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Abstract. We consider electromagnetic evasion-interrogation games wherein the evader can

use ferroelectric material coatings to attempt to avoid detection while the interrogator can manip-

ulate the interrogating frequencies (wave numbers) and angles of incidence of the interrogating

inputs to enhance detection and identification. The resulting problems are formulated as two

player games in which one player wishes to minimize the reflected signal while the other wishes

to maximize it. Simple deterministic strategies are easily defeated and hence the players must

introduce uncertainty to disguise their intentions and confuse their opponent. Mathematically,

the resulting game is carried out over spaces of probability measures which in many cases are

appropriately metrized using the Prohorov metric.
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1 Introduction

In [8] the authors demonstrated that it is possible to design ferroelectric materi-

als with appropriate dielectric permittivity and magnetic permeability to signifi-

cantly attenuate reflections of electromagnetic interrogation signals from highly
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conductive targets such as airfoils and missiles. This was done under assump-

tions that the interrogating input signal is uniformly likely to come from a sector

of interrogating anglesα ∈ [α0, α1] (α = π
2 −φ whereφ is the angle of incidence

of the input signal) but that the evader has knowledge of the interrogator’s input

frequency or frequencies (denoted in the presentations below as theinterrogator

design frequenciesI D). These results were further sharpened and illustrated in

[9] where a series of different material designs were considered to minimize over

a given set of input design frequenciesI D the maximum reflected field from input

signals. In addition, a second critical finding was obtained in that it was shown

that if the evader employed a simple counter interrogation design based on a

fixed set (assumed known) of interrogating frequenciesI D, then by a rather sim-

ple counter-counter interrogation strategy (use an interrogating frequency little

more than 10% different from the assumed design frequencies), the interrogator

can easily defeat the evader’s material coatings counter interrogation strategy to

obtain strong reflected signals.

From the combined results of [8, 9] it is thus rather easily concluded that

the evader and the interrogator must each try to confuse the other by introducing

significantuncertaintyin their design and interrogating strategies, respectively.

This concept, which we refer to asmixed strategiesin recognition of previous

contributions to the literature on games (von Neumann’sfinite mixed strategiesto

be explained below), leads to two player non-cooperative games with probabilis-

tic strategy formulations. These can be mathematically formulated as two sided

optimization problems over spaces of probability measures, i.e., minmax games

over sets of probability measures. The purpose of this paper is to provide a math-

ematically precise formulation of such a class of two sided optimization problems

and to discuss our initial computational efforts on such problems. Approxima-

tion methods are introduced and their computational efficacy is demonstrated

with several simple examples.

2 Problem formulation

We consider electromagnetic interrogation of objects in the context of minmax

evader-interrogator games where each player has uncertain information about

the adversary’s capabilities. The minmax cost functional is based on reflected
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fields from an object such as an airfoil or missile and can be computed in one of

several ways [8, 9].

Dielectric Coating

Ambient

Perfectly conducting half plane

Figure 1 – Interrogating high frequency wave impinging (angle of incidenceφ) on

coated (thicknessd) perfectly conducting surface.

The simplest is the reflection coefficient based on a simple planar geometry

(e.g., see Figure 1) using Fresnel’s formula for a perfectly conducting half plane

which has a coating layer of thicknessd with dielectric permittivityε and mag-

netic permeabilityμ. A normally incident (φ = 0) electromagnetic wave with

the frequencyf is assumed to impinge the half plane. Then the corresponding

wavelengthλ in air isλ = c/ f , where the speed of light isc = 0.3 × 109. The

reflection coefficientR for the wave is given by

R =
a + b

1 + ab
, (1)

where

a =
ε −

√
εμ

ε +
√

εμ
and b = e4i π

√
εμ f d/c. (2)

This expression can be derived directly from Maxwell’s equation by considering

the ratio of reflected to incident wave for example in the case of parallel polarized

(T Ex) incident wave (see [8, 20]).

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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An alternative and much more computationally intensive approach (which may

be necessitated by some target geometries) employs the far field pattern for re-

flected waves computed directly using Maxwell’s equations. In two dimensions,

for a reflecting body� with coating layer�1 and computational domain5 with

an interrogating plane waveE(i ), the scattered fieldE(s) satisfies the Helmholtz

equation [15]

∇ ∙
(

1

μ
∇E(s)

)
+ εω2E(s) = −∇ ∙

(
1

μ
∇E(i )

)
− εω2E(i ) in 5 \ �̄

E(s) = −E(i ) on ∂�

[
1

μ

∂E

∂n

]
= [E] = 0 on ∂�1 \ ∂�

∂E(s)

∂n
− ikE(s) −

i

2k

∂2E(s)

∂s2
= 0 on ∂5

∂E(s)

∂s
− ik

3

2
E(s) = 0 at C,

(3)

where the Silver-Müller radiation condition has been approximated by a second-

order absorbing boundary condition on∂5 as described in [2, 17, 18]. The

vectorsn ands denote the normal and tangential directions on the boundary∂5,

respectively, andC is the set of the corner points of5. Here[ ∙ ] denotes the

jumps at interfaces. The incident field in air is given by

E(i ) = eik(x1 cosα+x2 sinα),

whereα is the interrogation angle (α = π
2 − φ) andk = 2π f/c = ω/c is the

interrogation wave number corresponding to the interrogating frequencyf . The

corresponding far field pattern is given by [8, 15]

Fα(α + π; ε, μ, α, f )

= lim
r →∞

(√
8πkr e−i (kr+π/4) E(s)(r cos(α + π), r sin(α + π); ε, μ, α, f )

)
,

(4)

whereE(s)(x1, x2; ε, μ, α, f ) is the scattered electromagnetic field. This can

be used as a measure of the reflected field intensity instead of the reflection

coefficientR of (1)–(2).

The evader and the interrogator are each subject to uncertainties as to the ac-

tions of the other. The evader wants to choose a best coating design (i.e., best

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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ε’s andμ’s ) while the interrogator wants to choose best angles of interroga-

tion α and interrogating frequenciesf . Each player must act in the presence

of incomplete information about the other’s action. Partial information regard-

ing capabilities and tendencies of the adversary can be embodied in probability

distributions for the choices to be made. That is, we may formalize this by

assuming the evader may choose (with an as yet to be determined set of proba-

bilities) dielectric permittivity and magnetic permeability parameters(ε, μ) from

admissible setsE×Mwhile the interrogator chooses angles of interrogation and

interrogating frequencies(α, f ) from setsA×F . The formulation here is based

on themixed strategiesproposals of von Neumann [1, 22, 23] and the ideas can be

summarized as follows. The evader does not choose a single coating, but rather

has a set of possibilities available for choice. He only chooses the probabilities

with which he will employ the materials on a target. This, in effect, disguises his

intentions from his adversary. By choosing his coatings randomly (according to

a best strategy to be determined in, for example, a minmax game), he prevents

adversaries from discovering which coating he will use–indeed, even he does

not know which coating will be chosen for a given target. The interrogator, in

a similar approach, determines best probabilities for choices of frequency and

angle in the interrogating signals. Note that such a formulation tacitly assumes

that the adversarial relationship persists with multiple attempts at evasion and

detection.

The associated minmax problem consists of the evader choosing distributions

Pe(ε, μ) over E × M to minimize the reflected field while the interrogator

chooses distributionsPi (α, f ) overA × F to maximize the reflected field. If

BR(ε, μ, α, f ) is the chosen measure of reflected field andPe = P(E × M)

andPi = P(A × F) are the corresponding sets of probability distributions or

measures overE ×M andA×F , respectively, then the cost functional for the

minmax problem can be defined by

J(Pe, Pi ) =
∫

E×M

∫

A×F
|BR(ε, μ, α, f )|2d Pe(ε, μ)d Pi (α, f ). (5)

The problems thus formulated are special cases of classicalstatic zero–sum

two player non-cooperative games[1, 12] where the evader minimizes over

Pe ∈ Pe and the interrogator maximizes overPi ∈ Pi . In such games one

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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definesupperandlower valuesfor the gameby

J = inf
Pe∈Pe

sup
Pi ∈Pi

J(Pe, Pi ) and J = sup
Pi ∈Pi

inf
Pe∈Pe

J(Pe, Pi ).

The first represents a security level (worst case scenario) for the evader while

the latter is a security level for the interrogator. It is readily argued thatJ ≤ J

and if the equalityJ∗ = J = J holds, thenJ∗ is calledthe valueof the game.

Moreover, if there existP∗
e ∈ Pe andP∗

i ∈ Pi such that

J∗ = J(P∗
e , P∗

i ) = min
Pe∈Pe

J(Pe, P∗
i ) = max

Pi ∈Pi

J(P∗
e , Pi ),

then (P∗
e , P∗

i ) is a saddle point solutionor non-cooperative equilibriumof

the game.

To investigate theoretical, computational and approximation issues for these

problems, it is necessary to put a topology on the space of probability measures.

Given a setI , a natural choice forP(I ) is the Prohorov metric topology [14, 19,

21] as used for minimization/inverse problems in [3, 4, 7, 11]. Prohorov metric

(ρ) convergence isweak∗ convergence inP whenP is considered as a subset of

the topological dualC∗
B(I ) of the spaceCB(I ) of bounded continuous functions

on I . More precisely, convergenceρ(Pk, P) → 0 in the Prohorov metric is

equivalent to
∫

I
f (ξ)d Pk(ξ) →

∫

I
f (ξ)d P(ξ)

for all bounded, uniformly continuousf : I → R1.

It is known [3, 4] that if I is a complete metric space, thenP taken with the

Prohorov metric is a complete metric space. Moreover, ifI is compact, then

so isP. Using these properties and arguments similar to those in [3, 6, 7, 10,

11], one can develop well-posedness and approximation results for the minmax

problems defined above. Efficient computational methods that correspond to von

Neumann’sfinite mixed strategies[1] can readily be presented in this context.

These can be based on several approximation theories that have been recently de-

veloped and used. The first, developed in [3] and based on Dirac delta measures,

is summarized in the following theorem.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Theorem 2.1. Let I be a complete, separable metric space,B the class of all

Borel subsets ofI andP(I ) the space of probability measures on(I ,B). Let

I0 = {ξ j }∞j =1 be a countable, dense subset ofI . Then the set ofP ∈ P(I ) such

that P has finite support inI0 and rational masses is dense inP(I ) in the ρ

metric. That is,

P0(I ) ≡
{

P ∈ P(I ) : P =
k∑

j =1

pj 1ξ j , k ∈ N +,

ξ j ∈ I0, pj rational,
k∑

j =1

pj = 1

}

is dense inP(I ) taken with theρ metric, where1ξ j is the Dirac measure with

atom atξ j .

It is rather easy to use the ideas and results associated with this theorem to

develop computationally efficient schemes. Given

Id =
∞⋃

M=1

IM with IM =
{
ξ M

j

}M

j =1

(a “partition” of I ) chosen so thatId is dense inI , define

PM(I ) =
{

P ∈ P(I ) : P =
M∑

j =1

pj 1ξ M
j
, ξ M

j ∈ IM ,

pj rational,
M∑

j =1

pj = 1

}
.

Then we find

(i) PM(I ) is a compact subset ofP(I ) in theρ metric,

(ii) PM(I ) ⊂ PM+1(I ) wheneverIM+1 is a refinement ofIM ,

(iii) “ PM(I ) → P(I )” in the ρ topology; that is, forM sufficiently large,

elements inP(I ) can be approximated in theρ metric by elements ofPM .

A second class of approximations, based on linear splines, was developed and

used in [11] for problems where one assumes that the probability distributions

to be approximated possess densities inL2.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



“main” — 2007/2/23 — 11:48 — page 296 — #8

296 STATIC TWO-PLAYER EVASION-INTERROGATION GAMES WITH UNCERTAINTY

Theorem 2.2. LetF be a weakly compact subset ofL2(I ), I compact and let

PF (I ) ≡ {P ∈ P(I ) : P′ = p, p ∈ F}. ThenPF (I ) is compact inP(I ) in the

ρ metric. Moreover, if we define{`M
j } to be the linear splines onI corresponding

to the partitionIM, where
⋃

M IM is denseI , define

PM ≡
{

pM : pM =
∑

j

bM
j `M

j , bM
j rational

}

and if

PFM ≡
{

PM ∈ P(I ) : PM =
∫

pM , pM ∈ PM

}
,

we have
⋃

M PFM is dense inPF (I ) taken with theρ metric.

A study comparing the relative strengths and weaknesses of these two classes

of approximation schemes in the context of inverse problems is given in [5].

3 Theoretical results

To establish existence of a saddle point solution for the evasion-interrogation

problems formulated above, one can employ a fundamental result of von Neu-

mann [22, 23] as stated by Aubin ([1]-see p. 126).

Theorem 3.1(von Neumann). SupposeX0, Y0 are compact, convex subsets of

metric linear spacesX, Y respectively. Further suppose that

(i) for all y ∈ Y0, x → f (x, y) is convex and lower semi-continuous;

(ii) for all x ∈ X0, y → f (x, y) is concave and upper semi-continuous.

Then there exists a saddle point(x∗, y∗) such that

f (x∗, y∗) = min
X0

max
Y0

f (x, y) = max
Y0

min
X0

f (x, y).

A straight forward application of these results to the problems under discussion

lead immediately to desired well-posedness results.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Theorem 3.2. SupposeE,M,8,F are compact and the spacesX0 = P(E×

M), Y0 = P(8 × F) are taken with the Prohorov metric. ThenX0, Y0 are

compact, convex subsets ofX = C∗
B(E×M) andY = C∗

B(8×F), respectively.

Moreover, there exists(P∗
e , P∗

i ) ∈ P(E ×M) × P(8 ×F) such that

J(P∗
e , P∗

i ) = min
P(E×M)

max
P(8×F)

J(Pe, Pi ) = max
P(8×F)

min
P(E×M)

J(Pe, Pi ).

For computations, we may use the “delta” approximations of Theorem 2.1

and obtain

d Pe(ε, μ) ≈
∑

pj
eδ(ε j ,μ j )(ε, μ)dεdμ,

d Pi (φ, f ) ≈
∑

pj
i δ(φ j , f j )(φ, f )dφd f.

As noted above, a convergence theory can be found in [3]. This corresponds

precisely to von Neumann’s finite mixed strategies framework for protection

by disguising intentions from opponents, i.e., by introducing uncertainty in the

players’ choices.

To illustrate the computational framework based on the delta measure approx-

imations, we take

d PM
e (ε, μ) =

M∑

j =1

pM
j δ(εM

j ,μM
j )dεdμ and

d PN
i (φ, f ) =

N∑

k=1

qN
k δ(φN

k , f N
k )dφd f,

which can be represented respectively by

p̄M =
{

pM
j

}M

j =1
∈ PM ≡

{
p̄ ∈ RM | pj ≥ 0,

M∑

j =1

pj = 1

}
(6)

and

q̄N =
{
qN

k

}N

k=1 ∈ QN ≡
{

q̄ ∈ RN | qk ≥ 0,

N∑

k=1

qk = 1

}
. (7)

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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We note that in this case thepM
j , qN

k are the probabilities associated with the use

of the material parameters
(
εM

j , μM
j

)
and interrogating parameters

(
φN

k , f N
k

)
in

the mixed strategies of the evader and interrogator, respectively.

ThenJ(PM
e , PN

i ) reduces to

J( p̄M , q̄N) =
N∑

k=1

M∑

j =1

pM
j

∣
∣BR(εM

j , μM
j , φN

k , f N
k )

∣
∣2

qN
k

whereBR is a measure of the reflected field (either the reflection coefficient or

the far field scattering intensity). SincePM , QN are compact, convex subsets of

RM ,RN , respectively, we have the following theorem.

Theorem 3.3. For fixedM, N there exists( p̄M
∗ , q̄N

∗ ) in PM × QN such that

J∗ = J
(
p̄M

∗ , q̄N
∗

)
= min

p̄M∈PM
max

q̄N∈QN
J

(
p̄M , q̄N

)

= max
q̄N∈QN

min
p̄M∈PM

J
(
p̄M , q̄N

)
.

Assume further that(ε, μ, φ, f ) → BR(ε, μ, φ, f ) is continuous onE ×

M× 8 ×F which is assumed compact. Then there exists a sequence( p̄M
∗ , q̄N

∗ )

of elements fromPM × QN respectively with corresponding(PM
e , PN

i ) in

P(E ×M) × P(8 × F) converging in the Prohorov metric to(P∗
e , P∗

i ) which

is a saddle point for the original minmax problem.

Proof. The hypothesis that the map(ε, μ, φ, f ) → BR(ε, μ, φ, f ) be contin-

uous onE ×M× 8 × F implies continuity of the map(Pe, Pi ) → J(Pe, Pi )

on X0 × Y0 → R1
+, whereX0 = P(E ×M) andY0 = P(8 × F) are compact

convex inX = C∗
B(E ×M) andY = C∗

B(8 × F), respectively. This is due to

the compactness ofE ×M and8 ×F , and properties of the Prohorov metric.

Let PM , QN be defined as in (6), (7), and observe that these are compact

convex subsets ofRM ,RN , respectively. Now letPe ∈ X0 and Pi ∈ Y0 be

arbitrary. Then by Theorem 2.1 and (iii) above (see also [3]), there exists a

sequencēpM , q̄N ∈ PM , QN with associated measuresPM
e , PN

i , respectively,

such that

PM
e → Pe in X0 asM → ∞ and PN

i → Pi in Y0 asN → ∞.

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Let PM∗
e , PN∗

i (guaranteed to exist by continuity, compactness, and the von

Neumann theorem) with coordinatesp̄M
∗ , q̄N

∗ , respectively, satisfy

J
(
PM∗

e , PN
i

)
≤ J

(
PM∗

e , PN∗
i

)
≤ J

(
PM

e , PN∗
i

)
(8)

for all (PM
e , PN

i ) in X0 × Y0 with coordinate representations inPM , QN , re-

spectively. NowX0 × Y0 compact implies that there exists a subsequence

(PMk∗
e , PNk∗

i ) and (P̃e, P̃i ) in X0 × Y0 such that(PMk∗
e , PNk∗

i ) → (P̃e, P̃i ) in

X0 × Y0.

Consider (8) for indicesMk, Nk, so that

J
(

PMk∗
e , PNk

i

)
≤ J

(
PMk∗

e , PNk∗
i

)
≤ J

(
PMk

e , PNk∗
i

)
.

Then given the continuity ofJ and taking the limit we find

J
(

P̃e, Pi

)
≤ J

(
P̃e, P̃i

)
≤ J

(
Pe, P̃i

)
.

Since Pe, Pi are arbitrary inX0, Y0 respectively, we have(P̃e, P̃i ) is a saddle

point for the original minmax problem.

Further note that since these arguments hold for any subsequence of(PM∗
e ,

PN∗
i ), then

J
(
PM∗

e , PN
i

)
≤ J

(
PM∗

e , PN∗
i

)
≤ J

(
PM

e , PN∗
i

)

and PM∗
e → P̃e as well asPN∗

i → P̃i . That is, any subsequence ofPM∗
e , PN∗

i

has a convergent subsequence toP̃e, P̃i so that the sequence itself must converge

to P̃e, P̃i . �

4 Preliminary numerical calculations

In [9], the authors considered a number of different material designs in their in-

vestigation of counter interrogation and counter-counter interrogation feasibility.

We use a number of these materials to define families of admissible evader sets

E ×M in our initial exploratory calculations in demonstrating ease of calcula-

tions for problems as outlined above in Theorem 3.3 for the delta measures as

defined in (6) and (7). The materials we use here were designed in [9] in the

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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following way. For a given assumed interrogator design frequency setI D and

assumed normal incident waves (incident angleφ = 0), the evader designs a

material by optimizing over admissible sets forε andμ, the criteria

J∞(ε, μ) = max
f ∈I D

BR(ε, μ, 0, f )

to obtain “optimal” coating parameters(ε∗, μ∗). With the thicknessd = 2.5

millimeters, Fresnel’s formula (1)–(2) was used to obtain a series of materials

labelled 1R, 2R, ..., 6R corresponding to(ε∗, μ∗) = (ε j R, μ j R) in [9]. Adopt-

ing the same labelling here, we allow the evader to choose from subsets com-

posed of elements from the following six materials denoted by their respective

parameter values(ε j R, μ j R), j = 1, . . . , 6:

1R: (ε1R, μ1R) = (900.4 + 38.2i, 1) optimizing only overε

with μ = 1 fixed andI D = {1 G Hz},

2R: (ε2R, μ2R) = (90.7 + 21.4i, 10+ 2i ) for I D = {1 G Hz},

3R: (ε3R, μ3R) = (90.7 + 21.4i, 10+ 2i ) for I D = [0.8, 1.25],

4R: (ε4R, μ4R) = (5625.4 + 95.5i, 1) optimizing only overε

with μ = 1 fixed andI D = {0.4 G Hz},

5R: (ε5R, μ5R) = (558.6 + 29.3i, 10+ 1.2i ) for I D = {0.4 G Hz},

6R: (ε6R, μ6R) = (549.3 + 150i, 10+ 2i ) for I D = [0.32, 0.5].

Graphs of the resulting reflection coefficientsBR(ε j R, μ j R, 0, f ) = R(ε j R,

μ j R, f ) are plotted as a function of possible interrogating frequency in Fig-

ure 2. Note that in the cases 1R, 2R, 4R, 5R, if the interrogator uses the design

frequency, the evader has a high likelihood of avoiding detection, but his/her

evasion strategy is easily defeated by an interrogating signal away from the

design frequency.

4.1 Typical results

We carried out a number of different optimization trials using these materials

with the “delta” measure approximations outlined above. We present in Table 1

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Figure 2 – Reflection coefficients calculated using(ε j R, μ j R) from materials 1R,

2R, and 3R which are associated with (900.4+38.2i, 1), (90.7+21.4i, 10+2i), and

(91.64+37.08i, 10+2i), respectively (top) and materials 4R, 5R, and 6R which are asso-

ciated with (5625.4+95.5i, 1), (558.6+29.3i, 10+1.2i), and (549.3+150i, 10+2i), respec-

tively (bottom).
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a sample of results obtained for several choices of admissible evader material

setsE × M and interrogator frequency setsF . The minmax calculations are

readily carried out using standard MATLAB minimization packages.

EvaderSet InterrogatorSet

E ×M = {(ε j R, μ j R) : j = 1, 2, 3} F = {.4, .6, 1}

E ×M = {(ε j R, μ j R) : j = 1, 2, 3} F = {.4, 1}

E ×M = {(ε j R, μ j R) : j = 4, 5, 6} F = {.4, .6}

E ×M = {(ε j R, μ j R) : j = 4, 5, 6} F = {.4, .6, 1}

Results

p̄M
∗ = (0, 0, 1) q̄N

∗ = (1, 0, 0)

p̄M
∗ = (0, 0.241, 0.759) q̄N

∗ = (1, 0)

p̄M
∗ = (0, 0.667, 0.333) q̄N

∗ = (0, 1)

p̄M
∗ = (0, 0.667, 0.333) q̄N

∗ = (0, 0.667, 0.333)

Table 1 – Results of the saddle point calculations for a sample of evader setsE×M and

interrogator setsF .

A few words on the findings in the table are in order. First we note that when

materials 1R, 2R, 3R (all of which are based on anI D of 1 G Hzor an interval

around 1G Hz) are available to the evader, the best strategy for the interrogator

is to always choose (with probability 1) the interrogating frequency (.4 G Hz)

furthermost from the design frequencies. The evader’s choice is slightly more

delicate. In the first row of Table 1 the evader always chooses material 3Rwhich

is based on design for the largestI D among 1R, 2R, 3R. However, in the second

row we see that the evader should use 2R for 24.1% of the time and 3R the

other 75.9% of the time. If the materials 4R, 5R, 6R are available, the evader

should use material 5R for 66.7% of the time and material 6R the remainder

of the time. In this situation the interrogator should usef = .6 G Hz if only

the frequencies{.4, .6} are available. If{.4, .6, 1} are available, the interrogator

should usef = .6 G Hz for 66.7% of his interrogations andf = 1 G Hz for

33.3% of the interrogations to maximize his chances of detecting the evader.
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5 Concluding remarks

In this note we have presented preliminary ideas for evader-interrogator strate-

gies in electromagnetic counter and counter-counter interrogation games. While

the ideas are simple, they possess potential for readily implementable strategies

in a number of other modern non-cooperative adversarial situations in that similar

problems arise in information-misinformation dissemination, data retrieval and

analysis, and internet traffic and security. The computational results we present

are extremely simple, but illustrate aptly the potential. More realistic problems

(currently under investigation) involve multiple layers of materials and the cor-

responding Fresnel’s formulae (see [13, 16, 24]) for multiple stacked layers of

dielectric materials. And of course one should investigate larger values ofM and

N than the valuesM = 3 andN = 2 or 3 used in the preliminary calculations

reported on above.

In our computational examples,Pe and Pi were taken as discrete measures

with a finite number of atoms, i.e., finite weighted combinations of the delta

measures. Our current computational efforts are on absolutely continuous mea-

suresd Pe(ε, μ) = p(ε, μ)dεdμ andd Pi ( f ) = q( f )d f using the linear spline

approximations presented in Theorem 2.2. Specifically, these can be used to

obtain approximations

p(ε, μ) ≈ pM(ε, μ) =
M∑

j =1

pM
j `M

j (ε)`M
j (μ),

q( f ) ≈ qN( f ) =
N∑

k=1

qN
k `N

k ( f )

which again reduces considerations to a simple minmax problem for

J
(
p̄M , q̄N

)
=

N∑

k=1

M∑

j =1

pM
j AM N

jk qN
k ,

where now

AM N
jk =

∫ ∫

E×M×F

∫
`M

j (ε)`M
j (μ)|R(ε, μ, f )|2`N

k ( f )dεdμd f.
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More generally, one should consider approximations

p(ε, μ) ≈ pI M (ε, μ) =
I∑

i =1

M∑

j =1

pI M
i j `I

i (ε)`
M
j (μ),

resulting in a tensor product in the approximating minmax problems with tensor

AI M N
i jk =

∫ ∫

E×M×F

∫
`I

i (ε)`
M
j (μ)|R(ε, μ, f )|2`N

k ( f )dεdμd f.

Of course, in these approximations thep′s andq′s are no longer simple proba-

bilities (as in the case of the delta basis elements), but are weighting coefficients

for the density basis elements{`M
j }, etc., and must be properly constrained so

that the finite combinations sum to a probability density.
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