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Abstract. The versatility of a robot to perform a task is limited principally by the flexibility

of its end-effector. In the last years, research has been focused on the development of a hand with

several fingers since these devices are capable of manipulating and grasping objects of different

forms. A dexterous manipulation system, composed of a robot hand with several fingers and

an object that will be held or manipulated, could be modeled as a set of rigid bodies in contact.

The dynamics of several rigid bodies in contact tries to predict the accelerations and forces at the

contact points of the set of rigid bodies with Coulomb friction. The calculation of such forces

allows us to determine if the contact is maintained or disappears and to plan a determined action.

The equations that describe the problem form a system of differential algebraic equations. In this

contribution the problem is reformulated as a mixed nonlinear complementarity problem (MNCP).

Then, an optimization problem with box constraints associated to the MNCP is presented using an

adequate merit function. Conditions about the equivalence between the problems are established.

Finally, the optimization problem is solved using a robust and efficient algorithm. Encouraging

numerical results are reported.

Mathematical subject classification: 49M37, 65C20, 90C30, 90C33.
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1 Introduction

Complementarity problems are of great importance in engineering applications
because they are associated to the notion of equilibrium systems [4]. In the last
decades, different types of complementarity problems have been studied: linear,
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nonlinear, mixed, and efficient and robust algorithms have been developed to
solve each of them.

This kind of problems arise in many engineering applications [4], such as
mechanical contact problems, structural mechanics problems, structural design
problems, nonlinear obstacle problems, elastohydrodynamics lubrication prob-
lems, traffic equilibrium problems and optimum control problems, to mention
some.

This work is organized as follows: section 2 presents generalities of the mixed
nonlinear complementarity problem, and section 3 presents both the method
for solving the MNCP via optimization, and existence and uniqueness results.
Section 4, considers a dynamic model for several rigid bodies in contact, the
equations that represent it [8, 9] and from these, the formulation of MNCP.
In section 5 the numerical results for three-fingered hand manipulation system
holding an object are reported. Finally, conclusions and future possibilities to
continue on this research line are presented.

2 Mixed nonlinear complementarity problem

LetF : Rn → R
n be a vectorial function and L and C be index sets that define a

partition of {1, 2, ..., n}. The problem of finding a vector x ∈ � ⊆ R
n such that

FL(x) = 0, xC ≥ 0, FC(x) ≥ 0, xt
CFC(x) = 0, (1)

is called the mixed nonlinear complementarity problem. The variables xC are
the complementarity variables and xL are the free variables that do not satisfy
the complementarity and non negativity conditions.

The set � is defined by

� ≡ {x ∈ Rn : a ≤ x ≤ b},
where a and b are n-dimensional vectors with ai ∈ [−∞, ∞) and bi ∈ (ai , ∞].
If xi is such that i ∈ L then ai = −∞ and bi = ∞, while if i ∈ C then ai = 0
y bi = ∞.

If the set L = ∅ and � = R
n+ = {x ∈ R

n : xi ≥ 0, i = 1, ..., n} then
we recover the nonlinear complementarity problem (NCP), if the functionF(x)

is also affine then it is a linear complementarity problem (LCP). If the set C = ∅
it results in a nonlinear system of equations.

A change in notation is considered, introducing a partition of x , the vectors
u ∈ R

p, v ∈ R
m and a partition of F the vectorial functions F : Rn → R

p,
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and G : Rn → R
m . Slack variables z ∈ R

p are introduced, and the mixed
complementarity problem is expressed as follows,

u, z ≥ 0, z − F(u, v) = 0, ut z = 0, G(u, v) = 0, (2)

where u is the vector of complementarity variables and v is the vector of free
variables, so that the dimension of the complementarity problem is m + 2p.

The mixed nonlinear complementarity problem can be considered as a non-
linear complementarity problem with an extra simultaneous nonlinear equa-
tions system.

3 Solving of the complementarity problem via optimization

In order to reformulate the mixed complementarity problem as an optimization
problem, it is necessary to introduce a merit function f : Rn × Rm × Rp → R.
The optimization problem that is solved is

(P)




min f (u, v, z)
s.t

u ≥ 0, z ≥ 0.

(3)

The advantage of reformulating the MNCP using the aforementioned strategy
is the possibility of applying efficient algorithms and theoretical results known
for optimization problems. In general, the algorithms used to solve optimization
problems obtain stationary points, that is, points that only satisfy the first order
optimality conditions. The convergence to a global minimum can be guaranteed
if the merit function is convex.

Optimization problems have been extensively studied in recent years and many
efficient algorithms exist to find the solutions. To obtain a solution to the mixed
nonlinear complementarity problem (3) with the merit function,

f (u, v, z) = ‖ F(u, v) − z ‖2 + ‖ G(u, v) ‖2 + (ut z)2
, (4)

Andreani, Friedlander, Mello and Santos [1] establish conditions that allow
us to assure that stationary points of (3) with the merit function (4) are also
global minimizers and solutions of the MNCP.

4 Mathematical model of the contact problem

To work with contact problems with friction, a model of surfaces in contact and
bodies in movement is considered.

Comp. Appl. Math., Vol. 25, N. 1, 2006
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The dynamic system is formed by a determined number of passive bodies
called objects and a given number of active bodies called manipulators. The
first ones move in response to external and contact forces. The hypotheses of
the proposed model [7, 8] are:

1. The bodies are rigid. There are no constraints on the shape of the bodies.

2. The normal direction at each contact point is well-defined, this means that
the surface of the passive body has a tangent plane on each contact point.

3. There exists friction at each contact point. A friction model and a friction
law must be selected.

4. The manipulator is formed by links and joints; the manipulator joints do
not form closed loops. Each joint has only one degree of freedom. All
allowed contacts are unilateral.

5. All links are connected to a grounded link (reference coordinate).

The equations and constraints that govern the model are: the Newton-Euler
movement equations, for the objects and manipulators, the unilateral and bi-
lateral kinematic constraints due to the contact, the dynamic conditions of the
contact, that is the non interpenetration principle and non tensile forces, and
the friction law of the contact.

To develop the equations that govern the dynamics of the set of rigid bodies
in contact, it is considered that in a certain instant t0 certain number of objects,
nobj , are in contact among them and with a certain number of manipulators,
nman , being nc the total number of contacts.

Let ci j denote the contact force acting on the body i through contact j expressed
in the contact frame C j , with normal, tangential and orthogonal components
(ci j )n , (ci j )t and (ci j )o. The sum of the forces acting on the body i is equal to
the mass times the acceleration of its mass center and it is expressed as∑

j∈Bi

Wi j ci j + gobj,i + hobj,i = Mobj,i q̈obj,i , (5)

where Bi is the set of indices of the points of contact of the body i , gobj,i ∈ R6

is the external generalized force (expressed in the fixed reference coordinates of
the body Bi ), which acts upon it, hobj,i ∈ R6 is the term of movement quantity,
q̈obj,i ∈ R6 is the generalized linear and angular acceleration of the mass center
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of the object, Mobj,i ∈ R6×6 is the symmetric positive definite mass matrix of
the object i partitioned as:

Mobj,i =
[

M1,i 0
0 M2,i

]
, (6)

with M1,i = mobj,i I3, I3 being the identity matrix, and M2,i the bodie’s inertial
tensor i expressed in the base Bi . The matrix Wi j ∈ R6×3 transforms the contact
forces ci j into a generalized force, Fi j . The wrench matrices Wi j contain all the
geometric information about contact j .

The previous equations extended to all objects, express the contact forces by
components, and the following matrix equation is obtained:

Wn cn + Wt ct + Wo co + gobj + hobj = Mobj q̈obj , (7)

with cα ∈ R
nc , Wα ∈ R

6 nobj ×nc , α ∈ {n, t, o}, the vectors gobj , hobj , q̈obj ∈
R

6 nobj , and Mobj ∈ R6 nobj ×6 nobj is

Mobj = diag{Mobj,1, Mobj,2, ..., Mobj,nobj }. (8)

The dynamics equations for the manipulators are obtained likewise:

τ − (J t
n cn + J t

t ct + J t
o co + gman + hman) = Mman θ̈man, (9)

where, if we call nθ the number of manipulator joints, θ̇man ∈ Rnθ is the velo-
city of the joints, τ ∈ Rnθ is the vector of joint effort, Jn, Jt and Jo ∈ Rnθ×nc

are the Jacobian matrices which determine the effect of the α-th component
of the force (ci j )α over the component α of the vector of joint effort τ , with
α ∈ {n, t, o}, Mman ∈ Rnθ×nθ is the symmetric positive definite inertia matrix,
gman(θman) ∈ Rnθ is the vector of torques induced by gravity, hman(θman, θ̇man) ∈
R

nθ represents the vector of torques and forces induced by Coriolis and centri-
petal accelerations and θ̈man ∈ Rnθ is the vector of joint accelerations.

The motion of each object in contact is subject to kinematic constraints:

vα = W t
αq̇obj − Jαθ̇man, α ∈ {n, t, o}, (10)

aα = W t
αq̈obj − Jαθ̈man + Ẇ t

αq̇obj − J̇αθ̇man, α ∈ {n, t, o}. (11)

where vα ∈ Rnc is the linear velocity and aα ∈ Rnc is the linear acceleration in
the direction α, expressed in the contact frame C j , q̇obj and θ̇man are the vectors
of the velocities of the bodies and manipulators.

Comp. Appl. Math., Vol. 25, N. 1, 2006



84 A MIXED NONLINEAR COMPLEMENTARITY TECHNIQUE

In each contact point j the normal component of the velocity is zero,

v jn = 0, j = 1, ..., nc. (12)

Among the nc contact points, nR denotes the number of rolling contacts and nS
denotes the number of sliding contacts, so that nc = nS + nR. S and R denote
the sets of respective indices.

A rolling contact point is characterized by the fact that both the tangential and
orthogonal components of the velocity at such point are zero, that is

v j t = v jo = 0, j ∈ R, (13)

and a sliding contact point is characterized by the fact that the tangential or
orthogonal components of the velocity at such point is different from zero,

v j t 
= 0 ó v jo 
= 0, j ∈ S. (14)

To avoid interpenetration, the motion of the object is subject to the constraint
known as non penetration principle of Signorini,

an ≥ 0. (15)

The forces on the contact point must have non negative normal components,
this means that they are not tensile,

c jn ≥ 0, j = 1, ..., nc. (16)

For any contact point j , if (an) j = 0 the contact is maintained and (cn) j ≥ 0,
whereas if (an) j > 0 the contact disappears (breaking) and (cn) j = 0.

Considering (15) and (16) relating the accelerations and the forces of the con-
tact points, the complementarity constraint is established,

at
ncn = 0. (17)

To grasp an object, friction forces are required and so a friction model must
be established. The choice of the friction model determines the form of the
matrices Wα which appear in the equation (7) and the matrices Jα in equation
(9) with α ∈ {n, t, o}. The law used here is the Coulomb friction law which
establishes that the contact force on the point j falls within or on the boundary
of the corresponding friction cone, represented as follows:

c2
j t + c2

jo ≤ µ2
j c

2
jn, j = 1, ..., nc, (18)

Comp. Appl. Math., Vol. 25, N. 1, 2006



F.E. BUFFO and M.C. MACIEL 85

where µ j is the friction coefficient on the contact point j .
If the contact is sliding, the contact force must lie on the border of the friction

cone with its friction component directly opposed to the sliding velocity and
satisfy

µ j c jnv jα + c jα

√
v2

j t + v2
jo = 0, j ∈ S, α ∈ {t, o}. (19)

If the contact is rolling, the contact force can have some direction and magni-
tude, within the cone defined by (16) and (18) and satisfy

µ j c jna jα + c jα

√
a2

j t + a2
jo = 0, j ∈ R, α ∈ {t, o}. (20)

Equation (19) differs significatively from equation (20), since the former is
linear in the unknowns c jn and c jα because the velocities are data, whereas the
latter is nonlinear because the accelerations are unknowns.

Considering that in the initial instant t0 qobj , q̇obj , gobj , hobj , Mobj are
known for the objects; θman, θ̇man, τ, gman, hman, Mman for the manipulators;
the torque matrices W and the Jacobian matrices Jman , q̇obj and θ̇man satisfying
the kinematic constraints (10), (12) and (13), to solve the dynamics of several
bodies in contact means to determine q̈obj , θ̈man, cn, ct , co, an, at , ao, which
satisfy the equations (7), (9), (11), (15), (17), (19) and (20).

Since the algebraic-differential equation system that results is complex to
solve, it is convenient to reformulate it as a mixed nonlinear complementar-
ity problem. Thus, a discretization of the independent variable is considered,
assuming that in the instant t0 an initial configuration, i.e. a contact and the
position and velocities of all the bodies is known. Therefore, to establish the
configuration in an instant t0 + �t , a complementarity problem is solved. This
implies analyzing whether the contact is maintained or not, and calculating the
positions and velocities of the new configuration.

Taking into account that the inverses of Mobj and Mman exist, q̈obj and θ̈man can
be obtained from the equations (7) and (9). Replacing q̈obj and θ̈man in equation
(11) and defining aα ∈ R

nc , with α ∈ {n, t, o}, a linear equation system is
obtained 

 an

at

ao


 = A


 cn

ct

co


 +


 bn

bt

bo


 , (21)

A =

 Ann Ant Ano

Atn Att Ato

Aon Aot Aoo


 = J tMJ, (22)

Comp. Appl. Math., Vol. 25, N. 1, 2006



86 A MIXED NONLINEAR COMPLEMENTARITY TECHNIQUE

where the Aαγ are submatrices of A which consist of rows and columns corre-
sponding to the directions α and γ respectively, with α, γ ∈ {n, t, o}.

From Mobj , Mman , Wn , Wt , Wo, J t
n , J t

t , y J t
o , the matrices

M =
[ (

Mobj

)−1
0

0
(
Mman

)−1

]
, J =

[
Wn Wt Wo

Jn
t Jt

t Jo
t

]
, (23)

and the vector
 bn

bt

bo


 = J̇ t

[
q̇obj

−θ̇man

]
+ J t M

[
gobj + hobj

gman + hman − τ

]
. (24)

are defined.
Equation (19) is solved to obtain c jt and c jo with j ∈ S and replace them in

(21). The acceleration vectors and contact forces are partitioned for the contacts
R and S. Since there are no additional constraints for the tangential and orthog-
onal components of the accelerations on the sliding contact points, the equations
of the system (21) which define these components can be set apart without af-
fecting the solution of the complementarity problem


aSn

aRn

aRt

aRo


 = Ã




cSn

cRn

cRt

cRo


 +




bSn

bRn

bRt

bRo


 , (25)

where:

Ã =




( Ãnn)SS (Ann)SR (Ant)SR (Ano)SR
( Ãnn)RS (Ann)RR (Ant)RR (Ano)RR
( Ãtn)RS (Atn)RR (Att)RR (Ato)RR
( Ãon)RS (Aon)RR (Aot)RR (Aoo)RR


 , (26)




( Ãnn)SS
( Ãnn)RS
( Ãtn)RS
( Ãon)RS


 ≡




(Ann)SS
(Ann)RS
(Atn)RS
(Aon)RS


 −




(Ant)SS
(Ant)RS
(Att)RS
(Aot)RS


 VtS −




(Ano)SS
(Ano)RS
(Ato)RS
(Aoo)RS


 VoS, (27)

VαS = diag


 µ j v jα√

v2
j t + v2

jo


 , j ∈ S, α ∈ {t, o}. (28)
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Equations (15– 17), (18– 20), (25– 28), constitute a mixed nonlinear comple-
mentarity problem as defined in (1) associated to the 3D dynamics of several
rigid bodies in contact with Coulomb friction.

To express the mixed nonlinear complementarity problem with the notation
used in (2), the slack variables s j are introduced by

s j = µ2
j c

2
jn − c2

j t − c2
jo ≥ 0, j ∈ R, (29)

and the vector of complementarity variables λ whose components are given by

λ j =
√

a2
j t + a2

jo, j ∈ R. (30)

Vector u ∈ R
nS+2nR corresponds to the complementarity variables, vector

v ∈ R
4nR corresponds to the free variables and the vector of slack variables

z ∈ RnS+2nR are defined

u =

 cSn

cRn

λ


 ≥ 0, v =




cRt

cRo

aRt

aRo


 , z =


 aSn

aRn

s


 ≥ 0. (31)

Partitioning adequately the system (25) and from (29), the following vectorial
function F : RnS+6nR → R

nS+2nR is obtained,

F(u, v) =



[

A1 A2
]



cSn

cRn

cRt

cRo


+

[
bSn

bRn

]

s(cRn, cRt , cRo)


 , (32)

with

A1 =
[

( Ãnn)SS (Ann)SR
( Ãnn)RS (Ann)RR

]
, A2 =

[
(Ant)SR (Ano)SR
(Ant)RR (Ano)RR

]
.

The vectorial function G : RnS+6nR → R
4nR is expressed as follows

G(u, v) =

 G1(u, v)

G2(u, v)

G3(u, v)


 , (33)

where
(G1(u, v)) j = µ j c jna jt + c jtλ j , j ∈ R, (34)
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(G2(u, v)) j = µ j c jna jo + c joλ j , j ∈ R, (35)

G3(u, v) =
[

aRt

aRo

]
− [

A3 A4
]



cSn

cRn

cRt

cRo


−

[
bRt

bRo

]
, (36)

A3 =
[

( Ãtn)RS (Atn)RR
( Ãon)RS (Aon)RR

]
, A4 =

[
(Att)RR (Ato)RR
(Aot)RR (Aoo)RR

]
.

5 Numerical results

In this section, we show how the mixed non linear complementarity technique
presented in the previous sections is used. Let us consider the model of an object
grasped by a robot hand with three fingers.

The initial configuration for the proposed example is established fixing the
location of the coordinate systems with origins in the mass center of the body
(B), the base of the j-th robot (S j ), the j-th point of contact (C j ) and the palm
of the hand (P). The origin of the reference coordinate system is located in
the palm of the robot hand. Figure 1 presents a bidimensional scheme for the
given configuration.
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Figure 1 – Three fingers holding a sphere.
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Using algorithm 1, the system configuration of various bodies in contact in the
instant t0 + �t from an initial configuration is obtained.

Algorithm 1. Given µ, nR, nS, and the configuration parameters,

1. Define the initial configuration.

1.1. Calculate the coordinate transformation matrices,

1.2. Calculate the vector of positions of the manipulator joints, θman

(Problem of inverse kinetics).

2. Calculate the matrices for the object W , Mobj .

3. Calculate the manipulator matrices, Jman, Mman.

4. Calculate the matrices of the complementarity problem, M, J, and Ã.

5. Solve the complementarity problem via optimization.

6. Define the new configuration.

In step 5, the optimization problem can be solved by any appropriate algorithm.
To establish the initial configuration, the matrices pt and ptt ∈ R

3×nc are
considered. Each column of pt , pt(., j) contains the j-th point of contact with
respect to the system P; while the j-th column of ptt contains the coordinates
of the j-th point of contact with respect to the coordinate system S j . For the
proposed configuration, the matrices are,

pt =

 r cos(σ ) r cos(σ ) −r

−r sin(σ ) r sin(σ ) 0
acm acm acm


 ,

ptt =

 −(b̃ − r) cos(σ ) −(b̃ − r) cos(σ ) b̃ − r

(b̃ − r) sin(σ ) −(b̃ − r) sin(σ ) 0
acm acm acm


 ,

where r is the sphere radius, acm establishes the location of the sphere mass center
with respect to the coordinate axes system of the palm P, pcm = (0, 0, acm), b̃
is the distance between the origin of the coordinates B and the projection on the
plane z = acm of the origin of the j-th coordinate system S j , j = 1, 2, 3 and
σ is the angle formed by the positive axis x of the Cartesian coordinate system
fixed in the mass center of the body B and the segment which joins the origin of
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B with the points of contact C1 and/or C2. As observed in figure 1, the location
of the contacts C1 and C2 is symmetric respect to B.

The rotation matrices for each contact have the following expressions:

RP,C1 = Qz(−σ) Qy

(−π

2

)
, RP,C2 = Qx

(
π

2

)
Qz(−σ),

RP,C3 = Qz

(
π

2

)
Qx

(
π

2

)
,

where Qα(ϕ) are the matrices representing elemental rotation around the direc-
tion α, with an angle ϕ.

The friction model is characterized by the matrix,

B f =




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




. (37)

The matrix W ∈ R6×9 is expressed as follows,

W = [
W1 B f W2 B f W3 B f

]
, (38)

with W j , with j = 1, 2, 3, defined as,

W j =
[

RP,C j 0

p̂t(., j)RP,C j RP,C j

]
. (39)

The following notation is used: given any vector v ∈ R3, v̂ ∈ R3×3 we define

v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


 . (40)

The inertia matrix of the sphere respect to the mass center is M2 = 2
5 mr2 I3,

where I3 is the identity matrix of dimension 3. When the fixed reference system
is not in the mass center of the body a modification of the inertia matrix must be
performed using the result of the parallel axes theorem [3].
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The mass matrix of the object Mobj ∈ R6×6 is,

Mobj =
[

m I3 0

0 M (P)

2

]
. (41)

The experiments were performed using a well known robot PUMA (Pro-
grammable Universal Manipulator for Assembly). For each manipulator the
Jacobian matrices J f j and the mass matrices M f j are calculated using the robotic
toolbox in MATLAB [2]. The Jacobian matrix for all the three fingered hands
Jman ∈ R9×nθ results

Jman =

 J1 0 0

0 J2 0
0 0 J3


 , (42)

with

Jj = Bt
f

[
Rt

P,C j
Rt

P,C j
p̂t

t t(., j)

0 Rt
P,C j

]
J f j ,

where B f is the matrix of the friction model.
The inertia matrix of the manipulator M f j ∈ Rnθ j ×nθ j is

M f j (θ) =
nθ∑
j=1

J t
L j

(θ)ML j JL j (θ), (43)

where JL j and ML j are the Jacobian matrices and the generalized inertia matrices
of the link L j . The mass matrix of the three fingers Mman ∈ Rnθ×nθ is

Mman =

 M f1 0 0

0 M f2 0
0 0 M f3


 . (44)

If it is considered that all the contacts are sliding, the MNCP is reduced to a
LCP. Solving the LCP means solving the optimization problem defined in (3)
with the merit function

f (cn, an) = ‖ an − Ãnncn − bn ‖2
2 + (at

ncn)
2, (45)

where the vector bn ∈ R3 is obtained from equation (24),

Ãnn = Ann − Ant Vt − AnoVo. (46)
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The matrices Vt and Vo are defined in (28) and each submatrix Aαγ has the
expression

Aαγ = Wα
t(Mobj )

−1Wγ + Jα(Mman)
−1 Jγ

t . (47)

A variable change is performed, t̂ ∈ R6, t̂ = [cn, an]t so that the merit function
is expressed as follows,

f (t̂) =
3∑

i=1


t̂i+3 −

3∑
j=1

Mi j t̂ j − (bn)i




2

+
(

3∑
i=1

t̂i t̂i+3

)2

. (48)

The matrix M in the complementarity problem depends on the friction coeffi-
cients on the contact points. For the proposed example, and using a PUMA560
manipulator the results obtained are:

µ BoxIt FunEval QuacanIt Matxvec f

0.1 4 5 15 22 2.0526 × 10−23

0.2 6 7 35 49 1.2063 × 10−14

0.4 7 8 32 48 1.7957 × 10−22

0.5 9 10 47 71 1.0521 × 10−14

Table 1 – Results of the optimization problem for the LCP.

µ cn1 cn2 cn3 an1 an2 an3

0.1 2.2867 2.7800 3.8067 0. 0. 0.
0.2 1.4669 2.2680 2.7108 0. 0. 0.

0.4 3.3672 6.3354 6.5843 0. 0. 0.
0.5 14.745 29.731 28.862 0. 0. 0.

Table 2 – Results of the LCP for the sliding contacts.

As can be observed in Table 2, the contact is mantained in all cases. If it is
considered that the three contacts are rolling, the problem is formulated as a
MNCP. The MNCP is solved considering the equivalent optimization problem
(3), using the merit function proposed in (4). The following variable change is
performed t̃ = [

cn, ct , co, an, at , ao, s , λ
]t

, with the merit function

f (t̃) = sum1 + sum2 + sum2
3 + sum4 ,
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µ x0 BoxIt FunEval QuacanIt Matxvec f

0.1 0 30 42 1179 1561 3.9561 × 10−10

0.2 0 21 35 979 1390 1.4722 × 10−15

0.4 0 18 30 762 1109 9.5039 × 10−16

0.6 0 15 25 625 934 6.7051 × 10−12

0.8 0 27 38 1021 1411 6.4478 × 10−11

Table 3 – Results of the optimization problem for the MNCP.

µ = 0.1 Contact 1 Contact 2 Contact 3

CRn 1.2414 1.7054 2.1572
CRt −8.3648 × 10−2 1.54276 × 10−1 1.8465 × 10−1

CRo 9.1829 × 10−2 7.2654 × 10−2 1.1152 × 10−1

aRn 0. 0. 0.
aRt 8.8764 × 10−1 −2.7354 −2.1172
aRo −9.7443 × 10−1 −1.2882 −1.2787
s 0. 5.54549 × 10−7 0.
λ 1.3173 3.0238 2.4733

sliding sliding sliding

Table 4 – Results of the MNCP for the rolling contacts.

where

sum1 =
3∑

j=1

[
t̃( j + 18) − (µ( j) t̃( j))2 + (t̃( j + 3))2 + (t̃( j + 6))2

]2
,

sum2 =
3∑

j=1

[
µ( j) t̃( j) t̃( j + 12) + t̃( j + 3)t̃( j + 21)

]2

+
[
µ( j) t̃( j) t̃( j + 15) + t̃( j + 6)t̃( j + 21)

]2
,

sum3 =
3∑

j=1

t̃( j)t̃( j + 9) +
3∑

j=1

t̃( j + 18)t̃( j + 21),

sum4 = || z1 − F1(u, v) ||22 + || G3(u, v) ||22 .
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The optimization problem solved is of dimension 24. It has been solved by
using a robust and efficient algorithm developed by Friedlander and Martínez
[5, 6]. The results obtained are summarized in tables 3 and 4.

6 Conclusions and future research

The dynamics of several rigid bodies in contact with Coulomb friction is pre-
sented as a MNCP. The complementarity problem is reformulated as a box
constraints optimization problem.

It is worth noting that the optimization problem for the mixed case is general.
Contrary to many methods which are specific to linear or nonlinear complemen-
tarity problems, this technique can be applied to any of them by only defining
appropriately the merit function and the box.

An example of a robot hand with three fingers grasping an object is considered.
Matrices of smaller dimensions, which respond to a real model, were preferred
over those with greater dimensions. Functions in MATLAB were developed to
obtain the system matrices and the optimization problem with box constraints
was solved using the easy computing program. The robustness of the optimiza-
tion method we used, allowed us to obtain a solution in most cases. In the future,
we wish to generate contact problems with a greater number of bodies and points
of contact, both rolling and sliding, trying to consider the structure of the matrices
which are generated without losing sight of the physical meaning. Furthermore,
it is considered of interest to complete the kinematics and dynamics calculation
of the robot problem for a sequence of times t1, t2, t3... and to verify if the
obtained results are satisfactory. We plan to continue deepening the study of the
MNCP in general following the proposed research line.
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