponding
to the partitionly, wherel J,, Im is densd, define

PM {pM pM = Zb}v'g?", b}v' rational}
j

and if
Pym = {PM e P(l): Py =/pM, pM e?M},
we have_J,, P¢w is dense irP4 () taken with theo metric.

A study comparing the relative strengths and weaknesses of these two classes
of approximation schemes in the context of inverse problems is given in [5].

3 Theoretical results

To establish existence of a saddle point solution for the evasion-interrogation
problems formulated above, one can employ a fundamental result of von Neu-
mann [22, 23] as stated by Aubin ([1]-see p. 126).

Theorem 3.1(von Neumann) SupposeXg, Yo are compact, convex subsets of
metric linear spaceX, Y respectively. Further suppose that

(i) forally € Yo, x — f(X,y) isconvex and lower semi-continuous;
(i) forall x € Xq,y — f(X,y) is concave and upper semi-continuous.
Then there exists a saddle poimt‘, y*) such that

f(x*, y") = min mY?xf(x, y) = maxmin f(x,y).

A straight forward application of these results to the problems under discussion
lead immediately to desired well-posedness results.
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Theorem 3.2. SupposeE, M, ®, F are compact and the spacg = P(E x
M), Yo = P(® x F) are taken with the Prohorov metric. Thefy, Yy are
compact, convex subsetst= C5(F x M) andY = C§ (P x F), respectively.
Moreover, there exist&P;, P*) € P(E x M) x P(P x F) such that

J(P;,P)= min max J(P,, B) = max min J(Pe, P).
P(EXM) P(OxF) P(OxF) P(ExM)

For computations, we may use the “delta” approximations of Theorem 2.1
and obtain

&

d PG(E’ lbL) Z pé.(s(sj,uj)(€7 ,LL)dEd[L,

dR(@. ) ~ > ploe,.0(¢. f)dedf.

As noted above, a convergence theory can be found in [3]. This corresponds
precisely to von Neumann’s finite mixed strategies framework for protection
by disguising intentions from opponents, i.e., by introducing uncertainty in the
players’ choices.

To illustrate the computational framework based on the delta measure approx-
imations, we take

M
dPeM(E, n) = ij!vlg(EJM,M?ﬂ)dEdM and
=1

N
dRN(@, ) = ) ae'dy g dedf,

k=1

which can be represented respectively by

M
pM:{p}VI}:\A:lEPME{pERMlpjzo,zpjzl} (6)
j=1
and
N N
qN:{qli\l}kﬂeQNE{qGRN|Qk20,qu=l}. (7)
k=1
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We note that in this case tl'@", gy are the probabilities associated with the use
of the material parametefs ), 1}') and interrogating parametefgy’, f,') in
the mixed strategies of the evader and interrogator, respectively.

ThenJ(PM, PN) reduces to

N M
_ _ 2
Y. aM =Y "> ' [Brel, ulh e, fO] o
k=1 j=1
whereBg is a measure of the reflected field (either the reflection coefficient or
the far field scattering intensity). Siné&", QN are compact, convex subsets of
RM RN, respectively, we have the following theorem.

Theorem 3.3. For fixedM, N there existgpM, gN) in PM x QN such that

75 =7(p".4)) = min max 7(p".q")

pMepM quQN

; =M =N
= I i, 9 (60",

Assume further thate, 1, ¢, f) — Br(e, u, ¢, f) is continuous onf x
M x ® x F which is assumed compact. Then there exists a sequeffceN)
of elements fromPM x QN respectively with correspondingPM, PN) in
P(E x M) x P(P x F) converging in the Prohorov metric 1@, P*) which
is a saddle point for the original minmax problem.

Proof. The hypothesis that the mdgp u, ¢, f) — Br(e, 1, ¢, f) be contin-
uous onE x M x ® x F implies continuity of the mapPe, P) — J(Pe, P)
on Xo x Yo — R, whereXo = P(E x M) andYy = P(® x F) are compact
convex inX = C5(E x M) andY = C§(P x F), respectively. This is due to
the compactness df x M and® x F, and properties of the Prohorov metric.
Let PM, QN be defined as in (6), (7), and observe that these are compact
convex subsets dRM, RN, respectively. Now leP. € Xo and P, € Yq be
arbitrary. Then by Theorem 2.1 and (iii) above (see also [3]), there exists a
sequence™, gN € PM, QN with associated measur@*, PN, respectively,
such that
PM - Psin XpasM — co and PN — P inYpasN — oo.

e
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Let PM*, PN* (guaranteed to exist by continuity, compactness, and the von
Neumann theorem) with coordinatp¥', GN, respectively, satisfy

J (PeM*’ P|N) < J (PeM*’ PIN*) < J (Pel\/l’ PIN*) (8)

for all (PM, PN) in Xo x Yo with coordinate representations M, QN, re-
spectively. NowXg x Yy compact implies that there exists a subsequence
(PMe PNy and (Pe, B) in Xg x Yo such that(PMe PNy — (B, B) in
Xo X Yo.

Consider (8) for indice®y, Ny, so that

J (Pel\/lk*’ P_Nk) < J (PeMk*’ PiNk*) < (PeMk’ PiNk*)‘
Then given the continuity of and taking the limit we find
I(P.R) = 3(P.P) = I(P. ).

Since P, P, are arbitrary inXg, Yo respectively, we haveP,, P) is a saddle
point for the original minmax problem.

Further note that since these arguments hold for any subsequenBg'tf
PN*), then

J (Pel\/l*’ P|N) < J (PeM*’ PIN*) < .J (PeM9 PlN*)

andPM* — P, as well asPN* — P.. That s, any subsequence B}'*, PN*
has a convergent subsequenc®4oP; so that the sequence itself must converge
to P, P. O

4 Preliminary numerical calculations

In [9], the authors considered a number of different material designs in their in-
vestigation of counter interrogation and counter-counter interrogation feasibility.
We use a number of these materials to define families of admissible evader sets
E x M in our initial exploratory calculations in demonstrating ease of calcula-
tions for problems as outlined above in Theorem 3.3 for the delta measures as
defined in (6) and (7). The materials we use here were designed in [9] in the
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following way. For a given assumed interrogator design frequencypsahd
assumed normal incident waves (incident angle- 0), the evader designs a
material by optimizing over admissible sets &andu, the criteria

‘]00(69 M) = maXBR(€7 M’ 0’ f)
felp

to obtain “optimal” coating parameters®, u*). With the thicknessl = 2.5
millimeters, Fresnel’'s formula (1)—(2) was used to obtain a series of materials
labelled IR, 2R, ..., 6R corresponding t@e*, u*) = (¢jr, 1jr) in [9]. Adopt-

ing the same labelling here, we allow the evader to choose from subsets com-
posed of elements from the following six materials denoted by their respective
parameter value&jr, ujr), j = 1,...,6:

1R: (e1r, m1r) = (9004 + 38.2i, 1) optimizing only overe

with u = 1 fixed andlp = {1 GHZ,
2R: (€2r, 2r) = (90.7 4+ 21.4i,10+ 2i) for Ip = {1 GHZ,
3R: (e3r, n3r) = (90.7 4+ 21.4i,10+ 2i) for I, = [0.8, 1.25],
4AR: (e4r, nar) = (56254 + 95.5i, 1) optimizing only overe

with u = 1 fixed andlp = {0.4 GHZ,
5R: (esr, tsr) = (5586 + 29.3i, 10+ 1.2i) for Ip = {0.4 GHZ},
6R: (egr, er) = (5493 4 150, 10+ 2i) for I = [0.32, 0.5].

Graphs of the resulting reflection coefficierBg(¢jr, 1jr, 0, f) = R(€jr,
wjr, f) are plotted as a function of possible interrogating frequency in Fig-
ure 2. Note that in the caseR12R, 4R, 5R, if the interrogator uses the design
frequency, the evader has a high likelihood of avoiding detection, but his/her
evasion strategy is easily defeated by an interrogating signal away from the
design frequency.

4.1 Typical results

We carried out a number of different optimization trials using these materials
with the “delta” measure approximations outlined above. We present in Table 1

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



H.T. BANKS, S.L. GROVE, K.ITO and J.A. TOIVANEN 301

10
10" b 1
0
5
S 107} 1
b=
[}
o
o
c
S
8 10°} E
T
@
; — — —900.4+38.2i
10* b E
90.7+21.4i
*  91.64+37.08i
10‘5 L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Frequencies in GHz
0
10 — S 1.
*
10" b «
[2]
5
S 107} E
=
[
o
o
c
o
810’} . |
& [y
\
\
10tk i — — —5625.4+955i | |
v 558.6+29.3i
*  549.3+150i
10'5 L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Frequencies in GHz

Figure 2 — Reflection coefficients calculated usi@gr, 1jr) from materials 1R,

2R, and 3R which are associated with (900.4+38.2i, 1), (90.7+21.4i, 10+2i), and

(91.64+37.08i, 10+2i), respectively (top) and materials 4R, 5R, and 6R which are asso-
ciated with (5625.4+95.5i, 1), (558.6+29.3i, 10+1.2i), and (549.3+150i, 10+2i), respec-

tively (bottom).
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a sample of results obtained for several choices of admissible evader material
setsE x ‘M and interrogator frequency sef& The minmax calculations are
readily carried out using standard MATLAB minimization packages.

EvaderSet Interrogatofet
ExM={(ejr,njrp): 1=12,3} | F=1{4,61}
ExM={(ejr, nir): ] =123} | F=1{41}
ExM={(jr, Hjr) : ] =4,56} | F=1{4, .6}
ExM={(ejr, njr) : ] =4,506} | F=1{4,61}

Results
pY =(0,0,1) q) =(1.0,0)
pM = (0, 0.241, 0.759) aN = (1,0
pM = (0, 0.667,0.333) 4 =01
pM = (0, 0.667,0.333) N = (0,0.667,0.333

Table 1 — Results of the saddle point calculations for a sample of evadét getd and
interrogator setg-.

A few words on the findings in the table are in order. First we note that when
materials R, 2R, 3R (all of which are based on am, of 1 GHzor an interval
around 1G H2) are available to the evader, the best strategy for the interrogator
is to always choose (with probability 1) the interrogating frequerdyqH 2)
furthermost from the design frequencies. The evader’s choice is slightly more
delicate. Inthe first row of Table 1 the evader always chooses mat&iah&h
is based on design for the largéstamong R, 2R, 3R. However, in the second
row we see that the evader should uge f2r 24.1% of the time and B the
other 759% of the time. If the materialsR, 5R, 6R are available, the evader
should use material® for 66.7% of the time and material®the remainder
of the time. In this situation the interrogator should Udse= .6 GHzif only
the frequencie$.4, .6} are available. 1f.4, .6, 1} are available, the interrogator
should usef = .6 GHzfor 66.7% of his interrogations and = 1 GHzfor
33.3% of the interrogations to maximize his chances of detecting the evader.
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5 Concluding remarks

In this note we have presented preliminary ideas for evader-interrogator strate-
gies in electromagnetic counter and counter-counter interrogation games. While
the ideas are simple, they possess potential for readily implementable strategies
in anumber of other modern non-cooperative adversarial situations in that similar
problems arise in information-misinformation dissemination, data retrieval and
analysis, and internet traffic and security. The computational results we present
are extremely simple, but illustrate aptly the potential. More realistic problems
(currently under investigation) involve multiple layers of materials and the cor-
responding Fresnel’s formulae (see [13, 16, 24]) for multiple stacked layers of
dielectric materials. And of course one should investigate larger valudsaoid

N than the value$! = 3 andN = 2 or 3 used in the preliminary calculations
reported on above.

In our computational example®, and P were taken as discrete measures
with a finite number of atoms, i.e., finite weighted combinations of the delta
measures. Our current computational efforts are on absolutely continuous mea-
suresd P.(e, u) = p(e, w)dedp andd B (f) = q(f)df using the linear spline
approximations presented in Theorem 2.2. Specifically, these can be used to
obtain approximations

M
ple. ) ~ pMie. ) = Y pl'e)' ()¢} (w).
j=1

N
q(f)y ~gV(f) = > agled ()
k=1

which again reduces considerations to a simple minmax problem for

where now

AR =/ / /E?A(E)Z,-“”(MNR(G,M, )12 (f)dedudf.

ExMxF
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More generally, one should consider approximations

| M
ple. )~ p'™Me, ) = Y > piMel @) (w),

i=1 j=1

resulting in a tensor product in the approximating minmax problems with tensor

A" = / / / @8 IR, . DI (Fdedudst.

ExMxF

Of course, in these approximations s andq’s are no longer simple proba-
bilities (as in the case of the delta basis elements), but are weighting coefficients
for the density basis elemen{téz-"'}, etc., and must be properly constrained so
that the finite combinations sum to a probability density.
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