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Abstract. In this paper, an efficient method is presented for solving two dimensional Fred-

holm and Volterra integral equations of the second kind. Chebyshev polynomials are applied to

approximate a solution for these integral equations. This method transforms the integral equation

to algebraic equations with unknown Chebyshev coefficients. The high accuracy of this method

is verified through some numerical examples.
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1 Introduction

Two dimensional integral equations provide an important tool for modeling a

numerous problems in engineering and science [2, 12]. These equations appear

in electromagnetic and electrodynamic, elasticity and dynamic contact, heat and

mass transfer, fluid mechanic, acoustic, chemical and electrochemical process,

molecular physics, population, medicine and in many other fields [6, 7, 8, 14,

18, 20].

The Nystrom method [10] and collocation method [3, 21] are the most impor-

tant approaches of the numerical solution of these integral equations. Recently,
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some new methods such as differential transform method are applied for solv-

ing two dimensional linear and nonlinear Volterra integral equations [1, 5, 19].

In this work, we will apply the Chebyshev polynomials for solving two dimen-

sional integral equations of second kind. The use of the Chebyshev series for

the numerical solution of linear integral equations has previously been discussed

in [17] and references therein. The privilege of the method is simplicity and

spectral accuracy [4, 11]. The examples confirm that the method is considerably

fast and highly accurate as sometimes lead to exact solution. Also, this method

lead to continuous solution covering all the domain.

The paper is organized in the following way. In Section 2 the famous Cheby-

shev polynomials and its application are introduced [16]. In Section 3 the method

of solution of the linear two dimensional integral equation of second kind is

described. In Section 4 we will try to generalize this method for nonlinear

cases. In Section 5 some examples are chosen to show the ability and high

accuracy of the method.

2 Chebyshev polynomials

Definition 1. If t = cos θ (0 6 θ 6 π), the function

Tn(t) = cos(nθ) = cos(n arccos t), (1)

is a polynomial of t of degree n(n = 0, 1, 2, . . .). Tn is called the Chebyshev

polynomial of degree n [16]. When θ increase from 0 to π , t decrease from 1

to −1. Then the interval [−1, 1] is domain of definition of Tn(t). It satisfies the

orthogonality condition

∫ 1

−1

Tn(x)Tm(x)√
1 − x2

=






0, n 6= m,
π

2
, n = m 6= 0,

π, n = m = 0

(2)

Remark 1 (Chebyshev series expansion). Let be g(x) a function on [a, b].

For a given arbitrary natural number M , Chebyshev series expansion of g(x)

have the form

g(x) '
M∑

k=0

ak Tk

(
2

b − a
x −

b + a

b − a

)
, x ∈ [a, b], (3)
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where

ak =
2

πck

∫ 1

−1

g
(

b−a
2 x + b+a

2

)
Tk(x)

√
1 − x2

dx, k = 1, 2, ∙ ∙ ∙ ,M. (4)

and

ck =






2, k = 0,

1, k ≥ 1.
(5)

Definition 2. Suppose f (x, t) be a continuous function on [−1, 1] × [−1, 1].

For a given natural number N, we set

f (x, t) ≈
N∑

i=0

N∑

j=0

ai j Ti (x)Tj (t), (x, t) ∈ [−1, 1] × [−1, 1], (6)

where

ai j =

〈
Ti (x),

〈
f (x, t), Tj (t)

〉〉

〈Ti (x), Ti (x)〉 .
〈
Tj (t), Tj (t)

〉 , (7)

and 〈∙ , ∙〉 denotes the inner product in function space L2([−1, 1] × [−1, 1]).

Remark 2. This paper discusses using Chebyshev polynomials of the first

kind to approximate functions on finite interval, that is, on the interval [−1, 1].

Practically, other polynomials, which are orthogonal on finite interval, can also

be applied for approximating functions. But the partial sums of a first-kind

Chebyshev expansion of a continuous function in [−1, 1] cover faster than the

partial sums of an expansion in any other orthogonal polynomials [16].

3 Solution of linear two dimensional integral equation

Consider the two dimensional linear Fredholm and Volterra integral equations

as follows

u(x, t)−
∫ 1

−1

∫ 1

−1
k(x, t, y, z)u(y, z)dydz = f (x, t),

(x, t) ∈ [−1, 1] × [−1, 1],

(8)
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and

u(x, t)−
∫ t

−1

∫ x

−1
k(x, t, y, z)u(y, z)dydz = f (x, t),

(x, t) ∈ [−1, 1] × [−1, 1],

(9)

where u(x, t) is an unknown scalar-valued function, f (x, t) and k(x, t, y, z)

are continuous functions on [−1, 1]2 and [−1, 1]4 respectively. For the case

which integration domain is [a, b] × [c, d], we can use suitable change of vari-

able to obtain these intervals.

At first, we consider two dimensional linear Fredholm integral equations are

defined in (4). Function u(x, t) defined over [−1, 1] × [−1, 1] may be rep-

resented by Chebyshev series as

u(x, t) =
∞∑

i=0

∞∑

j=0

ai j Ti (x)Tj (t), (x, t) ∈ [−1, 1] × [−1, 1]. (10)

If the infinite series in (6) is truncated, then (6) can be written as

u(x, t) ≈ uN (x, t) =
N∑

i=0

N∑

j=0

ai j Ti (x)Tj (t), (11)

where N is any natural number. The method of collocation solves the (4) using

the approximation (7) through the equations

RN (xr , ts) = uN (xr , ts)−
∫ 1

−1

∫ 1

−1
k(xr , ts, y, z)uN (y, z)dydz

− f (xr , ts) = 0,

(12)

for Gauss-Chebyshev-Lobatto as collocation points [16]





xr = cos
(rπ

N

)
, r = 0, 1, . . . , N ,

ts = cos
(sπ

N

)
, s = 0, 1, . . . , N .

(13)

The interested reader can see more detail of collocation method in [3, 4, 11].

Similarly, function k(xr , ts, y, z) can be expressed as truncated Chebyshev

series in the following form

k(xr , ts, y, z) ≈ kM(xr , ts, y, z) =
M∑

p=0

M∑

q=0

k(r,s)pq Tp(y)Tq(z), (14)
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for any natural number M . From (3) we have

k(r,s)pq =
4

π2cpcq

∫ 1

−1

∫ 1

−1

k(xr , ts, y, z)
√

1 − y2
√

1 − z2
Tp(y)Tq(z)dydz, (15)

where

cp =






2 p = 0,

1 p ≥ 1.

By using Gauss-Chebyshev-Lobatto integration rule [13], for a given natural

number n we have

k(r,s)pq =
4

n2cpcq

n∑′′

ξ=0

n∑′′

η=0

k
(

xr , ts, cos
ξπ

n
, cos

ηπ

n

)
cos

(
pξπ

n

)
cos

(qηπ

n

)
, (16)

where double prime denotes that the first and the last terms are halved. Now, by

substituting (7) and (10) into (8) we obtain

N∑

i=0

N∑

j=0

ai jψ
rs
i j − f (xr , ts) = 0. (17)

where

ψrs
i j = Ti (xr )Tj (ts)−

M∑

p=0

M∑

q=0

k(r,s)pq

(∫ 1

−1

∫ 1

−1
Ti (y)Tj (z)Tp(y)Tq(z)dydz

)
.

We define

b(r,s)i j = Ti (xr )Tj (ts), (18)

frs = f (xr , ts), (19)

and

w(i, j)
pq =

(∫ 1

−1
Ti (y)Tp(y)dy

)(∫ 1

−1
Tj (z)Tq(z)dz

)
. (20)

But the Chebyshev polynomials are even for even degree and odd for odd

degree. Hence,

∫ 1

−1
Ti (x)Tp(x)dx =






1

1 − (i + p)2
+

1

1 − (i − p)2
i + p is even,

0 i + p is odd.
(21)
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So, from (13), (14), (15) and (16) we can obtain the system of linear equations,

N∑

i=0

N∑

j=0

ai j w̃
(r,s)
i j = frs, r, s = 0, 1, 2, . . . , N , (22)

where w̃(r,s)i j is computed by the following relation

w̃
(r,s)
i j = b(r,s)i j −

M∑

p=0

M∑

q=0

k(r,s)pq w(i, j)
pq , i, j = 0, 1, . . . , N . (23)

Clearly, the obtained system contains (N + 1)2 equations in the same number as

unknowns. It can be solved by Newton’s iteration method to obtain the value of

ai j such that i, j = 0 . . . N .

For the Volterra case, this method is valid. We just change (16) with the fol-

lowing equation

w(i, j,r,s)
pq =

(∫ xr

−1
Ti (y)Tp(y)dy

)(∫ ts

−1
Tj (z)Tq(z)dz

)
, (24)

so that, if let

τi p(x) =
∫ x

−1
Ti (y)Tp(y)dy,

we will have

τi p(x) =
1

4






2x2 − 2

Ti+p+1(x)

i + p + 1
−

Ti+p−1(x)

i + p − 1
−

1

i + p + 1
+

1

i + p − 1
+ x2 − 1

Ti+p+1(x)

i + p + 1
+

T1−i−p(x)

1 − i − p
+

T1+i−p(x)

1 + i − p
+

T1−i+p(x)

1 − i + p

+
2

1 − (i + p)2
+

2

1 − (i − p)2

Ti+p+1(x)

i + p + 1
+

T1−i−p(x)

1 − i − p
+

T1+i−p(x)

1 + i − p
+

T1−i+p(x)

1 − i + p

−
2

1 − (i + p)2
−

2

1 − (i − p)2

when respectively i + p = 1, | i − p |= 1, i + p is even and i + p is odd.
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4 Solution of nonlinear two dimensional integral equation

Consider the two dimensional nonlinear Fredholm and Volterra integral equa-

tions as follows

u(x, t)−
∫ 1

−1

∫ 1

−1
k(x, t, y, z)F(u(y, z))dydz = f (x, t),

(x, t) ∈ [−1, 1]2,

(25)

and

u(x, t)−
∫ t

−1

∫ x

−1
k(x, t, y, z)F(u(y, z))dydz = f (x, t),

(x, t) ∈ [−1, 1]2,

(26)

where k(x, t, y, z) is continuous on [−1, 1]4, and f (x, t) and F(u(y, z)) are

continuous on [−1, 1]2. Again, for the case which integration domain is [a, b]×

[c, d], we can use suitable change of variable to obtain this intervals.

Before solving the above equations we exchange them with following equa-

tions. The other cases can be approximated in this form using Taylor extension.

It reduce the related computation effectively.

u(x, t)−
∫ 1

−1

∫ 1

−1
k(x, t, y, z) [u(y, z)]p dydz = f (x, t),

(x, t) ∈ [−1, 1]2,

(27)

and

(x, t)−
∫ t

−1

∫ x

−1
k(x, t, y, z) [u(y, z)]p dydz = f (x, t),

(x, t) ∈ [−1, 1]2,

(28)

where p is a positive integer number and p ≥ 2. Correspondingly the linear

case, by using (7) and (24) and considering collocation points we have

uN (xr , ts)−
∫ 1

−1

∫ 1

−1
k(xr , ts, y, z)[uN (y, z)]pdydz − f (xr , ts) = 0. (29)

Now, we replace (10) into above equation and if we let

νpq =
∫ 1

−1

∫ 1

−1
Tp(y)Tq(z)[uN (y, z)]pdydz, (30)
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we have

N∑

i=0

N∑

j=0

ai j Ti (xr )Tj (ts)−
M∑

p=0

M∑

q=0

k(r,s)pq νpq = f (xr , ts),

r, s = 0, 1, . . . , N .

(31)

This is a system of algebraic equations with (N + 1) unknowns and (N + 1)

equations which can be solved by Newton’s iteration method to obtain the value

of ai j such that i, j = 0 . . . N .

In Volterra case, we let ν̃(r,s)pq instead of νpq in (29)

N∑

i=0

N∑

j=0

ai j Ti (xr )Tj (ts)−
M∑

p=0

M∑

q=0

k(r,s)pq ν̃(r,s)pq = f (xr , xs),

r, s = 0, 1, . . . , N ,

(32)

where

ν̃(r,s)pq =
∫ xr

−1

∫ ts

−1
Tp(y)Tq(z)[uN (y, z)]pdydz. (33)

We remind

[uN (x, t)]p =
pN∑

i=0

pN∑

j=0

di j Ti (x)Tj (t), (34)

where di j is linear or nonlinear combination of ai j . Hence, we can calculate

easily νpq and ν̃(r,s)pq by (17) and (21).

Remark 3. In case F(u(x, t)) is strongly nonlinear, the Taylor series can be

used to approximate F(u(x, t)) as a polynomial in u(x, t). Then the above

method can be applied easily for general cases (25) and (26).

5 Numerical results

In this section, the illustrate examples are given to show efficiency the method

proposed in Sections 3 and 4. All of the computations have been done using the

Maple 12 with just 10 digits precision. In this study, our criterion of accuracy

is the maximum absolute error in relevant intervals. In the other word, we

investigate the value of infinity norm of error functions.
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5.1 Linear examples

For the following cases, we let M = 6 and n = 15.

Example 1. Consider the following Fredholm integral equation

u(x, t)−
∫ 1

−1

∫ 1

−1
(z sin x + t y)u(y, z)dydz

= x cos t +
4

3
sin x −

(
1 +

4

3
sin(1)

)
t, x, t ∈ [−1, 1],

with exact solution

u(x, t) = x cos t − t.

By using (18) we obtain approximate solution

uN (x, t) = 1.000000001x − 1.000000002t − 0.4999999824xt2

− 1.702672594 × 10−8x2t + ∙ ∙ ∙ − 3.416035551 × 10−7x8t7

+ 0.000000000x8t8.

The maximum absolute errors are shown in Table 1 for N = 3, 5 and 8. Also

you can see Figure 1(a).

Example N = 3 N = 5 N = 8

1. 1.1×10−2 8.7×10−5 2.4×10−9

2. 4.2×10−4 8.8×10−7 9×10−9

3. 1.2×10−2 8.9×10−5 2.1×10−8

4. 3.2×10−4 6.4×10−7 8×10−10

Table 1 – Maximum absolute errors are presented for Example 1, 2, 3 and 4.

Example 2. Consider the following Fredholm integral equation

u(x, t)−
∫ 1

0

∫ 1

0
(xy + tez)u(y, z)dydz

= xe−t +
(

1

3
e−1 −

7

12

)
x −

1

2
t x, t ∈ [0, 1],
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with exact solution u(x, t) = xe−t + t . By using (18) we have

uN (x, t) = 1.000000001x + 0.9999999972t − 0.999995432xt

+ 0.4999883358xt2 + ∙ ∙ ∙ + 0.02307911926x8t8.

(a)

(b)

Figure 1 – The error functions of Example 1 and 2 from top to bottom are presented

respectively. These examples show the efficiency of the method for Fredholm integral

equations.
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The maximum absolute errors are presented in Table 1 for N = 3, 5 and 8. Also

you can see Figure 2(a).

Example 3. Consider the following Volterra integral equation

u(x, t)−
∫ t

−1

∫ x

−1
(x2 y2 + zet)u(y, z)dydz = f (x, t) x, t ∈ [0, 1],

where

f (x, t) = e−t

(
x −

1

4
x2 +

1

4
x6

)
−

1

4
ex6 +

(
1

4
e +

1

2

)
x2 +

1

2
x2t −

1

2
t −

1

2
,

and exact solution is u(x, t) = xe−t . By applying (18) and considering (20) we

obtain approximate solution as follows

uN (x, t) = 1.000000000x − 0.9999998304xt + 0.4999999899xt2

+ ∙ ∙ ∙ − 5.678168292 × 10−8x8t8.

The maximum absolute errors are shown in Table 1 for N = 3, 5 and 8. Also

you can see Figure 1(a).

Example 4. Consider the following Volterra integral equation [19]

u(x, t)−
∫ t

0

∫ x

0
(xy2 + cos z)u(y, z)dydz

= x sin t −
1

4
x5 +

1

4
x5 cos t −

1

4
x2(sin t)2 x, t ∈ [0, 1],

with exact solution u(x, t) = x sin t . By applying (18) and considering (20) we

obtain approximate solution as follows

uN (x, t) = .9999999216xt + 0.0000016358xt2 + 0.0000013773x2t

+ ∙ ∙ ∙ + 0.0040792670x8t8.

The numerical results are shown in Table 1 are computed errors. Also you can

see Figure 2(b).

In Table 1 we investigate the above examples and shows the maximum abso-

lute error. The numerical results shows high accuracy even for small N .
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(a)

(b)

Figure 2 – The error functions of Example 3 and 4 from top to bottom are presented

respectively. These examples confirm the efficiency of the method for Volterra integral

equations.

Also, comparison between estimated absolute errors of Example 4 for N = 8

using presented method and differential transform method [19] are illustrated

in Table 2. The results show more accuracy and smoother error function by

described method.
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(x, t) N = 8 (differential transform method) N = 8 (presented method)

(.2, .2) 2.820844 × 10−13 2.727401 × 10−11

(.2, .8) 7.354498 × 10−8 5.479929 × 10−10

(.4, .6) 1.107230 × 10−8 2.279254 × 10−12

(.4, 1) 1.092336 × 10−6 3.049593 × 10−10

(.6, .2) 8.462531 × 10−13 4.405731 × 10−10

(.6, .8) 2.206350 × 10−7 3.243791 × 10−10

(.8, .4) 5.770791 × 10−10 7.240839 × 10−10

(.8, .8) 2.941799 × 10−7 2.585837 × 10−10

(1, 6) 2.768074 × 10−8 2.300421 × 10−10

(1, 1) 2.730839 × 10−6 2.773500 × 10−10

Table 2 – Comparison between estimated absolute errors of Example 4 for N = 8 using

presented method and differential transform method [19]. The results show more accuracy for

described method.

5.2 Nonlinear examples

Example 5. Consider the following Fredholm integral equation

u(x, t)−
∫ 1

0

∫ 1

0
(y + z)[u(y, z)]2dydz

= x cos t −
1

8
−

7

24
cos(1) sin(1)−

1

12
[cos(1)]2,

where x, t ∈ [0, 1] and exact solution is u(x, t) = x cos t . If we let M = 1,

N = 6 and n = 15, by considering (29) we obtain approximate solution as

follows

uN (x, t) = 1.000000000x − 4.895686000 × 10−7xt − .4999882352xt2

− ∙ ∙ ∙ + 0.000000000x6t6.

Also, the value of infinity norm of error function is 2.3 × 10−8.

Example 6. Consider the following Volterra integral equation [9]

u(x, t)−
∫ t

0

∫ x

0
[u(y, z)]2dydz

= x2 + t2 −
1

45
xt (9x4 + 10x2t2 + 9t4) x, t ∈ [0, 1],
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Figure 3 – The error function of Example 5 is shown. This example confirms the effi-

ciency of the method for nonlinear integral equations.

In this case, we let M = 1, N = 2 and n = 15. By considering (30) and solving

the obtained system we have

a00 =
3

4
, a01 =

1

2
, a02 =

1

8
,

a10 =
1

2
, a11 = 0, a12 = 0,

a20 =
1

8
, a21 = 0, a22 = 0.

The values of ai j lead to u(x, t) = x2 + t2 which is the exact solution.

6 Conclusion

Analytical solution of the two dimensional integral equations are usually dif-

ficult. In many cases, it is required to approximate solutions. In this work, the

two dimensional linear and nonlinear integral equations of the second kind are

solved by using Chebyshev polynomials through collocation scheme. However

this method only works when F is a power function as (27) and (28), we know

other cases can be rewritten easily in this form using Taylor extension. The priv-

ilege of the method is simplicity and spectrally accuracy [4, 11]. The illustrative
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examples confirm the validity and efficiency of the method. This method can be

extended for the system including such the equations. Also, development of the

method can solve the two dimensional integro-differential equations.
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