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Abstract. We present and analyze a new iterative scheme for large-scale solution of the

well-known Sylvester equation. The proposed scheme is based on fixed point iteration approach

and can make good use of the recently developed methods for solving block linear systems.

It is shown mathematically that the iterative process converges under some assumptions on the

coefficient matrices. Results on our numerical experiments with large-scale matrices are quite

encouraging. In particular, the method compares favorably with the other block methods and a

recently proposed method for Sylvester equation based on low-rank approximation of the right

hand side matrix C .
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1 Introduction

In this paper, we present a new block algorithm for solving the Sylvester matrix

equation (SE):

AX − XB = C, (1)

where A, B, andC are givenmatrices of dimensions n, p, and n× p, respectively
and the matrix X of dimension n × p needs to be found.
It is well-known (see [6] and the original paper of Sylvester [16]) that the equa-

tion (1) has a unique solution if and only if A and B do not have an eigenvalue in
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48 BLOCK LINEAR METHOD FOR LARGE SCALE SYLVESTER EQUATIONS

common. The necessity of solving this equation arises in a wide variety of practi-

cal applications, including control systems design and analysis [4, 6], numerical

solutions of differential equations, including boundary value problems [2, 8].

Because of its importance, the problem has been well studied in the literature

and there now exist many methods for its solutions. An account of these meth-

ods can be found in the recent book by Datta [6]. In theory, the problem can be

reduced to a linear system problem whose system matrix is a Kronecker product

matrix of large dimension. The Kronecker-product approach is not numerically

viable even for a small and dense system. For details see again the book by Datta

[6]. The best-known and very widely used numerical method for small and dense

problems is the Hessenberg-Schur method by Golub, Nash, and Van Loan [9].

The method is based on reduction of the largest of two matrices to Hessenberg

form and the other to real Schur form. The Hessenberg-Schur method is an effi-

cient implementation of the Bartels-Stewart method [1] proposed earlier, based

on the reductions of both matrices to Schur forms. Unfortunately, these methods

are not practical for large and sparse problems.

For large-scale Sylvester equations, several Krylov subspace methods have

been recently proposed [5, 6, 7, 10, 11, 12, 14]. The Krylov methods are ba-

sically projection methods. The idea behind these methods is to first project

the large problem into a smaller one by constructing an orthonormal basis of

the Krylov subspace, then solve the smaller projected problem using a standard

technique such as the Hessenberg-Schur method, and finally recover the solution

of the original large problem from the solution of the smaller problem. In most

cases, the smaller projected problem itself is a Sylvester equation. However,

the method proposed in [11] by Hu and Reichel is different in the sense that

their idea is to project the associated Kronecker system rather than the Sylvester

equation itself. In the recent Ph.D Thesis [14], Peng has proposed two new

Krylov subspace methods, one is divide-and-conquer type and the other is based

on low-rank approximation of the right-hand matrix C . Yet another type of it-
erative methods which are neither Krylov methods nor based on solution of the

Kronecker product systems have been proposed by several authors. For details

see Miller [13] and the references therein. These iterative methods seem to be

more of theoretical interests and are not practical for large problems.
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In this paper, we propose a new iterative scheme based on fixed point iteration.

The scheme requires solution of a linear systems with multiple right-hand sides

at each iteration, which can be solved by using block Krylov subspace methods

for linear systems (see Brezinski [3], Saad [15]). Our method method does not

require solution of a low-dimensional Sylvester equation at every iteration. The

results of our numerical experiments show that the proposed method works quite

well for large-scale problems and is quite competitive with the other existing

competing methods. Mathematical results on the convergence of our iterative

scheme is also provided in the paper.

2 Methods based on SE and block linear systems

The main idea to solve the SE is to write this equation as a block linear system

and then use some suitable iterative scheme. This can be accomplished by the

following change of variable: AX = Z where Z = C + XB. This possibility
generates the iterative method:

Algorithm 1 Using: AX = Z
1: Given X0 ∈ Rn×p
2: Compute Z0 = C + X0B
3: for k = 0, 1, · · · until convergence do
4: Solve AXk+1 = Zk
5: Set Zk+1 = C + Xk+1B
6: end for

Notice that, the method requires the solution of one block linear system and

one matrix-matrix product per iteration. The matrix of coefficients of the inter-

nal system is of dimension n, therefore from a computational-cost point of view
if n < p it is convenient to use Algorithm 1 as described, but if n > p it is con-
venient to transpose the Sylvester equation, and then apply Algorithm 1. To be

precise, when n > p solving −BT XT + XT AT = CT , instead of (1), should be
preferred. This guarantees that the matrix of coefficients of the internal system is

of dimension p. On the other hand, the norm of the matrices A and B could also
help to decide whether it is convenient to solve (1) or its transpose, as discussed

below after Theorem 2.1.
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Our next result establishes convergence under an additional hypothesis on the

matrices A and B. This additional hypothesis is sufficient to guarantee also
the existence of a unique solution, and as far as we know, it is the classical

hypothesis assumed when dealing with iterative schemes that are not related to

Krylov subspace methods, see [13].

Theorem 2.1. Let A ∈ Rn×n, B ∈ Rp×p,C ∈ Rn×p and let ‖.‖ be an induced
norm. If ‖A−1‖‖B‖ < 1 then equation (1) has a unique solution, and the
sequence {Xk}k≥0 generated by Algorithm 1 converges q-linearly to the solution.

Proof. Let λi (A) be the eigenvalues of A for 1 ≤ i ≤ n and let λ j (B) be the

eigenvalues of B for 1 ≤ j ≤ p. Since ‖A‖ ≥ |λi (A)| for any i and for any
induced norm we have ‖A−1‖ ≥ max1≤i≤n |λi (A−1)| and thus,

1

‖A−1‖ ≤ 1

max1≤i≤n |λi (A−1)| = min
1≤i≤n

|λi (A)|. (2)

On the other hand, ‖A−1‖‖B‖ < 1⇒ ‖B‖ < 1

‖A−1‖ , now using (2) we obtain,

max
1≤ j≤p

|λ j (B)| < min
1≤i≤n

|λi (A)| ⇒ σ(A) ∩ σ(B) = ∅. (3)

From (3) we conclude, that equation (1) has a unique solution since the spectra

of A and B are disjoint.
For the convergence we proceed as follows. From Algorithm 1 we obtain

that Xk = A−1(C + Xk−1B) and from SE we know that X = A−1(C + XB).

Combining these two equations it follows that

X − Xk = A−1(X − Xk−1)B, (4)

and so,

X − Xk = (A−1)k(X − X0)(B)k .

Therefore

‖X − Xk‖ ≤ (‖A−1‖‖B‖)k‖(X − X0)‖.
Since ‖A−1‖‖B‖ < 1 then the sequence Xk converges to X when k tends to
infinity. On the other hand, let Ek = X − Xk the absolute error, and taking norm
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on equation (4) we have that

‖Ek‖ ≤ ‖A−1‖‖B‖‖Ek−1‖,
since ‖A−1‖‖B‖ < 1 then the sequence Xk converges q-linearly to the the
solution. �

Notice that if no information is available about ‖A−1‖ or ‖B−1‖ then ‖A‖
and ‖B‖ could be of help to decide whether it is convenient to solve (1) or its
transpose to increase the possibility of convergence. For example, if ‖A‖ is
much larger than ‖B‖, then the condition ‖A−1‖‖B‖ < 1 is likely to be satisfied

for convergence when solving (1). Similarly, the transpose approach should

be preferred when ‖B‖ is much larger than ‖A‖. Notice also that, if we want
to solve SE with B = A (or B = AT ), then Theorem 2.1 does not guarantee
convergence, since ‖A‖‖A−1‖ = cond(A) ≥ 1.Unfortunately, this includes the
well-know Lyapunov equation.

For the proposed algorithm, the residual matrix at iteration k is defined as
Rk = C − (AXk − Xk B). This expression involves a high computational cost,

since it require two matrix-matrix products per iteration. The following result

provides an equivalent and less expensive way to calculate the residual.

Theorem 2.2. Let {Xk}k≥0 be the sequence generated by Algorithm 1. The
following expressions for the residual matrix are equivalent:

a) Rk = C − (AXk − Xk B) = C + Xk B − AXk .

b) Rk = Zk − Zk−1.

c) Rk = (Xk − Xk−1)B.

Proof. The residual is given by Rk = C + Xk B − AXk and from Algorithm 1
we have that Zk = C + Xk B and AXk = Zk−1. Therefore

Rk = Zk − Zk−1. (5)

On the other hand, substituting Zk from Algorithm 1 in (5) we obtain Rk =
C + Xk B − (C + Xk−1B). Therefore

Rk = (Xk − Xk−1)B. (6�)
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Equation (5) provides a less expensive form to calculate the residual since it

does not involve matrix-matrix products. Finally from (6) we obtain the follow-

ing corollary which yields a more convenient stopping criterion.

Corollary 2.1. Let {Xk}k≥0 be the sequence generated by Algorithm 1. If
‖Xk − Xk−1‖ → 0, then ‖Rk‖ → 0.

Finally, the following result establishes a bound that relates the norm of the

residual and the norm of the error.

Theorem 2.3. Let {Xk}k≥0 be the sequence generated by Algorithm 1. The
norm of the residual matrix satisfies that:

‖Rk‖ ≤ (‖A‖ + ‖B‖)‖Ek‖ (7)

Proof. Rk = C − (AXk − Xk B) = AX − XB− AXk + Xk B = A(X − Xk)−
(X − Xk)B = AEk − Ek B. Therefore

‖Rk‖ = ‖AEk − Ek B‖ ≤ (‖A‖ + ‖B‖)‖Ek‖ �

3 Numerical results

In this section we present preliminary numerical experiments to illustrate the

performance of the new proposed algorithm. For solving the internal block

linear systems for this algorithm we use the block SOR scheme (BSOR), the

non-Hermitian block steepest descent method (BSD) and the block minimal

residual iteration (BMR) fully described in [3]. For the proposed algorithm, we

will only present the combination that better results generated in CPU time. For

each experiment, we will indicate which method was used to solve the internal

block linear system.

We compare the new proposed algorithm with the following methods for solv-

ing SE:

• The block Arnoldi-Sylvester algorithm (BAS(m̃)) and the block GMRES-
Sylvester algorithm (BGS(m̃)) proposed and fully described in [10]. These
methods are based on Krylov subspace methods and solve a small SE per
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iteration of order m̃ p2, where m̃ is the restart value. These internal SE are
solved using the algorithm proposed by Golub, Nash and Van Loan in [9].

The BAS(m̃) and BGS(m̃) can only be used when n >> p. When n < p
we can always transpose SE and then apply the same techniques.

• Galerkin method for Sylvester equation (GMSE(m̃)) and the restarted
minimal projected residual algorithm (RMPR(m̃)) proposed and fully de-
scribed in [11]. These methods, as well as BAS(m̃) and BGM(m̃), are
based on Krylov subspace methods and solve a small SE per iteration of

order m̃2. The internal SE is written as a linear system of equation of order
m̃2 that is solved using direct methods, but the operation count for these
algorithms is m̃np flops. GMSE(m̃) and RMPR(m̃) can be used for any
values of n and p.

• Arnoldi method for low-rank approximate solution to the Sylvester equa-

tion (LRASE(k, m̃)) proposed and fully described in [14]. The parameter
k is a small value required by the algorithm, and m̃ is the restart value.
This method can be used for any values of n and p. In all our experiment,
we prove for 1 ≤ k ≤ 5 and we report the best result.

In our tests we use matrices from the Harwell-Boeing collection and also some

sparse matrices from the Matlab gallery, and for these matrices the inequalities

of Theorem 2.1 hold, therefore convergence is guaranteed for the new proposed

algorithm. In all cases, the entries of the solution matrix X are xi j = f (xi , y j )
where: xi = ihn , y j = jh p for 0 ≤ i ≤ n, 0 ≤ j ≤ p, hn = 1/(n + 1),
h p = 1/(p + 1) and f (x, y) = xexy sin(πx) sin(πy). This is a typical test
function that appears in several works, see e.g. [11, 10]. We stop the process

when

‖X − Xk‖ = ‖Ek‖ ≤ 10−8,

or when 2500 external iterations are reached. The initial iterate, X0, is the
null matrix. To stop the iterative methods for the internal block linear systems

we use the norm of the residual. To be precise, we stop the internal iterations

of Algorithm 1 when ‖AXk+1 − Zk‖ ≤ 10−2. The experiments were run in a
Pentium IV computer at 3.4 GHz with 2 GB of RAM memory, using Matlab
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7.0. In examples 3.1–3.4 we compare the performance of Algorithm 1 with

other methods. In these examples we report number of iterations (Iter), CPU

time, norm of the residual (Residual) and norm of the absolute error (Error). In

example 3.5 we compare the different equivalent expressions for computing the

residual norm.

We used the following notation for characterizing the different finalization

states of the experiments, “–” means that the algorithm accomplished the max-

imum number of external iterations, “s” implies that the used method produced

stagnation problems and “**” means that the memory requirements of the algo-

rithm could not be supported by Matlab.

Example 3.1. In this example n < p and n is a small value. The ma-

trix B is the matrix Hor__131 of the Harwell-Boeing collection with p =
434, and A is a sparse matrix of order n generated with the Matlab function
gallery(’wathen’,nx,ny) where n = 3 ∗ nx ∗ ny + 2 ∗ nx + 2 ∗ ny + 1
which returns a sparse random finite element matrix.

Methods Iter CPU time Residual Error

BAS(4) 15 2.20 1.21e-008 7.89e-009

BGS(4) 2 0.81 4.11e-012 4.06e-013

GMSE(4) 104 16.26 1.02e-007 9.19e-009

RMPR(4) 99 16.12 1.60e-007 7.28e-009

LRASE(1,4) 198 1.67 3.88e-008 9.86e-009

Algorithm 1 + BSOR 19 0.36 9.18e-008 5.49e-009

Table 1 – Performance of BAS(m̃), BGS(m̃), GMSE(m̃), RMPR(m̃), LRASE(k, m̃) and
Algorithm 1 combined with BSOR for solving SEwhen B =Hor__131 and A is a sparse
random finite element matrix with nx = 2, ny = 1 and n = 13.

In example 3.1 reported in Table 1 we can see that all methods converge but

GMSE and RMPR are not competitive in CPU time. In this case, Algorithm 1

combined with BSOR required less CPU time than other methods, but BAS(m̃),
BGS(m̃) and LRASE could still be considered as competitive choices. Moreover
BGS achieves better accuracy than the other options.
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Example 3.2. In this example, A is the matrix orsirr_2 with n = 886 and B is
the matrix sherman1 with p = 1000, both of the Harwell-Boeing collection.

Methods Iter CPU time Residual Error

BAS(4) ** ** ** **

BGS(4) ** ** ** **

GMSE(4) - 4692.6 - 0.699

RMPR(4) s s s 1.23

LRASE(1,4) - 27299.79 - 14.62

Algorithm 1 + BSOR 1567 53494.81 1.03e-007 9.95e-009

Table 2 – Performance of BAS(m̃), BGS(m̃), GMSE(m̃), RMPR(m̃), LRASE(k, m̃)
and Algorithm 1 combined with BSOR for solving SE when A = orsirr_2 and B =
sherman1.

As shown in Table 2, BAS and BGS produce storage problems. In this ex-

periment ‖E0‖ = 616.24, and we can observe that GMSE, RMPR and LRASE

reduce the absolute error norm. RMPR produces stagnation problems while

GMSE and LRASE stopped because the maximum number of external itera-

tions was reached. Finally, Algorithm 1 with BSOR converges but the CPU time

required is considerably higher.

Example 3.3. In this example p < n and p is a small value. The matrix A is
the matrix gre__343 of the Harwell-Boeing collection with n = 343, and B is a
tridiagonal matrix of order p = 20 given by

B = α ∗ tr idiag(−1− p1h, 2− p2h2, −1+ p1h) (8)

with

h = 1

p + 1 , α = − 1

h2
, and p1 = 100, p2 = 50.

This matrix has been used by several authors, see [10, 11, 14]. In this experiment

we report Algorithm 1 combined with BMR.

In Table 3, we can observe that all methods converge but Algorithm 1 obtained

the best performance in CPU time. BAS, GMSE and RMPR are similar in CPU

time required to satisfy tolE and the CPU time required by these methods is
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Methods Iter CPU time Residual Error

BAS(4) 12 6.70 3.70e-006 4.15e-009

BGS(4) 1 8.21 9.48e-011 1.41e-013

GMSE(4) 368 6.96 8.30e-005 9.93e-009

RMPR(4) 344 6.39 5.32e-005 8.54e-009

LRASE(1,4) 248 3.67 7.80e-006 9.73e-009

Algorithm 1 + BMR 5 0.078125 5.56e-007 6.29e-010

Table 3 – Performance of BAS(m̃), BGS(m̃), GMSE(m̃), RMPR(m̃), LRASE(k, m̃) and
Algorithm 1 combined with BMR for solving SE when A = gre__343 and B = is a

tridiagonal matrix.

almost twice the one required by LRASE. On the other hand, BGS converges in

one iteration and it reduces the norm of the error more than the others, but the

CPU time required by BGS is higher than the one required by the others. It is

worth noticing that for this example, we use the values of p1 and p2 suggested
in [11].

Example 3.4. In this example, A is the matrix gre_1107 with n = 1107 and B
is the matrix fs_760_1 with p = 760, both from the Harwell-Boeing collection.

Methods Iter CPU time Residual Error

BAS(4) ** ** ** **

BGS(4) ** ** ** **

GMSE(4) - 4586.23 - 2.4682

RMPR(4) s s s 2.6002

LRASE(1,3) - 28879.03 - 755.96

Algorithm 1 + BSD 636 1596.26 0.147e-002 9.58e-009

Table 4 – Performance of BAS(m̃), BGS(m̃), GMSE(m̃), RMPR(m̃), LRASE(k, m̃) and
Algorithm 1 combined with BSD for solving SE when A = gre_343 and B = fs_760_1.

As shown in Table 4, BAS and BGS produce storage problems. RMPR pro-

duces stagnation problems while GMSE and LRASE stopped because the max-

imum number of external iterations was reached. Algorithm 1 with BSD con-
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verges. In this experiment ‖E0‖ = 458.5 and we can see that GMSE and RMPR

reduced the absolute error norm while LRASE increased it. Finally, we can

observe that Algorithm 1 achieves convergence but ‖Rk‖ is much higher than
‖Ek‖.

Example 3.5. In this example we want to compare ‖Ek‖, with the equivalent
expressions for the norm of the residual described in Theorem 2.3. These expres-

sions will be denoted by ‖Rk‖ = ‖C − (AXk − Xk B)‖, ‖R1k‖ = ‖Zk − Zk−1‖
and ‖R2k‖ = ‖(Xk − Xk−1)B‖. The matrix A is the matrix fs_680_1 of the
Harwell-Boeing collection and B is a sparse matrix with random entries. The
dimensions of these matrices are n = 680 and p = 1000 respectively. We use

Algorithm 1 combined with BSOR to solve SE.

Figure 1 – Comparison of ‖Ek‖, ‖Rk‖, ‖R1k‖ and ‖R2k‖ when we use Algorithm 1
combined with BSOR, to solve a SE with A =fs_680_1 and B has random entries.

In Figure 1, we can see that ‖R1k‖ and ‖R2k‖ are close to ‖Ek‖ during the
process, while ‖Rk‖ is not. In this example ‖A‖ + ‖B‖ = 7.19e + 013 and

the behavior observed in Figure (1) agrees and illustrates (7). Finally, we can

conclude that if the stopping criterion is ‖Rk‖ ≤ tolE , it is convenient to use
‖R1k‖ instead of ‖Rk‖, for two important reasons. The first one is computational
Comp. Appl. Math., Vol. 27, N. 1, 2008
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work: ‖Rk‖ requires 2 matrix-matrix product, while ‖R1k‖ requires a matrix
substraction. The second reason is that ‖R1k‖ is more accurate to measure the
precision of the approximation generated by the proposed algorithms.

4 Concluding remarks

We propose a new iterative scheme for solving Sylvester Equations (SE). At

each iteration a block linear system of equations is solved and, for that, direct

or iterative techniques can be used. This new scheme can be applied regardless

of the dimensions of the involved matrices and, in most cases, it requires less

computational work than competitors.

We also establish the conditions for which convergence is guaranteed. These

conditions are sufficient but not necessary, and therefore strong. Nevertheless,

they also guarantee the existence of a unique solution of theSE.Unfortunately, for

some important applications these conditions are not satisfied, and our proposed

scheme cannot be used. For example, the new scheme cannot be applied for

solving the well-known Lyapunov equation.

Finally, we present an equivalent, stable, and inexpensive way of computing

the residual matrix. This equivalent formula yields a very efficient stopping

criterion, as shown in our numerical experiments.
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