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Abstract. In this paper, we consider the pest management model with spraying microbial

pesticide and releasing the infected pests, and the infected pests have the function similar to

the microbial pesticide and can infect the healthy pests, further weaken or disable their prey

function till death. By using the Floquet theory for impulsive differential equations, we show that

there exists a globally asymptotically stable pest eradication periodic solution when the impulsive

period τ < τmax, we further prove that the system is uniformly permanent if the impulsive period

τ > τmax. Finally, by means of numerical simulation, we show that with the increase of impulsive

period, the system displays complicated behaviors.
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1 Introduction

From the reports of Food and Agriculture Organization of the United Nations,

the warfare between man and pests has lasted for thousands of years. With the
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development of society and progress of science and technology, there are many

ways to control agricultural pests, for instance biological pesticides, chemical

pesticides, remote sensing and measuring and so on. A great deal of pesticides

were used to control pests. Generally speaking, pesticides are useful because

they can quickly kill a significant portion of a pest population and sometimes

provide the only feasible method for preventing economic loss. However, pes-

ticides pollution is also recognized as a major health hazard to human beings

and to natural enemies. Hence, many scholars put forward Integrated Pest

Management (IPM) (see [1, 3, 4, 11]), IPM is a pest management system that

in the context of the associated environment and the population dynamics of

the pest species, utilizes all suitable techniques and methods in as a compatible

manner as possible and maintains the pest populations at levels below those

causing economic injury.

Recently, the models for pest control were studied by some authors ([2-6])

and some results were obtained. As we all know, most of the research literature

on these epidemic models assumed that the disease incubation is negligible,

so that, once infected, each susceptible individual (S) instantaneously becomes

infectious (I ) and later recovers (R) with a permanent or temporary acquired

immunity. A model based on these assumptions is often called an SIR or SIRS

model. The SIR epidemiological model was studied in [7], they assumed that

the susceptible satisfied the logistic equation and the incidence rate was of the

form k I Sq and the total population was not constant.

However, it is inevitable that IPM may cause pollution to the environment

more or less due to the use of chemical pesticide. Therefore, in this paper we

propose a biological control strategy-controlling the pest by introducing micro-

bial pesticide and infected pests simultaneously. Compared with the chemi-

cal pesticide, the application shows that the microbial pesticide is an effective,

highly infectious and safe bio-pesticide which can be used in both short-term

and long-term controls and plays an important role in pest management.

The model we consider is based on the following SI model:





Ṡ = −βS(t)I (t),

İ = βS(t)I (t)− d I (t),
(1.1)

where S(t) and I (t) are densities of the susceptible and infectious, respectively,
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β > 0 is called the transmission coefficient, d > 0 is the death rate of the

infectious pests.

For IPM strategy, we combine the biological control and chemical control.

The infectious pests are released periodically every time period τ , meanwhile

periodic spraying the microbial pesticide for susceptible pests. Based on biolog-

ical control strategy in pest management, we construct a pest-epidemic model

with impulsive control. Impulsive differential equations found in almost every

domain of applied science and have been studied in many investigations ([8-

13]). But to our knowledge there are only a few papers and books on mathemat-

ical model of the dynamics of microbial diseases in pest control. Li et al. [14],

Anderson et al. [15] and Jong et al. [16] pointed out that standard incidence is

more suitable than bilinear incidence. Levin et al. [17] have adopted a incidence

form like βSl I h or βSh I h

N , l > 0, h > 0 which depends on different infective

diseases and environment. So we develop (1.1) by introducing a constant peri-

odic releasing of the infective pests and spraying microbial pesticides at fixed

moment. That is, we consider the following impulsive differential equations:






Ṡ(t) = r S
(

1 −
S + θ I

K

)
− βSI q,

İ (t) = βSI q − d I,





t 6= nτ, n ∈ N,

1S = −(μ1 + μ2)S,

1I = μ1S − μ3 I + p,





t = nτ, n ∈ N,

(1.2)

where 1S(t) = S(t+) − S(t),1I (t) = I (t+) − I (t). S(t) is in the absence

of I (t) grows logistically with carrying capacity K , and with an intrinsic birth

rate constant r , the nonlinear incidence rate was of the form βSI q , q > 1;

0 ≤ μ1 < 1 represents the fraction from susceptible to infectious due to

spraying the microbial pesticide at t = nτ ; 0 ≤ μ2 < 1, 0 ≤ μ3 < 1 which

represent the traction of susceptible and infective pests due to spraying

pesticides at t = nτ , respectively; and 0 < θ < 1, μ1 + μ2 < 1; p > 0

is the release amount of the infected pests at t = nτ, n ∈ N,N = {0, 1, 2, ∙ ∙ ∙ },

τ is the period of the impulsive effect. That is, we can use a combination of

biological and chemical tactics to eradicate pests or keep the pest population

below the damage level.
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2 Notations and definitions

In this section, we give some notations which will prove useful and give some

definitions.

Let R+ = [0,∞), R2
+ = {x ∈ R2 : x > 0}, � = int R2

+, N be the set of

all nonnegative integers. Denote f = ( f1, f2), the map defined by the right

hand side of the first two equations of system (1.2). Let V0 = {V : R+ ×

R2
+ 7→ R+}, continuous on (nτ, (n + 1)τ ] × R2

+, and lim(t,y)→(nτ+,x) V (t, y) =

V (nτ+, x) exists.

Definition 2.1. V ∈ V0, then for (t, x) ∈ (nτ, (n + 1)τ ] × R2
+, the upper right

derivative of V (t, x) with respect to the impulsive differential system (1.2) is

defined as

D+V (t, x) = lim
h→0

sup
1

h

[
V (t + h, x + h f (t, x))− V (t, x)

]
.

The solution of system (1.2) is a piecewise continuous function x : R+ 7→ R2
+,

x(t) is continuous on (nτ, (n + 1)τ ], n ∈ N and x(nτ+) = limt→nτ+ x(t) exists.

Obviously the smoothness properties of f guarantee the global existence and

uniqueness of solution of system (1.2), for details (see [18] ).

We will use a basic comparison result from impulsive differential equations.

For convenience, we state it in our notations.

Suppose g : R+ × R+ 7→ R satisfies:

(H) g is continuous in (nτ, (n + 1)τ ] × R+ and for x ∈ R+, n ∈ N,

lim(t,y)→(nτ+,x) g(t, y) = g(nτ+, x) exists.

Lemma 2.2. Let V ∈ V0, assume that





D+V (t, x) ≤ g(t, V (t, x)), t 6= nτ,

V (t, x(t+)) ≤ ψn(V (t, x(t))), t = nτ,
(2.1)

where g : R+ × R+ 7→ R satisfies (H) and ψn : R+ 7→ R+ is nondecreasing.

Let h(t) be the maximal solution of the scalar impulsive differential equation





u̇(t) = g(t, u(t)), t 6= nτ,

u(t+) = ψn(u(t)), t = nτ,

u(0+) = u0

(2.2)
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existing on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ h(t), t ≥ 0,

where x(t) is any solution of (1.2), similar result can be obtained when all the

directions of the inequalities in the lemma are revered and ψn is nonincreas-

ing. Note that if we have some smoothness conditions of g to guarantee the

existence and uniqueness of solutions for (2.2), then h(t) is exactly the unique

solution of (2.2).

Lemma 2.3. Suppose that x(t) is a solution of system (1.2) with x(0+) ≥ 0,

then x(t) ≥ 0 for all t ≥ 0. Further, if x(0+) > 0, then x(t) > 0 for all t > 0.

For convenience, we give some basic properties of the following system





İ = −d I, t 6= nτ,

1I = −μ3 I + p, t = nτ.
(2.3)

Then we have the following lemma:

Lemma 2.4. System (2.3) has a unique positive periodic solution Ĩ (t) with

period τ and for every solution I (t) of (2.3) such that |I (t) − Ĩ (t)| → 0 as

t → ∞, where

Ĩ (t) =
pexp(−d(t − nτ ))

1 − (1 − μ3)exp(−dτ)
, Ĩ (0+) =

p

1 − (1 − μ3)exp(−dτ)

and Ĩ (t) is globally asymptotically stable. Hence the solution of (2.3) is

I (t) = (1 − μ3)( Ĩ (0
+)−

pexp(−d(t − nτ ))

1 − (1 − μ3)exp(−dτ)
)exp(−dt)+ Ĩ (t).

Lemma 2.5. There exists a constant M > 0 such that S(t) ≤ M, I (t) ≤ M

for each positive solution x(t) = (S(t), I (t)) of (1.2) with all t large enough.

Proof. Define V (t, x(t)) = S(t) + I (t). Then V (t, x(t)) ∈ V0 and the upper

right derivative of V (t, x(t)) along solution of (1.2) is described as

D+V (t, x(t))+ dV (t, x(t)) = (r + d)S(t)−
r S2(t)

K
−

rθ S(t)I (t)

K

≤ (r + d)S(t)−
r S2(t)

K
≤ L0,
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where

L0 =
K (r + d)2

4r
,

when t = nτ , we obtain

V (nτ+) = (1 − μ2)S(nτ)+ (1 − μ3)I (nτ)+ p ≤ V (nτ)+ p.

According to Lemma 2.2, for t ∈ (nτ, (n + 1)τ ), we have

V (t, x(t)) ≤ V (0+)exp(−dt)+
∫ t

0
L0exp(−d(t − s))ds

+
∑

0<nτ<t

pexp
(∫ t

nτ
(−d)ds

)

≤ V (0+)exp(−dt)+
L0

d
(1 − exp(−dt))

+
pexp(−d(t − τ ))

1 − exp(dτ)
+

pexp(μτ)

exp(dτ)− 1

→
L0

d
+

pexp(dτ )

exp(dτ)− 1
, t → ∞.

Definition 2.6. System (1.2) is said to be permanent if there exists positive

constants m,M such that each positive solution (S(t), I (t)) of system (1.2)

satisfies m ≤ S(t) ≤ M,m ≤ I (t) ≤ M for all t sufficiently large.

3 Stability of the pest-eradication periodic solution

In this section, we study the stability of the pest-eradication periodic solution of

system (1.2).

Theorem 3.1. The pest-eradication periodic solution (0, Ĩ (t)) of system (1.2)

is globally asymptotically stable provided

rτ −
prθ(1 − exp(−dτ ))

d K [1 − (1 − μ3)exp(−dτ)]
−

pqβ(1 − exp(−qdτ ))

2d[1 − (1 − μ3)exp(−dτ)]

< − ln(1 − μ1 − μ2).

(3.1)
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Proof. Firstly, we prove the local stability of a τ -period solution (0, Ĩ (t))may

be determined by considering the behavior of small-amplitude perturbations

(u(t), v(t)) of the solution.

Define

S(t) = u(t), I (t) = v(t)+ Ĩ (t),

where u(t), v(t) are small perturbations, there may be written as
(

u(t)

v(t)

)

= 8(t)

(
u(0)

v(0)

)

where 8(t) satisfy

d8(t)

dt
=

(
r − rθ

k Ĩ (t)− β Ĩ q(t) 0

β Ĩ q(t) −d

)

8(t),

where 8(0) is the identity matrix. The resetting impulsive conditions of (1.2)

becomes (
u(nτ+)

v(nτ+)

)

=

(
1 − μ1 − μ2 0

μ1 1 − μ3

)(
u(nτ)

v(nτ)

)

.

Hence, if absolute values of all eigenvalues of

M =

(
1 − μ1 − μ2 0

μ1 1 − μ3

)

8(τ),

are less than one, the τ -periodic solution is locally stable. By calculating, we

have

8(τ) =

(
1 − μ1 − μ2 0

μ1 1 − μ3

)

×



exp
(∫ τ

0

(
r −

rθ

K
Ĩ (t)− β Ĩ q(t)

)
dt

)
0

∗ exp(−dτ)



 ,

there is no need to calculate the exact form of (∗) as it is not required in the

analysis that follows. Then the eigenvalues of M denoted by λ1, λ2 are the

Comp. Appl. Math., Vol. 30, N. 2, 2011
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following:

λ1 = (1 − μ1 − μ2)exp
(∫ τ

0

(
r −

rθ

K
Ĩ (t)− β Ĩ q(t)

)
dt

)
,

λ2 = (1 − μ3)exp(−dτ),

λ1 < 1 if (3.1) holds true. According to Floquet theory, the pest-eradication

solution (0, Ĩ (t)) is locally asymptotically stable.

In the following, we prove the global attractivity. Choose a sufficiently small

ε > 0 such that

δ = (1 − μ1 − μ2)×

exp
(∫ τ

0

(
r −

rθ

K
( Ĩ (t)− ε)− β( Ĩ (t)− ε)q

)
dt

)
< 1.

Noting that İ (t) ≥ −d I (t) as t 6= nτ and 1I (t) ≤ −μ3 I (t) + p as

t = nτ , consider the following impulsive differential equation:





ẋ(t) = −dx(t), t 6= nτ,

1x(t) = −μ3x(t)+ p, t = nτ,
(3.2)

by Lemma 2.4, system (3.2) has a globally asymptotically stable positive

periodic solution

x̃(t) =
pexp(−d(t − nτ ))

1 − (1 − μ3)exp(−dτ)
.

So by Lemmas 2.2 and 2.4, we get

I (t) ≥ x(t) > Ĩ (t)− ε. (3.3)

From system (1.2), we obtain that





Ṡ(t) ≤ S(t)
(

r −
rθ

K
( Ĩ (t)− ε)− β( Ĩ (t)− ε)q

)
, t 6= nτ,

1S(t) = −(μ1 + μ2)S(t), t = nτ.
(3.4)
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Integrating (3.4) on (nτ, (n + 1)τ ], which yields

S((n + 1)τ ) = S(nτ+)×

exp
(∫ (n+1)τ

nτ

(
r −

rθ

K
( Ĩ (t)− ε)− β( Ĩ (t)− ε)q

)
dt

)

= (1 − μ1 − μ2)S(nτ)×

exp
(∫ (n+1)τ

nτ

(
r −

rθ

K
( Ĩ (t)− ε)− β( Ĩ (t)− ε)q

)
dt

)

= S(nτ)δ.

(3.5)

Thus, S(nτ) ≤ S(0)δn and S(nτ) → 0 as n → ∞. Therefore, S(t) → 0 as

t → ∞, since 0 < S(t) < (1 − μ1 − μ2)S(nτ)exp(rτ) for nτ < t ≤ (n + 1)τ .

Next, we prove that I (t) → Ĩ (t) as t → ∞, for a sufficiently small 0 < ε <
d

βMq−1
, there exists a T1 > 0 such that 0 < S(t) < ε for all t > T1. From

system (1.2), we have





İ (t) ≤ (βεMq−1 − d)I (t), t 6= nτ,

1I (t) ≤ μ1ε − μ3 I (t)+ p, t = nτ,
(3.6)

considering the following comparison system





ẏ(t) = (βεMq−1 − d)y(t), t 6= nτ,

1y(t) = μ1ε − μ3 y(t)+ p, t = nτ.
(3.7)

By Lemma 2.4, system (3.7) has a positive periodic solution

ỹ(t) =
(μ1ε + p)exp(−(d − βεMq−1)(t − nτ ))

1 − (1 − μ3)exp(−(d − βεMq−1)τ )
, nτ < t ≤ (n + 1)τ,

which is globally asymptotically stable. Thus, for a sufficiently small ε1, there

exists a T2 > T1 > 0 such that t > T2

I (t) ≤ y(t) < ỹ(t)+ ε1. (3.8)

Combining (3.3) and (3.8), we obtain Ĩ (t) − ε < I (t) < ỹ(t) + ε1 for t large

enough, let ε, ε1 → 0, we get ỹ(t) → Ĩ (t), then I (t) → Ĩ (t) as t → ∞. This

completes the proof.
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4 Permanence

Theorem 4.1. System (1.2) is uniformly permanent if

rτ −
prθ(1 − exp(−dτ ))

d K [1 − (1 − μ3)exp(−dτ)]
−

pqβ(1 − exp(−qdτ ))

2d[1 − (1 − μ3)exp(−dτ)]

> − ln(1 − μ1 − μ2).

(4.1)

Proof. Suppose x(t) = (S(t), I (t)) is a solution of (1.2) with x(0) > 0,

from Lemma 2.5, we may assume S(t) ≤ M, I (t) ≤ M and M > (r/β)
1
q ,

for t large enough.

Let m2 =
pexp(−dτ )

1 − (1 − μ3)exp(−dτ)
− ε2, where ε2 > 0 sufficiently small.

According to Lemmas 2.2 and 2.4, we have I (t) > m2 for t large enough.

So, if we can find positive number m1 > 0, such that S(t) > m1 for t large

enough, then our aim is obtained.

Next, we will do it in the following two steps for convenience.

Step I: If (4.1) holds true, we can choose 0 < m1 <
d

βMq−1
and ε3 small

enough such that

δ1 = (1 − μ1 − μ2)×

exp
(∫ (n+1)τ

nτ

(
r −

rm1

k
−

rθ

k
( Ĩ (t)+ ε3)− β( Ĩ (t)+ ε3)

q

)
dt

)
> 1,

we will prove there exist a t1 ∈ (0,∞), such that S(t1) ≥ m1. Otherwise

S(t) < m1 for all t > 0. From system (1.2), we obtain that





İ (t) ≤ (βm1 Mq−1 − d)I (t), t 6= nτ,

1I (t) ≤ μ1m1 − μ3 I (t)+ p, t = nτ,
(4.2)

consider the following comparison system





ż(t) = (βm1 Mq−1 − d)z(t), t 6= nτ,

1z(t) = μ1m1 − μ3z(t)+ p, t = nτ,
(4.3)
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by Lemmas 2.2 and 2.4 on (4.3), we have z(t) → z̃(t) as t → ∞, where

z̃(t) =
(μ1m1 + p) exp(−(d − βm1 Mq−1)(t − nτ ))

1 − (1 − μ3) exp(−(d − βm1 Mq−1))
, nτ < t ≤ (n + 1)τ.

Therefore, there exists a T3 > 0 such that

I (t) ≤ z(t) < z̃(t)+ ε,

for t > T3. Thus





Ṡ(t) ≥ S(t)(r −
rm1

K
−

rθ

K
( Ĩ (t)+ ε)− β( Ĩ (t)+ ε)q), t 6= nτ,

1S(t) = −(μ1 + μ2)S(t), t = nτ,
(4.4)

for t > T3, integrating (4.4) on (nτ, (n + 1)τ ], n ≥ N1, here N1 is a nonneg-
ative integer and N1τ ≥ T3, then we obtain

S((n + 1)τ ) ≥ S(nτ)(1 − μ1 − μ2)

× exp

(∫ (n+1)τ

nτ

(
r −

rm1

K
−

rθ

K
( Ĩ (t)+ ε)− β( Ĩ (t)+ ε)q

)
dt

)

= S(nτ)δ1.

Then S((N1 + k)τ ) ≥ S(N1τ)δ
k
1 → ∞, k → ∞, which is a contradiction to

S(t) < m1 for all t > 0. Hence there exists a t1 such that S(t1) ≥ m1.

Step II: If S(t) ≥ m1 for all t ≥ t1, then our aim is obtained. Otherwise

S(t) < m1 for some t ≥ t1, setting t∗ = inf t>t1{S(t) < m1}, there are the

following two cases for t∗:

Case (a): If t∗ = n1τ, n1 is some positive integer. In this case S(t) ≥ m1

for t ∈ [t1, t∗) and (1 − μ1 − μ2)S(t∗+
) = (1 − μ1 − μ2)S(t∗) < m1. Let

T4 = n2τ + n3τ , where n2 = n′
2 + n′′

2, n′
2, n′′

2 and n3 satisfy the following

inequalities:

n′
2τ >

1

βm1 Mq−1 − d
ln

ε3

(μ1m1 + p + M)(1 − μ3)
,

(1 − μ1 − μ2)
n2 exp(ηn2τ)δ

n3
1 > 1,
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where

η = r −
rm1

K
−

rθ

K
M − βMq < 0.

We claim that there must be a time t2 ∈ (t∗, t∗ + T4) such that S(t2) ≥ m1,

if it is not true, i.e., S(t) < m1, t ∈ (t∗, t∗ + T4), similar to the analysis

before, we consider system (4.3) with initial value z(t∗+
) = I (t∗+

) ≥ 0, by

Lemma 2.4, we have

z(t) = (1 − μ3)(z(t
∗+
)−

p + μ1m1

1 − (1 − μ3) exp(−(d − βm1 Mq−1)τ )
)

× exp(−(d − βm1 Mq−1)(t − t∗))+ z̃(t)

for t ∈ (nτ, (n + 1)τ ], n1 ≤ n ≤ n1 + n2 + n3. Then

|z(t)− z̃(t)| < (1−μ3)(M + p+μ1m1) exp(−(d −βm1 Mq−1)(t −n1τ)) < ε3,

and I (t) ≤ z(t) < z̃(t) + ε3 for t∗ + n′
2 ≤ t ≤ t∗ + T4, which implies that

system (4.4) holds for [t∗ + n2τ, t∗ + T4], integrating system (4.4) on this

interval, we have

S((n1 + n2 + n3)τ ) ≥ S((n1 + n2)τ )δ
n3
1 . (4.5)

In addition, we have





Ṡ(t) ≥ S(t)
(

r −
rm1

K
−

rθ

K
M − βMq

)
= ηS(t),

1x1(t) = (1 − μ1 − μ2)x1(t).
(4.6)

Integrating system (4.6) on the interval [t∗, (n1 + n2)τ ], which yields

S((n1 + n2)τ ) ≥ m1(1 − μ1 − μ2)
n2 exp(ηn2τ), (4.7)

combining (4.5) and (4.7), we have

S((n1 + n2 + n3)τ ) ≥ m1(1 − μ1 − μ2)
n2 exp(ηn2τ)δ

n3
1 > m1,

which is a contradiction, so there exists a time t2 ∈ [t∗, t∗ + T4] such that

S(t2) > m1, let t̂ = inf t≥t∗{S(t) ≥ m1}, since 0 < μ1 + μ2 < 1, S(nτ+) =

(1 − μ1 − μ2)S(nτ) < S(nτ) and S(t) < m1, t ∈ (t∗, t̂). Thus, S(t̂) = m1,
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suppose t ∈ (t∗ + (l − 1)τ, t∗ + lτ ] ⊂ (t∗, t̂], l is a positive integer and

l ≤ n2 + n3, from system (4.6), we have

S(t) ≥ (1 − μ1 − μ2)
lm1 exp(lητ)

≥ (1 − μ1 − μ2)
n2+n3 exp((n2 + n3)τ )

1
= m1

for t > t̂ . The same arguments can be continued since S(t̂) ≥ m1. Hence

S(t) ≥ m1 for all t > t1.

Case (b): If t∗ 6= nτ , then S(t∗) = m1 and S(t) ≥ m1, t ∈ [t1, t∗], suppose

t∗ ∈ (n′
1τ, (n

′
1 + 1)τ ], we also have two subcases for t ∈ [t∗, (n′

1 + 1)τ ] as

follows:

Case (i): S(t) ≤ m1, t ∈ [t∗, (n′
1 + 1)τ ], we claim that there exists a t ′

2 ∈

[n′
1τ, (n

′
1 + 1)τ + T4] such that S(t ′

2) > m1. Otherwise integrating system (4.6)

on the interval [(n′
1 + 1 + n2)τ, (n′

1 + 1 + n2 + n3)τ ] produces

S
(
(n′

1 + 1 + n2 + n3)τ
)

≥ S
(
(n′

1 + 1 + n2)τ
)
δ

n3
1 .

Since S(t) ≤ m1, t ∈ [t∗, (n′
1 + 1)τ ], system (4.7) holds on [t∗, (n′

1 + 1 + n2 +

n3)τ ], thus

S
(
(n′

1 + 1 + n2)τ
)

= S(t∗) exp
(
η
(
(n′

1 + 1 + n2)τ − t∗
)
(1 − μ1 − μ3)

n2
)

≥ m1(1 − μ1 − μ3)
n2 exp(ηn2τ)

and

S
(
(n′

1 + 1 + n2 + n3)τ
)

≥ m1(1 − μ1 − μ3)
n2+n3 exp(ηn2τ)δ

n3
1 > m1,

which is a contradiction. Let t̆ = inf t>t∗{S(t) ≥ m1}, then S(t̆) = m1 and

S(t) < m1 for t ∈ (t∗, t̆). Choose t ∈ (n′
1τ + (l ′ − 1)τ, n′

1 + l ′τ ] ⊂ (t∗, t̆), l ′ is

a positive integer and l ′ < 1 + n2 + n3, we have

S(t) ≥ ((n′
1 + l ′ − 1)τ+) exp(η(t − (n′

1 + l ′ − 1)τ ))

≥ (1 − μ1 − μ3)
l ′−1S(t∗) exp(η(t − t∗))

≥ (1 − μ1 − μ3)
n2+n3 exp((n2 + n3 + 1)ητ),

so we have S(t) ≥ m1 for t ∈ (t∗, t̆). For t > t̆ , the same argument can be

continued since S(t̆) ≥ m1.
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Case (ii): If there exists a t ∈ (t∗, (n′
1 + 1)τ ] such that S(t) ≥ m1. Let

t = inf t>t∗{S(t) ≥ m1}, then S(t) < m1 for t ∈ [t∗, t) and S(t) = m1. For

t ∈ [t∗, t), (4.6) holds and integrating (4.6) on [t∗, t), we have

S(t) ≥ S(t∗) exp(η(t − t∗)) ≥ m1 exp(ητ) > m1.

Since S(t) ≥ m1 for t > t , the same argument can be continued. Hence, we

have S(t) > m1 for all t > t1. Thus in both cases, we conclude S(t) ≥ m1 for

all t ≥ t1. The proof is complete.

Remark 1. Let

f (τ ) = rτ −
prθ(1 − exp(−dτ ))

d K [1 − (1 − μ3)exp(−dτ)]
−

pqβ(1 − exp(−qdτ ))

qd[1 − (1 − μ3)exp(−dτ)]q

− ln(1 − μ1 − μ2).

Since f (0) = − ln 1
1−μ1−μ2

, f (τ ) → +∞ as τ → ∞ and f ′(τ ) > 0, so

f (τ ) = 0 has a unique positive root, denoted by τmax. From Theorem 3.1 and

Theorem 4.1, we know that the pest-eradication periodic (0, Ĩ (t)) is globally

asymptotically stable when τ < τmax. If τ > τmax, the system (1.2) is perma-

nence.

Remark 2. If μ1 = μ2 = μ3 = 0, that is, we only choose the biological

control, we can obtain that τ0 is the threshold and τmax > τ0, which implies

that we must release more infected pest to eradicate the pests. If p = 0, that

is there is no periodic releasing infective pests, so we can easily obtain that

τ1 = − 1
r ln(1 − μ1 − μ2) is the threshold and τmax > τ1, it is obviously,

impulsive releasing pests may lengthen the period of spraying pesticides and

therefore reduce the cost of pests control.

5 Numerical analysis and conclusion

In this paper, we have investigated dynamical behaviors of an SI model with

impulsive transmitting infected pests and spraying pesticides at fixed moment.

The purpose of this paper is the behavior of an impulsively controlled integrated

pest management model. To limit the damaging potential of the pest popula-

tion, a biological control, consisting in the release of infective pests, and a

Comp. Appl. Math., Vol. 30, N. 2, 2011



“main” — 2011/7/7 — 22:49 — page 395 — #15

XIA WANG, ZHEN GUO and XINYU SONG 395

Figure 1 – Pest-eradication solution of system (1.2) which is globally asymptotically

stable when τ = 1.5 < τmax. (a1) Time series of S(t) in (1.2) with initial value (0.1,0.1),

(b1) Time series of I (t) in (1.2) with initial value (0.1,0.1), (c1) Phase portraits in (1.2)

with initial value (0.1,0.1).

chemical control, consisting in pesticide spraying, are applied in pest manage-

ment. An unspecified nonlinear force of infection is assumed to describe the

transmission of the disease which is spread through the release of infected in-

dividuals, and it is assumed that the infective pest population neither damages

the crops, nor reproduces. We have shown that there exists an asymptotically

stable the susceptible pest-eradication periodic solution if impulsive period is

less than some threshold. When the stability of pest-eradication periodic so-

lution is lost, system (1.2) is permanent, which is in line with reality from a

biological point of view. Numerical results show that system (1.2) can take on

various kinds of periodic fluctuations, which implies that the presence of pulse

makes the dynamic behavior more complex (see Fig. 3).
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Figure 2 – Dynamical behavior of system (1.2) with τ = 3.5 > τmax. (a2) Time series

of S(t) in (1.2) with initial value (0.1,0.1), (b2) Time series of I (t) in (1.2) with initial

value (0.1,0.1), (c2) A τ -periodic solution.

It is observed that, theoretically speaking, the control strategy can be always

made to succeed by the use of proper pesticides, while as far as the biological

control is concerned, its sufficient effectiveness can also be reached provided

that the numbers μi (i = 1, 2, 3) of infected pests released each time or the

period τ is proper, that is, from Theorem 3.1 and Theorem 4.1, we know that

the pest-eradication periodic (0, Ĩ (t)) is globally asymptotically stable when

τ < τmax (see Fig. 1). If τ > τmax, the system (1.2) is permanence (see Fig.

2). Any of these features alone can ensure the global success of our control

strategy, although in concrete situations these may or may not be biologically

feasible or may require a large amount of resources.

To facilitate the interpretation of our mathematical findings by numerical

analysis, we consider the hypothetical set of parameter values as r = 1,
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Figure 3 – Dynamical behavior of system (1.2) with τ = 4.5 > 2τmax, (a3) Time series

of S(t) in (1.2) with initial value (0.1,0.1), (b3) Time series of I (t) in (1.2) with initial

value (0.1,0.1), (c3) Phase portraits in (1.2) with initial value (0.1,0.1).

θ = 0.91, β = 2, d = 0.98, q = 1.8, p = 0.4, μ1 = 0.7, μ2 = 0.1, μ3 =

0.1, τmax = 1.838045.
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