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Abstract. We introduce a framework for modeling elastic properties of shape memory alloy

polycrystals by coupling orientational degrees of freedom with elastic strains. Our method allows

us to span the length scales from single crystal to that appropriate to obtain polycrystal properties.

The single crystal free energy coefficients can be determined from microscopic calculations (such

as electronic structure and molecular dynamics) and/or available experimental structural, phonon

and thermodynamic data. We simulate the microstructure and determine the stress-strain response

of the polycrystal and compare it with that of a single crystal. For FePd parameters we find that

the recoverable strain for a polycrystal is ∼ 40% of that for a single crystal. The polycrystal

information can, in principle, serve as input to the engineering scale of calculation, where the

finite element method is appropriate.
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1 Introduction

There are many types of solid-solid transformations that occur in nature. A par-

ticular class of these transformations is known as martensitic transformations.

Martensites are characterized by diffusionless, first-order structural phase transi-

tions between different crystalline phases. These solid-solid transformations are

important as crystal symmetry-changing phase transitions as well as for their role

in inducing technologically useful materials properties. There is a related class

of materials known as ferroelastics. Ferroelasticity is defined by the existence
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of two or more stable deformation states of a crystal that correspond to different

arrangements of the atoms, but are structurally identical [1,2]. In addition, these

deformation states are degenerate in energy in the absence of mechanical stress

(e.g., there are three deformations of a tetragonal crystal resulting from a transi-

tion from a cubic crystal such as in FePd). Salient features of ferroelastic crystals

include mechanical hysteresis and mechanically switchable domain patterns.

Since the ferroelastic transition (induced by either temperature change or ap-

plication of stress) is normally weakly first order, or second order, it can be de-

scribed to a good approximation by the Landau theory with spontaneous strain

or deviation of a given ferroelastic deformation state from the parent phase as the

order parameter. The strain can be coupled to intra-unit cell (shuffle) modes or

other fields such as electric polarization and magnetic moment (e.g., in magnetic

martensites) and thus the crystal can have more than one transition. We note that

the Landau theory is a mesoscale description at a length scale on the order of

one (or a few) unit cell(s). To include the inhomogeneous variation of the order

parameter strain, such as across a domain wall or twin boundary, the square of

the strain gradient is included in the free energy to account for the energy cost for

creating a domain wall. This is refered to as the Ginzburg term and the resultant

description is called the Ginzburg-Landau free energy.

There is a further subset of ferroelastic martensites (either non-elemental met-

als or alloy systems) that exhibit the shape memory effect [3]. These materials are

characterized by highly mobile twin boundaries and (often) show precursor struc-

tures (e.g., tweed [4-6]) above the transition. Furthermore, these materials have

small Bain strain, elastic shear modulus softening, and a weakly to moderately

first order transition. Some representative examples include InTl, FePd, NiTi,

AuCd and CuAlZn. Shape memory is the ability of these materials to recover,

upon heating, an apparently plastic deformation sustained below the marten-

sitic transition temperature. To optimize the desirable functionalities of these

materials it is crucial to understand microstucture such as twinning and tweed.

These multiscale structures are increasingly understood to produce anomalous

elastic constants [7], low-symmetry lattice vibrations, low-frequency scattering

in x-ray and neutron spectra, and inhomogeneous coupling to electronic, mag-

netic and ferroelectric degrees of freedom. The associated multiscale dynamics
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is intimately involved in shape-memory [3], and related phenomena.

The multiscale mechanism by which local perturbations (such as defects or

localized stress) can have large-scale effects on elastic patterning is anisotropic

long-range strain-strain coupling. This long-range coupling arises because of

elastic compatibility constraints on the allowed unit cell deformations (in the

absence of bond-breaking) and is therefore indeed inherited from very local,

atomic scale (i.e., microscopic), symmetries. We have recently developed mod-

els of elasticity and solid-solid phase transformations at the mesoscopic (“coarse-

grained”) level of a nonlinear Ginzburg-Landau description for single crystals,

including the compatibility constraint self-consistently [8]. This allows a de-

scription of systematic twinning, tweed and other fine-scale hierarchical struc-

tures, i.e. to connect intrinsic multiscale phenomena in solid state physics and

materials science. Our model can predict multiscale elastic textures and their

consequences in a unified manner as demonstrated below through simulations.

Most commercial applications of shape memory alloys [3] (such as NiTi, FePd

and CuZnAl) make use of polycrystalline specimens and therefore it is important

to study and compare the mechanical response of polycrystals to that of single

crystals. The problem of finding the effective properties of martensitic polycrys-

tals has been studied by analytical methods [9-11] and finite element simulations

[12]. However, these methods do not account for the complex polycrystal geom-

etry and also do not incorporate the long-range elastic interactions between the

grains. Continuum simulations that span a range of length scales are good candi-

dates to describe these issues. Recently, phase-field micro-elasticity models that

employ static grains created by the Voronoi construction have been studied [13].

Nevertheless, it is important to regard the grain orientation as a thermodynamic

variable since the orientation distribution (texture) of a polycrystal can change

due to an applied load.

The evolution of grains during grain growth has been studied using the phase-

field approach [14-16]. Although these models correctly describe the grain mor-

phologies and domain coarsening, they do not address the issues of elasticity and

crystal symmetry. A coupling of these models with continuum elasticity mod-

els of martensitic transformations provides a framework to model mechanical

properties of shape memory polycrystals. Here we propose a model in which
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elastic strains are coupled to a phase-field model through an orientation field that

is determined from a multi-component order parameter describing the crystal

orientations. Due to this coupling, the strains as well as the grain orientations

can change under an external load. Here we determine the stress-strain (consti-

tutive) response within the coupled phase-field-elasticity model. The polycrystal

response serves as a natural input for the next higher length scale, namely for

the finite element methods.

2 The Landau model for a single crystal

The true degrees of freedom in a continuum elastic medium (such as described

by Ginzburg-Landau models) are contained in the displacement field, u(r), even

though it is the strain fields, εij , which appear in the free energy [as order param-

eter (OP) in the anharmonic part and as non-OP in the harmonic part]. Instead of

treating the strains as independent fields, one must assume that they correspond

to a physical displacement field, i.e., that they are derivatives of a single contin-

uous function. This is achieved by requiring that they satisfy a set of nontrivial

compatibility relations concisely expressed as a differential relation between the

strain components. Ignoring the geometrical compatibility constraint and min-

imizing the free energy directly would lead to the incorrect result that non-OP

strain components are identically zero, and the OP strain trivially responds to

perturbations, e.g. stress and local disorder, which is certainly not true. One

can explicitly account for the compatibility constraint by appending it to the

free energy via a Lagrange multiplier. Then the non-OP strain components can

be expressed in terms of OP strain components by minimizing the free energy.

This procedure results in an anisotropic, long-range interaction between the OP

strain(s) as shown below.

In d-dimensions (d = 1, 2, 3) the displacement field has d independent

components at any point x, whereas a symmetric strain tensor nominally has

d(d + 1)/2 independent components. Because the strain tensor is composed

of derivatives of a vector field, there must be relations or constraints among

its components, so that all components cannot vary in arbitrary ways. In the

approximation of "geometrical linearity" these constraints are expressed by the

Saint-Venant compatibility relation [17-19]. The components of the Lagrangian
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Figure 1 – The three deformations of a square lattice and associated strain tensor com-

ponents: e1 (dilatation), e2 (deviatoric) and e3 (shear).

strain tensor in two (or three) dimension are defined by

εij = 1

2

(
ui,j + uj,i + uk,iuk,j

)
, (1)

where ui,j = ∂ui/∂xj are the derivatives of the displacement vector with respect

to material coordinates xj in a Cartesian frame. The last term in the above equa-

tion (with summation over k implied) refers to “geometrical non-linearity” in

strain and is important for finite strain deformations and lattice rotation. How-

ever, in most martensitic transitions of interest the strain is usually less than 10%

and the last term can be neglected. In this approximation of geometrically linear

elasticity the compatibility condition (in any dimension) is compactly written

as [17-19] ∇ × (∇ × ↔
ε )T = 0, where T denotes transpose. The zero on the

right hand side indicates no source terms such as arising from dislocations or

disclinations. The “incompatibility” due to such lattice topological defects can

be included by using the Burgers vector (density) on the right hand side of the

equation.

In one dimension there is no compatibility constraint. In two dimensions there

is only one compatibility equation:

εxx,yy + εyy,xx = 2εxy,xy. (2)

There are six (two sets of three each) compatibility equations in three dimensions.

In order to identify the components of the strain tensor that serve as the primary

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



350 MODELING SOLID-SOLID PHASE TRANSFORMATIONS

OP in a structural transition, symmetry methods come very handy (particularly in

three dimensions). Strain corresponds to the center k = 0 of the reciprocal lattice

unit cell (i.e. in Fourier space). That is, it is a variable which does not break

translation symmetry of the lattice. For a square lattice we find three symmetry-

adapted strains [8,20], namely dilatation (e1), deviatoric or rectangular (e2) and

shear (e3) strains defined as:

e1 = 1√
2

(εxx + εyy), (3a)

e2 = 1√
2

(εxx − εyy), (3b)

e3 = εxy, (3c)

which are depicted in Fig. 1.

The compatibility condition in these variables is

∇2e1(r) − √
8∇x∇ye3(r) = (∇2

x − ∇2
y

)
e2(r). (4a)

In Fourier space, with periodic boundary conditions, it reads

k2e1(�k) − √
8kxkye3(�k) = (k2

x − k2
y)e2(�k), (4b)

where �k = (kx, ky) is the wavevector. The free energy functional for the square

to rectangle transition is given by

F =
∫

d�r[felastic + fload

]
, (5)

where

felastic = A1

2
e2

1 + A3

2
e2

3 + flocal(e2) + K2

2
(∇e2)

2. (6)

Since e2 is the order parameter for this transition,

flocal(e2) = A2

2
e2

2 + B

4
e4

2 + C

6
e6

2. (7)

Here A1, A2 and A3 denote the bulk modulus, deviatoric modulus and the shear

modulus, respectively, and are a combination of second order elastic constants.
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A2 varies linearly with temperature near the transition. The parameters B and

C are related to higher order elastic constants and K2 is the strain gradient

coefficient and determines the energy cost of creating a domain wall (i.e., twin

boundary).

These free energy parameters can be determined from the thermodynamic,

structural and vibrational experimental data for a material. However, micro-

scopic modeling such as electronic structure calculations and molecular dynam-

ics simulations (based on atomistic potentials) can be used to determine the

parameters. This provides a direct bridge between the microscopic length scale

and the mesoscopic Ginzburg-Landau length scale.

Figure 2 – The triple well, local Landau free energy as a function of temperature.

In Fig. 2 we show the variation of the local part of the Landau free energy,

flocal(e2), as a function of temperature. Above the transition temperature there

is only one global minimum at zero strain corresponding to the square lattice.

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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As the temperature is decreased two (symmetric) local minima appear at finite

strain value. At the critical temperature there are three degenerate minima, i.e.

the square lattice and the two rectangular lattices have the same energy. This

is the first order transition to the martensite phase. Below this temperature the

central minimum first becomes a local minimum and then a local maximum and

the square lattice phase disappears. Only the two degenerate minima at finite

strain corresponding to the two orientations of the rectangular lattice exist. Thus

there will be a twinning between these orientation states.

If we eliminate e1 using the compatibility constraint [8, 21], the harmonic

energy contribution due to compression and shear strains is given by

Fcs =
∫

d�r
[
A1

2
e1(�r)2 + A3

2
e3(�r)2

]

=
∫

d�k
[
A3

2
|e3(�k)|2 + A1

2
|C2(�k)e2(�k) + C3(�k)e3(�k)|2

]
,

(8)

where

C2 = k2
x − k2

y

k2
x + k2

y

C3 =
√

8kxky

k2
x + k2

y

, (9)

implying that kx = ± ky would minimize the elastic energy. Thus, domain

walls will prefer an orientation of ± π/4. Equation (8) represents an anisotropic

long-range interaction between the e2 and e3 strains. A uniaxial external stress

σ (applied along the x-axis) couples to strain as follows:

fload = −σεxx = − σ√
2
(e1 + e2) . (10)

3 Pseudoelastic behavior

We first illustrate through an example the use of the local free energy discussed

in the previous section. We can understand the pseudoelastic behavior (i.e.

mechanical hysteresis but no residual strain when the high temperature austenite

phase is subjected to an external stress) based on the triple well, local Landau

free energy for a single crystal. In the absence of external stress the free energy

is symmetric and has a global minimum at zero strain and an inflection point

at a finite strain. As an external stress is applied (it couples linearly to strain),
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the free energy becomes asymmetric and the global minimum starts shifting to

finite strain values (Fig. 3, left panel). This corresponds to an (almost) linear

increase in the stress-strain curve (Fig. 3, right panel). With increasing stress

the inflection point first becomes a local minimum (at a finite strain) and then at

a critical stress it becomes degenerate with the previously global minimum and

eventually becomes the global minimum. This corresponds to the plateau region

in the stress-strain curve.

Free energy minima ( loading): pseudoelastic

F

StrainStrain Strain

S
(M

P
a)

Figure 3 –Variation of the local free energy (above the martensitic transition temperature)

as a function of applied load (left panel). Stress-strain response showing a pseudoelastic

behavior (right panel).

If we now start unloading the crystal, the global minimum starts becoming

shallower. This corresponds to the (almost) linear decrease in the stress-strain

curve. At certain stress the global minimum becomes degenerate with the other

minimum (near zero strain). This is related to the lower plateau in the hysteresis

curve. Upon further unloading this minimum becomes local and eventually

an inflection point. This is related to the linear decrease toward zero strain

in the stress-strain curve. Thus, there is no residual strain despite a hysteretic

loading-unloading cycle. Indeed, the simple free energy is able to capture the

pseudoelastic behavior above the martensitic temperature.

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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4 The Landau model for a polycrystal

The free energy functional for a polycrystal is written as F = Fgrain +Felastic +
Fload , where Fgrain is the free energy density due to the orientational degrees of

freedom of the polycrystal, Felastic represents the elastic free energy and Fload

is the free energy contribution due to an external applied load. The polycrys-

talline system is described by a set of Q non-conserved order parameters [15]

(η1, η2, . . . , ηQ). In a grain growth process the grains can grow at the expense

of each other and thus the order parameter is not conserved. A given grain ori-

entation corresponds to one of the Q order parameters being positive nonzero

while the rest are zero. The free energy Fgrain is given by

Fgrain =
∫

d�r
{

Q∑
i=1

[
a1

2
η2

i + a2

3
η3

i + a3

4
η4

i

]

+a4

2

Q∑
i=1

Q∑
j>i

η2
i η

2
j +

Q∑
i=1

K

2
(∇ηi)

2

⎫⎬
⎭ .

(11)

For a1, a2 < 0 and a3, a4 > 0, the first two terms in equation (11) describe a

potential with Q degenerate minima corresponding to Q grain orientations. The

gradient energy (K > 0) represents the energy cost of creating a grain boundary.

It is also possible to associate an orientational field θ(�η, �r) with Q orientations

between 0 and θm, where

θ(�η, �r) = θm

Q − 1

[∑Q
i=1 iηi∑Q
i=1 ηi

− 1

]
. (12)

Thus, there are Q orientations between 0 and a maximum angle θm. As an

example, for the Q = 5 case used in simulations below the five minima at

(η0, 0, 0, 0, 0), (0, η0, 0, 0, 0), (0, 0, η0, 0, 0), (0, 0, 0, η0, 0) and (0, 0, 0, 0, η0)

correspond to θ = 0◦, θ = θm/4, θ = θm/2, θ = 3θm/4 and θ = θm. For

the elastic free energy the linearized strain tensor in a global reference frame is

defined by εij = (ui,j + uj,i)/2 (i = 1, 2; j = 1, 2), where ui represents ith

component of the displacement vector and ui,j is its j th displacement gradient.

For illustration, we again consider a two dimensional square lattice and use

the symmetry-adapted linear combinations of the strain tensor defined as [8, 20]
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ε1 = (εxx + εyy)/
√

2, ε2 = (εxx − εyy)/
√

2 and ε3 = εxy . To generalize this

theory for a polycrystal, the strain tensor in a rotated frame is calculated as

R(θ(�η))
↔
ε RT (θ(�η)), where R(θ(�η)) is a rotation matrix. Using this transforma-

tion, the elastic free energy for a square to rectangular transition (with e2 as the

elastic order parameter) in a global frame of reference is

Felastic =
∫

d�r
{

A1

2
e2

1 + A2

2
e2

2 + A3

2
e2

3 + fnl(e2) + K2

2
(∇e2)

2

}
, (13)

where e1, e2, e3 are defined as

e1 = ε1 (14a)

e2 = ε2 cos
[
2θ(�η)

] + √
2ε3 sin

[
2θ(�η)

]
, (14b)

e3 = −(1/
√

2)ε2 sin
[
2θ(�η)

] + ε3 cos
[
2θ(�η)

]
. (14c)

The orientation field θ(�η) is determined from the minima of free energy in (11)

using (12). Here A1 = C11 + C12, A2 = C11 + C12 and A3 = 4C44, where

C11, C12 and C44 are the elastic constants for a crystal with square symme-

try. K2 is the appropriate gradient coefficient that in principle can be obtained

from experimentally measured phonon dispersion data. The term fnl(e2) =
(Be4

2 +Ce6
2) represents the nonlinear part of the elastic free energy and is crucial

in describing (first order) structural phase transitions.

Here our goal is to simulate a uniaxial loading experiment. If we choose

the x-axis to be the loading direction, the free energy contribution
[
Fload =∫

d�r σεxx = − ∫
d�r σ (1/

√
2) (ε1 + ε2)

]
due to the external load (σ ) is

Fload = −
∫

d�r σ√
2

(
e1 + e2 cos [2θ(�η)] − √

2e3 sin [2θ(�η)]) . (15)

Again, the strains ε1, ε2 and ε3 are not independent but satisfy a compatibility

relationship [18]:

∇2ε1 −
(

∂2

∂x2
− ∂2

∂y2

)
ε2 − √

8
∂2

∂x∂y
ε3 = 0.

Invoking the method introduced above for single crystal martensitic transfor-

mations [8], the strain ε1 may be eliminated using compatibility, to express the
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effective free energy Feff = Felastic + Fload as

Feff = A1

2

∫
d�k

[
C2

2(
�k)|�2(�k)|2 + C2

3(
�k)|�3(�k)|2

+ C2(�k)C3(�k)[�3(�k)�2(−�k) + �3(−�k)�2(�k)]
]

+
∫

d�r
[
A2

2
e2

2 + A3

2
e2

3 + fnl(e2) + K2

2
(∇e2)

2

− σ√
2
(e2 cos[2θ(�η)] − √

2e3 sin[2θ(�η)]
]

,

(16)

where �2(�k), �3(�k) represent Fourier transforms of

e2 cos[2θ(�η)] − √
2e3 sin[2θ(�η)] and e2 sin[2θ(�η)]/√2 + e3 cos[2θ(�η)]

respectively, C2(�k) = (k2
x − k2

y)/(k
2
x + k2

y) and C3(�k) = √
8kxky/(k

2
x + k2

y). The

long-range terms ensure that compatibility is satisfied within the grains as well

as at the grain boundaries.

The dynamics of the grains is given by Q equations

∂ηi

∂t
= −γη

δF

δηi

, (17)

where γη is a dissipation coefficient and i = 1, . . . , Q, correspond to Q grain

orientations. The corresponding overdamped dynamics for the strains is

∂e2

∂t
= −γ2

[
δF

δe2

]
,

∂e3

∂t
= −γ3

[
∂F

δe3

]
, (18)

where γ2 and γ3 are the appropriate dissipation coefficients for the strains and

F = Fgrain + Feff is the total free energy of the polycrystal.

5 Simulated microstructure and constitutive response

We choose FePd parameters [21] for which A1 = 140 GPa, A3 = 280 GPa,

B = −1.7 × 104 GPa and C = 3 × 107 GPa. FePd undergoes a face-centered

cubic to face-centered tetragonal martensitic transition around ∼ 265 K. In two

dimensions this transition can be mimicked by the square to rectangle transition

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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modeled above. The temperature dependent elastic constant A2 undergoes a

softening and hence controls the square to rectangle transformation. Muto et al.

[22] have measured the elastic constants of FePd as a function of temperature.

For the parameters in fgrain we choose (for illustrative purposes) a1 = −10 GPa,

a2 = −10 GPa, a3 = 10 GPa, a4 = 20 GPa, Q = 5 (i.e., five different grain ori-

entations) and θm = 30◦. Here, we also need to specify the grain boundary energy

coefficient K and the strain gradient coefficient K2. For FePd, the strain gradi-

ent coefficient [21] has been measured to be K2/a
2
0 = 25 GPa, where a0 is the

lattice spacing of the crystal. The grain boundary energy coefficient is chosen as

K/a2
0 = 1014 GPa. The lengths are scaled by �r = (100a0)�ζ . For a homogeneous

single crystal, using these parameter values, the free energy in equation (11) has

5 degenerate minima defined by θ0(�η) = 0◦, 7.5◦, 15◦, 22.5◦, 30◦, correspond-

ing to five grain orientations. Equations (17) and (18) are solved numerically

to simulate the domain structures and mechanical properties. For simplicity, we

assume γη = γ1 = γ2 = γ and use rescaled time defined by t∗ = t (1010γ ).

An initial polycrystalline configuration is first generated by solving equa-

tions (17) and (18) for a 12800a0 × 12800a0 system with periodic boundary

conditions, starting from random initial conditions. A grain growth process is

simulated with σ = 0 in the austenite phase so that all components of the strain

tensor vanish. Grains with the above five orientations θ0(�η) form and start coars-

ening. We arrest the system in a given polycrystalline configuration by abruptly

changing the value of the parameter a1 from −10 GPa to −160 GPa (the pa-

rameter A2 is also changed so that the system is in the desired phase). This

sudden decrease in a1 increases the free energy barriers between the crystalline

states and the growth stops. We consider the case A2 = −2 GPa. For a homo-

geneous system, the local part of the transformation free energy felastic(e2) for

A2 = −2 GPa has a local maximum at e2 = 0 and two degenerate global minima.

In the absence of applied stress (σ = 0), the arrested polycrystal evolves into

a domain pattern of the variants of the martensitic phase (there is no austenite

present since e2 = 0 is unstable). The strains in each grain as well as the orienta-

tion of the martensitic domain walls (i.e. twin boundaries) are determined by the

orientation of the grain. This behavior is clear from (the left panels of) Fig. 4 that

shows the distribution of the strain ε2(�r) (deviatoric strain relative to the global

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



358 MODELING SOLID-SOLID PHASE TRANSFORMATIONS

frame of reference). We do not show the corresponding local orientation field

θ(�η(�r)). The domain walls are oriented at angles θ(�η)+π/4 or θ(�η)−π/4. The

average strains for this configuration are very small and correspond to a system

with no macroscopic deformation. The single crystal microstructure is shown in

the right panels (a), (b), (d) and (f).

Figure 4 – Stress-strain response for the loading-uncloading cycle for a single crystal

(right curve) and a polycrystal (left curve). The associated microstructure at various

points during the loading cycle is also shown.

To simulate mechanical loading, an external tensile stress σ is applied quasi-

statically, i.e., starting from the unstressed polycrystal configuration of left

panel (a), the applied stress σ is increased in steps of 5.13 MPa, after allow-

ing the configurations to relax for t∗ = 25 time steps after each increment. The

loading is continued till a maximum stress of σ = 200 MPa is reached in the left

panel (e). Thereafter, the system is unloaded by decreasing σ to zero at the same

rate at which it was loaded; see the left panel (g). Panel (c) relates to a stress

level of σ = 46.15 MPa during the loading process. The favored variants (lighter

domains in the left panel) have started to grow at the expense of the unfavored

variants (darker domains in the left panel). The orientation distribution θ(�η(�r))
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does not change much. As the stress level is increased further, the favored vari-

ants grow. Even at the maximum stress of 200 MPa, some unfavored variants

persist, as is clear from panel (e).

We note that the grains with large misorientation with the loading direction

rotate. Grains with lower misorientation do not undergo significant rotation.

The mechanism of this rotation is the tendency of the system to maximize the

transformation strain in the direction of loading so that the total free energy is

minimized. Within the grains that rotate, sub-grain bands with slightly higher

values of the orientation θ(�η(�r)) are present. These bands correspond to the

unfavored strain variants that still survive. Panel (g) depicts the situation after

unloading to σ = 0. Upon removing the load, a domain structure is nucleated

again due to the local strains at the grain boundaries and the surviving unfavored

variants in the loaded polycrystal configuration in panel (e). This domain struc-

ture is not the same as that prior to loading, see panel (a), and thus there is an

underlying hysteresis. The unloaded configuration has non-zero average strain.

This average strain is recovered by heating to the austenite phase, as per the shape

memory effect. The corresponding orientation distribution (not shown) reverts

to its preloading state as the grains rotate back when the load is removed.

We compare the above mechanical behavior of the polycrystal to the cor-

responding single crystal (right panels and the right stress-strain curve). The

residual strain for the polycrystal (∼ 0.7%) is smaller than that for the single

crystal (∼ 1.8%) due to nucleation of domains at grain boundaries upon unload-

ing. In addition, the transformation in the stress-strain curve for the polycrystal

is not abrupt because the response of the polycrystal is averaged over all grain

orientations.

6 Conclusion

We have proposed a multiscale, Ginzburg-Landau model framework to study

the constitutive response of shape memory single crystals as well as polycrys-

tals. We discussed the role of elastic compatibility constraint and the anisotropic

long-range interaction it leads to within the strain based formalism. The simple

triple well, local free energy has been shown to lead to a pseudoelastic behav-

ior. As an illustrative example, we have coupled the elastic free energy for a

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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square lattice to rectangle lattice transition to a phase-field model describing

crystal orientations. We studied mechanical properties of shape memory poly-

crystals and compared it with a single crystal. There are significant differences

between the mechanical response of single crystals and polycrystals. Since the

mechanical properties of the polycrystal are an average of individual grains, the

stress-strain curves are smoother compared to those of the single crystals. The

inhomogeneities in the polycrystal ensure that domain walls influence the me-

chanical behavior throughout the loading-unloading process. In the temperature

regimes with nonzero residual strain, the unloaded polycrystals not only have

reduced strain but also show domain microstructure. In contrast, the simulated

defect free single crystals exhibit no such patterns after unloading and therefore

have much higher residual strains. This finding is consistent with the fact that

polycrystals have poor shape memory properties in comparison to single crystals

[9,23,24]. We also note that measurements of texture evolution upon loading in a

shape memory alloy (namely NiTi) have been recently reported [25]. Finally, we

emphasize that the mesoscopic Ginzburg-Landau model provides a link with the

microscopic length scales through the free energy expansion parameters and a

link with the macroscopic length scales via the polycrystal constitutive response.
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