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Abstract. In this paper, we describe a new primal-dual path-following method to solve a

convex quadratic program (QP). The derived algorithm is based on new techniques for finding a

new class of search directions similar to the ones developed in a recent paper by Darvay for linear

programs. We prove that the short-update algorithm finds an ε-solution of (QP) in a polynomial

time.
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1 Introduction

In this paper we consider the following convex quadratic program in its classical

standard (QP) form called the primal

minimize
x

[
cT x + 1

2
xT Qx

]
, s.t. Ax = b, x � 0, (1)

and its dual form

maximize
y, x, z

[
bT y − 1

2
xT Qx

]
, s.t. AT y + z − Qx = c, z � 0, (2)
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where Q is a given (n × n) matrix, c ∈ Rn, b ∈ Rm and A is a given (m × n)

matrix.

Recently, some other important formulations have been used to study con-

vex quadratic program such as the (second-order) cone optimization problem

(SOCP). They are currently the most often used for quadratic convex programs.

See, e.g., [5].

Quadratic programming is a special case of nonlinear programming and has a

wide range of applications. A classical method to solve convex (QP) is the Wolfe

algorithm which can be considered as a direct extension of the well-known sim-

plex method, in the worst case its complexity is exponential. Therefore, there is a

growing interest for developing efficient, robust and polynomial time algorithms

to solve the problem. Primal-dual path-following methods are among the most

efficient algorithms of interior point methods (IPM) to solve linear, quadratic

programming, complementarity problems (CP) and general conic optimization

problems (COP). These algorithms are, on one hand, of Newton type and thus

lead to an efficient practical implementation and on another hand they have a

polynomial time complexity. Recently, many interior point methods have been

proposed for solving (QP) problems in its standard format or via (SCOP). These

methods are based on new search directions with best theoretical properties such

as polynomial time complexity and efficient practical implementations. See,

e.g., [2, 4, 5, 6, 7]. In this paper, we extend a recent approach developed by

Darvay [6] for linear programs to (QP) case. In this approach, based on the

introduction of a monotonic function ϕ of one real variable. The equations

xi zi = µ in the nonlinear system which defines the central path (see Wright [8])

are replaced by

ϕ

(
xi zi

µ

)
= ϕ(1).

Of course, if ϕ is the identical function we recover the classical path-following

method. For ϕ(t) = √
t we define a new class of search directions and hence a

new primal-dual path-following method for approximating the central path. We

prove that the related short-update algorithm solves (QP) locally and quadrati-

cally and in a polynomial time. We mention also some related and interesting

IPM approaches studied recently by Bai et al. [4]. They have also defined a new

class of search direction for linear optimization by using the so-called kernel
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function, that is any univariate strictly convex function k(t) that is minimal at

t = 1 and such that k(1) = 0. However, by defining

k(t) =
∫ t

1

ϕ(ξ 2) − ϕ(1)

ξϕ′(ξ 2)
dξ and for ϕ(t) = √

t, k(t) = (t − 1)2

that gives the corresponding kernel function which defines exactly the same

search direction and complexity. Nevertheless, for ϕ (t) = t it corresponds to

the kernel function k(t) = 1
2 (t

2 − 1) − log t of the logarithmic barrier function,

which gives the classical search direction. This new search direction is also

analyzed by the authors (Peng, Roos and Terlaky) in a more general context of

Self-regular proximities measures for linear and (second order) cone optimiza-

tion problem. See, e.g., [7].

The paper is organized as follows. In the next section, the problem is presented.

Section 3 deals with the new search directions. The description of the algorithm

and its convergence analysis are presented in section 4. Section 5 ends the paper

with a conclusion.

Our notation is the classical one. In particular, Rn denotes the space of real

n-dimensional vectors. Given u, v ∈ Rn, uT v is their inner product, and ‖ u‖
is the Euclidean norm, whereas ‖ u‖∞ is the l∞-norm. Given a vector u in Rn,

U = diag(u) is the n × n diagonal matrix with Uii = ui for all i.

2 The statement of the problem

Through the paper the following assumptions hold.

• Positive semidefinitness (PSD). The matrix Q is symmetric and positive

semidefinite.

• Interior point condition (IPC). There exists (x0, y0, z0) such that Ax0 =
b, AT y0 + z0 − Qx0 = c, x0 > 0, z0 > 0.

• The full rank condition (FR). The matrix A is of rank m (m � n).
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The optimal solutions of the primal and the dual are the solutions of nonlinear

system of (2n + m) of equations:

Ax = b, x � 0

AT y + z − Qx = c, z � 0,

xi zi = 0, for i = 1, . . . , n.

(3)

The first equation of the system (3) represents the primal feasibility, the second

one the dual feasibility and the last one the complementarity condition.

The classical path-following method consists in introducing a positive param-

eter µ. One considers the nonlinear system parameterized by µ

Ax = b,

AT y + z − Qx = c, z > 0, x > 0,

xi zi = µ, for i = 1, . . . , n.

(4)

It is shown, under our assumptions, that there exists one unique solution

(x(µ), y(µ), z(µ)). The path µ → (x(µ), y(µ), z(µ)) is called the central-path

(see for instance Wright [8]). It is known that when µ �→ 0, (x(µ), y(µ), z(µ))

goes to a solution of (3). Applying the Newton’s method for the system (4),

we develop the classical primal-dual path-following algorithm.

In the next section, we shall present a new method for approximating the

central path.

3 New search directions

In the proposed method, we replace the n equations xi yi = µ in (4) by n equiv-

alent equations ϕ
(

xi yi
µ

)
= ϕ(1) where ϕ is a real valued function on [0, +∞)

and differentiable on (0, +∞) such that ϕ and ϕ′(t) > 0, for all t > 0.

Given µ > 0 and (x, y, z) such that AT y + z − Qx = c, Ax = b, x > 0 and

z > 0 but not such that ϕ
(

xi zi
µ

)
= ϕ(1) for all i , a new triple (x + �x, y +

�y, z + �z) is obtained thanks to the Newton method for solving the nonlinear
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system. One obtains

A�x = 0,

AT �y + �z − Q�x = 0,

1

µ
ϕ′
(

xi zi

µ

)
(zi�xi + xi�zi ) = ϕ (1) − ϕ

(
xi zi

µ

)
for i = 1, . . . , n.

(5)

For commodity let us introduce the vectors v and p of Rn defined by

vi =
√

xi zi

µ
and pi = ϕ(1) − ϕ(v2

i )

viϕ(v2
i )

for i = 1, . . . , n.

Next let us introduce the vectors

dx = X−1V �x, dz = Z−1V �z, dy = �y (6)

and the matrix

Ā = 1

µ
AV −1 X and Q̄ = 1

µ
V −1 X QV −1 X

then the system reduces to the system

Ādx = 0, − ĀT dy − dz + Q̄dx = 0, dx + dz = p,

which leads to the system(
(I + Q̄) − ĀT

− Ā 0

)(
dx

dy

)
=
(

p

0

)

which is non singular since Q̄ is positive semidefinite and Ā has a full rank.

Then dz is computed by the formula

dz = p − dx .

Remark 3.1. If we adopt ϕ(t) = t, then we recover the classical primal-dual

path-following method

In this paper, we shall consider ϕ(t) = √
t . Then ϕ′(t) = 1

2
√

t
. It follows that

pi = 2

(
1 −

√
xi zi

µ

)
= 2(1 − vi ), for all i
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or

p = 2(e − v) (7)

where e = (1, . . . , 1)T and the system (5) becomes

A�x = 0,

AT �y + �z − Q�x = 0,

zi�xi + xi�zi = µvi pi for i = 1, . . . , n.

(8)

In addition with the notation in (6), we have

xi�zi + zi�xi = µvi (dxi + dzi ) for i = 1, . . . , n, (9)

and

µdxi dzi = �xi�zi for i = 1, . . . , n. (10)

4 Description of the algorithm and its convergence analysis

Now we define a proximity measure for the central path as

δ(X Ze, µ) = ‖p‖
2

= ‖e − v‖ . (11)

In addition, we define the vector q by

qi = dxi − dzi .

Then

dxi dzi = p2
i − q2

i

4
,

and

‖q‖ � ‖p‖ . (12)

This last inequality follows from

‖p‖2 = ‖q‖2 + 2dT
x dz

since dT
x dz = dT

x (Q̄dx − ĀT dy) = dT
x Q̄ dx � 0, with Ādx = 0 and Q̄ is a

positive semidefinite matrix.
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4.1 The algorithm

Let ε > 0 be the given tolerance, 0 < θ < 1 the update parameter (default θ =
1/(2

√
n)), and 0 < τ < 1 the proximity parameter

(
default τ = 1

2

)
. Assume

that for the triple (x0, y0, z0) IPC holds and let µ0 = (x0)T z0

n . In addition, we

assume that δ(X0 Z0e, µ) < τ .

begin
x := x0; y := y0; z := z0;
µ := µ0;
while xT z = nµε do

begin

µ := (1 − θ)µ;
compute (�x,�y,�z) from (8)

x := x + �x;
y := y + �y;
z := z + �z;

end
end

In the next section we prove that the algorithm converges quadratically and

locally and in a polynomial time.

4.2 Complexity analysis

In the following lemma, we state a condition which ensures the feasibility of

the full Newton step. Let x̃ = x + �x and z̃ = z + �z be the new iterate after

a full Newton step.

Lemma 4.1. Let δ = δ(X Ze, µ) < 1. Then the full Newton step is strictly

feasible, hence

x̃ > 0 and z̃ > 0.

Proof. For each 0 � α � 1. Let x̃(α) = x + α�x and z̃(α) = z + α�z.

Hence

x̃i (α)z̃i (α) = xi zi + α(xi�zi + zi�xi ) + α2�xi�zi for all i = 1, . . . , n.
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Now, in view of (9) and (10) we have

x̃i (α)z̃i (α) = µ(v2
i + αvi (dxi + dzi ) + α2dxi dzi ) for all i = 1, . . . , n.

In addition from (7), we have

vi + pi

2
= 1, for i = 1, . . . , n.

and thus

v2
i + vi pi = 1 − p2

i

4
for i = 1, . . . , n.

Thereby

x̃i (α)z̃i (α) = µ
(
(1 − α)v2

i + α
(
v2

i + vi pi

)+ α2

4

(
p2

i − q2
i

) )
,

and

ṽ2
i = (1 − α)v2

i + α

(
1 − (1 − α)

p2
i

4
− α

q2
i

4

)
, for i = 1, . . . , n. (13)

Thus the inequality x̃i (α)z̃i (α) > 0 holds if

max
i

( ∣∣∣∣(1 − α)
p2

i

4
− α

q2
i

4

∣∣∣∣
)

< 1.

Using (11) and (12) we get

max
i

( ∣∣∣∣(1 − α)
p2

i

4
− α

q2
i

4

∣∣∣∣
)
� (1 − α)

∥∥∥ p

4

∥∥∥2

∞
+ α

∥∥∥q

4

∥∥∥2

∞

� (1 − α)
‖p‖2

4
+ α

‖q‖2

4

� ‖p‖2

4
=
(‖p‖

2

)2

= δ2 < 1.

Hence, x̃i (α)z̃i (α) > 0 for each 0 � α � 1. Since x̃i (α) and z̃i (α) are linear

function of α, then they do not change sign on the interval [0, 1] and for α = 0

we have x̃i (0) > 0 and z̃i (0) > 0. This leads to x̃i (1) > 0 and z̃i (1) > 0 for

all i . �

In the next lemma we state that under the condition δ(X Ze, µ) < 1, the full

Newton step is quadratically convergent.
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Lemma 4.2. Let x̃ = x + �x and z̃ = z + �z be the iteration obtained after

a full step. Suppose δ(X Ze, µ) < 1. Then

δ(X̃ Z̃e, µ) � δ2

1 + √
1 − δ2

.

Thus δ(X̃ Z̃e, µ) < δ2, which means quadratic convergence of the full Newton

step.

Proof. Setting in (13) α = 1, we get

ṽ2
i = 1 − q2

i

4
for i = 1, . . . , n (14)

Hence

min
i

ṽ2
i � 1 − ‖q‖2

∞
4
� 1 − ‖q‖2

4
� 1 − ‖p‖2

4
= 1 − δ2,

and thereby

min
i

ṽi �
√

1 − δ2. (15)

On the other hand, we have

δ2(X̃ Z̃e, µ) =
n∑

i=1

(1 − ṽi )
2

=
n∑

i=1

(1 − ṽi )
2 (1 + ṽi )

2

(1 + ṽi )2

=
n∑

i=1

(1 − ṽ2
i )

2

(1 + ṽi )2

� 1

(1 + mini ṽi )
2

n∑
i=1

(1 − ṽ2
i )

2

and using (15) we get

δ2(X̃ Z̃e, µ) � 1(
1 + √

1 − δ2
)2

n∑
i=1

(1 − ṽ2
i )

2
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Using (11), (12) and (14) we get

δ2(X̃ Z̃e, µ) �
∑n

i=1 q4
i

42
(
1 + √

1 − δ2
)2

�
(∑n

i=1 q2
i

)2
42
(
1 + √

1 − δ2
)2 = 1(

1 + √
1 − δ2

)2

(‖q‖2

4

)2

� 1(
1 + √

1 − δ2
)2

(‖p‖2

4

)2

.

Hence

δ(X̃ Z̃e, µ) � δ2

1 + √
1 − δ2

.

This proves the Lemma. �

The next Lemma gives an upper bound for the duality gap after a full Newton

step.

Lemma 4.3. Let x̃ = x + �x and z̃ = z + �z. Then the duality gap is

x̃ T z̃ = µ

(
n − ‖q‖2

4

)
,

hence

x̃ T z̃ ≤ µn.

Proof. We have seen from the previous lemmas that

ṽ2
i = 1 − q2

i

4
for i = 1, . . . , n.

Hence
n∑

i=1

ṽ2
i =

n∑
i=1

(
1 − q2

i

4

)
= n − ‖q‖2

4
,

but since

x̃ T z̃ = µ

n∑
i=1

ṽ2
i , (16)
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it follows that

x̃ T z̃ = µ

(
n − ‖q‖2

4

)
.

This completes the proof. �

The next Lemma discusses the influence on the proximity measure of the

Newton process followed by a step along the central path.

Lemma 4.4. Let δ = δ(X Ze, µ) < 1 and µ+ = (1−θ)µ, where 0 < θ < 1.

Then

δ(X̃ Z̃e, µ+) ≤ θ
√

n + δ

1 − θ + √
(1 − θ)(1 − δ)

.

Furthermore, if δ < 1/2, θ = 1/(2
√

n ) and n � 4, then we get

δ(X̃ Z̃e, µ+) � 1

2
.

Proof. We have

δ2(X̃ Z̃e, µ+) =
∥∥∥∥∥e −

√
x̃ ỹ

µ+

∥∥∥∥∥
2

= 1

1 − θ

∥∥∥√1 − θe − ṽ

∥∥∥2

= 1

1 − θ

n∑
i=1

(√
1 − θ − ṽi

)2

= 1

1 − θ

n∑
i=1

(√
1 − θ − ṽi

)2
(√

1 − θ + ṽi

)2
(√

1 − θ + ṽi
)2

= 1

1 − θ

n∑
i=1

(
(1 − θ) − ṽ2

i

)2
(√

1 − θ + ṽi
)2

� 1

1 − θ

1(√
1 − θ + mini ṽi

)2
n∑

i=1

(
(1 − θ) − ṽ2

i

)2
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Hence by using (13) and (14) we get

δ(X̃ Z̃e, µ+) � 1√
1 − θ

1(√
(1 − θ) +√

(1 − δ2)
)
√√√√ n∑

i=1

(
−θ + q2

i

4

)2

Now, in view of (10) and (11) we deduce that

δ(X̃ Z̃e, µ+) � 1

1 − θ +√
(1 − θ)(1 − δ2)

[
θ
√

n +
(‖q‖

2

)]

� 1

1 − θ +√
(1 − θ)(1 − δ2)

[
θ
√

n +
(‖p‖

2

)]
.

Finally, we get

δ(X̃ Z̃e, µ+) � 1

1 − θ +√
(1 − θ)(1 − δ2)

[
θ
√

n + δ
]
.

This completes the proof. �

It results from Lemma 4.4 that for the default θ = 1/(2
√

n ), the (x, z) > 0

and δ(X Ze , µ) < 1/2 are maintained during the algorithm. Hence the algo-

rithm is well defined.

In the next Lemma we compute an upper bound for the total number of

iterations produced by the algorithm.

Lemma 4.5. Assume that x0and z0are strictly feasible, µ0 = (x0)T z0

n and

δ(X0 Z0e, µ) < 1
2 . Moreover, let xk and zk be the vectors obtained after k

iterations. Then the inequality
(
xk
)T

zk � ε is satisfied for

k �
[

1

θ
log

(x0)T z0

ε

]
.

Proof. We have after k iterations that µk = (1 − θ)kµ0. Using Lemma 4.3,

it follows that
(
xk
)T

zk � nµk = (1 − θ)k(x0)T z0. Hence the inequality(
xk
)T

zk � ε holds if (1 − θ)k(x0)T z0 � ε. By taking logarithms of both

sides, we obtain

k log(1 − θ) + log(x0)T z0 � log ε.
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The estimate for the log function

− log(1 − θ) � θ for all 0 � θ < 1.

Therefore the inequality
(
xk
)T

zk � ε is fulfilled if k � 1
θ

log (x0)T z0

ε
. �

For the default θ = 1/(2
√

n), we obtain the following theorem.

Theorem 4.6. Suppose that the pair (x0, z0) is strictly feasible and let µ0 =
(x0)T z0/n. If θ = 1/(2

√
n), then the algorithm 4.1 requires at most[

2
√

n log
(x0)T z0

ε

]

iterations. For the resulting vectors we have
(
xk
)T

zk � ε.

5 Conclusion

In this paper, we have described a new primal-dual path-following method to

solve convex quadratic programs. We have proved that the short-update algo-

rithm can find an ε-solution for (QP) in

2
√

n log
(x0)T z0

ε

iterations, where x0 and z0 are the initial positive starting points. The initializa-

tion of the algorithm can be achieved as in linear optimization by using self-dual

embedding techniques. Hence, if x0 = y0 = e, we get the best well-known

short step complexity

2
√

n log
(n

ε

)
.
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