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Abstract. In this paper, we describe a new primal-dual path-following method to solve a
convex quadratic program (QP). The derived algorithm is based on new techniques for finding a
new class of search directions similar to the ones devel oped in arecent paper by Darvay for linear
programs. We prove that the short-update algorithm finds an e-solution of (QP) in a polynomial

time.
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1 Introduction

In this paper we consider the following convex quadratic programinits classical
standard (QP) form called the primal

1
minimize [ch + ExTQx] , st. Ax =5, x >0, (1)
and its dual form

- 1
maximize [bTy — EXTQX] ,st. ATy+z—0x=¢, 220, (2
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98 PATH-FOLLOWING METHOD FOR QUADRATIC PROGRAMS

where Q isagiven (n x n) matrix, c € R", b € R™ and A isagiven (m x n)
matrix.

Recently, some other important formulations have been used to study con-
vex gquadratic program such as the (second-order) cone optimization problem
(SOCP). They are currently the most often used for quadratic convex programs.
See, e.g., [9].

Quadratic programming isaspecia case of nonlinear programming and has a
widerange of applications. A classical method to solve convex (QP) isthe Wolfe
algorithm which can be considered as a direct extension of the well-known sim-
plex method, intheworst caseitscomplexity isexponential. Therefore, thereisa
growing interest for devel oping efficient, robust and polynomial time algorithms
to solve the problem. Primal-dua path-following methods are among the most
efficient algorithms of interior point methods (IPM) to solve linear, quadratic
programming, complementarity problems (CP) and general conic optimization
problems (COP). These algorithms are, on one hand, of Newton type and thus
lead to an efficient practical implementation and on another hand they have a
polynomial time complexity. Recently, many interior point methods have been
proposed for solving (QP) problemsin its standard format or via (SCOP). These
methods are based on new search directions with best theoretical properties such
as polynomial time complexity and efficient practical implementations. See,
eg., [2, 4,5, 6, 7]. In this paper, we extend a recent approach developed by
Darvay [6] for linear programs to (QP) case. In this approach, based on the
introduction of a monotonic function ¢ of one real variable. The equations
x;z; = i inthenonlinear system which defines the central path (see Wright [8])

are replaced by
XiZi
o(*2) = o
"

Of coursg, if ¢ istheidentical function we recover the classical path-following
method. For ¢(1) = /t we define anew class of search directions and hence a
new primal-dua path-following method for approximating the central path. We
prove that the related short-update algorithm solves (QP) locally and quadrati-
caly and in a polynomial time. We mention also some related and interesting
IPM approaches studied recently by Bai et al. [4]. They have also defined anew
class of search direction for linear optimization by using the so-called kernel
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function, that is any univariate strictly convex function k(¢) that is minimal at
t = 1 and such that k(1) = 0. However, by defining

k(1) = /t 0E) 0Dy ad for g = Vi k() = (¢ — 12
1 E9(ED)

that gives the corresponding kernel function which defines exactly the same
search direction and complexity. Nevertheless, for ¢ (¢) = ¢ it corresponds to
the kernel function k(¢) = %(t2 — 1) — logt of thelogarithmic barrier function,
which gives the classical search direction. This new search direction is also
analyzed by the authors (Peng, Roos and Terlaky) in a more general context of
Self-regular proximities measures for linear and (second order) cone optimiza-
tion problem. See, e.g., [7].

Thepaper isorganized asfollows. Inthenext section, the problemispresented.
Section 3 deals with the new search directions. The description of the algorithm
and its convergence analysis are presented in section 4. Section 5 ends the paper
with a conclusion.

Our notation is the classical one. In particular, R" denotes the space of rea
n-dimensional vectors. Given u, v € R*, u”v istheir inner product, and || u||
is the Euclidean norm, whereas || u|| ., isthe l-norm. Given avector u in R”,
U =diag(u) isthen x n diagona matrix with U;; = u; for all i.

2 The statement of the problem

Through the paper the following assumptions hold.

o Positive semidefinitness (PSD). The matrix Q is symmetric and positive
semidefinite.

o Interior point condition (IPC). There exists (x°, y°, z0) such that Ax° =
b, ATy0+z0— 0x%=c¢, x>0, °>0.

o The full rank condition (FR). Thematrix A isof rank m (m < n).
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100 PATH-FOLLOWING METHOD FOR QUADRATIC PROGRAMS

The optimal solutions of the primal and the dual are the solutions of nonlinear
system of (2n + m) of equations:

Ax = b, x>0
ATy 4+72—-0x = ¢, 220, (3)

xjizi =0, fori =1,...,n.

The first equation of the system (3) represents the primal feasibility, the second
onethe dual feasibility and the last one the complementarity condition.

The classical path-following method consistsin introducing a positive param-
eter 1. One considers the nonlinear system parameterized by 1

Ax = b,
ATy+z—0x =¢, z>0, x>0, (4)

xiz; = u, fori =1 ..., n.

It is shown, under our assumptions, that there exists one unique solution
(x(uw), y(u), z(n)). Thepath u — (x(w), y(u), z(w)) iscalled the central-path
(seefor instance Wright [8]). Itisknownthat when v +— 0, (x(w), y(u), z(i))
goes to a solution of (3). Applying the Newton's method for the system (4),
we develop the classical primal-dual path-following algorithm.

In the next section, we shall present a new method for approximating the
central path.

3 New search directions

In the proposed method, we replace the n equations x; y; = w in (4) by n equiv-
alent equations ¢ <XT}) = ¢(1) where ¢ isareal valued function on [0, +00)
and differentiable on (0, +00) such that ¢ and ¢'(¢) > O, foral ¢t > 0.
Given . > Oand (x, y, z) suchthat ATy +z — Ox = ¢, Ax = b, x > 0and
z > 0 but not such that ¢ <%) = ¢(1) for dl i, anew triple (x + Ax,y +
Ay, z + Az) isobtained thanks to the Newton method for solving the nonlinear
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system. One obtains
AAx = 0,
T _
) A"Ay +Az— QAx = 0, (5)
—¢' (ﬁ) (ziAxi +x;Az;) = (1) — ¢ (ﬁ) fori =1,....n
% I %

For commodity let us introduce the vectors v and p of R” defined by

iZi 1) — 2
v = [T and pi:w for i=1...,n
g vip(v7)

Next let usintroduce the vectors

d. = X'V Ax, d, = Z7'VAz, d, = Ay (6)
and the matrix

A L A 11 -1

A= =Av1iXx ad 0 = =—vixgovilx

I Iz

then the system reduces to the system
Ad, =0, —-A"dy—d,+Qd, =0, d,+d. = p,

which leads to the system

() ()= (5)

which is non singular since Q is positive semidefinite and A has a full rank.
Then d, is computed by the formula

d,=p—d,.

Remark 3.1. If we adopt ¢(t) = ¢, then we recover the classical primal-dual
path-following method

In this paper, we shall consider ¢(¢) = /1. Then ¢'(¢) = %ﬁ It follows that

pi = 2(1— /ﬁ) —2(1—v), foralli
7
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102 PATH-FOLLOWING METHOD FOR QUADRATIC PROGRAMS

or
p=2e—v) (7)
wheree = (1, ..., 1)7 and the system (5) becomes
AAx = 0,
ATAy + Az — QAx = 0, (8)

ziAx; + x;Az; = pv;p; fori = 1,...,n.
In addition with the notation in (6), we have
XAz + i Ax; = pvildy, +d;;) fori = 1,...,n, 9
and
udyd,, = Ax;Az; fori =1,...,n. (10)
4 Description of the algorithm and its convergence analysis

Now we define a proximity measure for the central path as
l
MXZ&M)=H§—=H6—UW (12)
In addition, we define the vector g by

Qi = dxi _dZ"

9]

Then ) 5
P —4;

d.d, = ,
i 4

and
gl < lipll. (12)

Thislast inequality follows from
Ipl® = llqll? + 2d] d.
snced’d, = dT(Qd, — ATd,) = d'Qd, > 0, with Ad, = Oand Q isa

positive semidefinite matrix.
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4.1 The algorithm

Let ¢ > O bethegiven tolerance, 0 < 6 < 1 the update parameter (default 6 =
1/(2y/m)), and 0 < t < 1 the proximity parameter (default T = 3). Assume
that for the triple (x°, y°, %) TPC holds and let 10 = ©2°2  |n addition, we
assumethat §(X°Z%, n) < .
begin

x:=x% y:=y% z:=20

w= u’

while x”z = nue do

begin
= 1—=0)u;
compute (Ax, Ay, Az) from (8)
X =x+ Ax;
yi=y+Ay;
z:=274 Az
end
end

In the next section we prove that the agorithm converges quadratically and
locally and in a polynomial time.

4.2 Complexity analysis

In the following lemma, we state a condition which ensures the feasibility of
the full Newton step. Let ¥ = x + Ax and 7 = z + Az be the new iterate after
afull Newton step.

Lemma 4.1. Let 6 = §(XZe, ) < 1. Then the full Newton step is strictly
feasible, hence
Xx>0and Z>0.

Proof. ForeachO < o < 1. Letx(a) = x + aAx and Z() = z + aAz.
Hence

%i(@)Zi(@) = x;zi + a(xiAzi + ziAx) +a®Ax;Az; foral i=1,...,n.

Comp. Appl. Math., Vol. 25, N. 1, 2006
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Now, in view of (9) and (10) we have
% (@)Zi (@) = w? + av;(dx; + dz;) + o’dxdz;) for dl i=1,...,n.

In addition from (7), we have

i _

> 1, fori=1,..., n.

v +

and thus

p?
viz—i—vipi: _Z[ fori=1,...,n.

Thereby

2

Fi(@F @ = (@ —av? +a (B +up) + 5 (2= a?)),

and

2

2
171.2:(l—a)viz—{—a(l—(l—a)%—aqzi), fori=1,...,n. (13)

Thusthe inequality X; (@)z; (o) > 0 holdsif

2 2
max(‘(l—oz)&—aq—i><l.
i 4 4
Using (11) and (12) we get
2 2 2 2
pi ql p q
oL 1 < _ = =z
max (|- —at|) < a-o |4 a4
Ipl? gl
< A- e
( o) 2 +« 7
2 2
< pll _ M _s2o1
4 2

Hence, x;(a)Z;(x) > Oforeach 0 < o < 1. Since X;(«) and Z; («) are linear
function of «, then they do not change sign on the interval [0, 1] and for @« = 0
wehave x;(0) > 0 and z;(0) > 0. Thisleadsto x;(1) > 0 and z;(1) > O for
al i. O

In the next lemma we state that under the condition §(XZe, u) < 1, the full
Newton step is quadratically convergent.
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Lemma 4.2. Let X = x + Ax and 7 = 7 + Az be the iteration obtained after

a full step. Suppose §(XZe, ) < 1. Then

- . §2
30(XZe, n) <

1+/1—-52

Thus 8(X Ze, 1) < 82, which means quadratic convergence of the full Newton

step.

Proof. Settingin (13) o« = 1, we get

2

f)f:l—q—" fori=1,...,n (14)
Hence
2 2 2
min? > 1 — lallz >1—M >1—M:1_52,
i 4 4 4
and thereby

mind; > v1— 82

On the other hand, we have

8?(XZe, ) = Z(l — ;)2
i=1

(15)

_ - _~_2(1+5i)2
B ;(1 RS

B Z (1—12)2
o 1+ 9;)?

i=1

1
S T
(14 min; v; i
and using (15) we get
2,55 1
§(XZe, ) <
(1+«/1—32)
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Using (11), (12) and (14) we get

n 4
82(5226, ,bL) < Zizl q; 5
42 (1+ Vio 52)
n 2 2
o Che)” 1 lal®
= 2 2 4
42 <1+ Vis 52) (1+ Vis 52)
2
_ 1 (||p||2>
(1 +VIZ 52>
Hence
- - 82
8(X Ze, ——m——.
( #) 1+/1-62
This proves the Lemma. O

The next Lemma gives an upper bound for the duality gap after afull Newton
step.

Lemma4.3. Let X = x + Ax and 7z = 7 + Az. Then the duality gap is

hence

Hence

but since

=

Hi=p) 02 (16)
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it follows that
~T~ —

x'z /L(n 1

O

This completes the proof.
The next Lemma discusses the influence on the proximity measure of the

Newton process followed by a step along the central path

Lemmad.d. Letd=08(XZe,u) <land uy = (1—0)u, where 0 <6 < 1

Then 9\/_ 5
+
8(XZe,py) < 10+ /-0

= 4, then we get

Furthermore, if § < 1/2, 6 = 1/(2/n) and n

1
§(XZ =
3( e, L) < >
Proof. We have
— 2
82()~(Ze, Uy) = |e— Y
M+

1 2
= 13 > < 0—vl>

1 & 2 ( Q—i—vl)
= — —0 -9

1_81=1( ) 9+U,)
1 i((l—@)—ﬁf)z

1-60= (VI—a+0)

N

— 0 (\/1— 6 + min; 17,')2 i=1
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Hence by using (13) and (14) we get

-~ 1 1 " q.z 2
8(X Ze. 1) < (-o+%)
VIS (T + (182>)J-1 4

1=

Now, in view of (10) and (11) we deduce that

8§(XZe,uy) <

s [ ()]
1-604+/1-6)(1-6? 2

e (2]
1-0+/1-60)(1-6? 2

Finally, we get
-~ 1
§(XZe, py) < [6v/n +6].
1-0+/1-0)1-482
This completes the proof. O

It results from Lemma 4.4 that for the default & = 1/(2/n), the (x,z) > 0
and §(XZe, ) < 1/2 are maintained during the algorithm. Hence the algo-
rithm iswell defined.

In the next Lemma we compute an upper bound for the total number of
iterations produced by the algorithm.

(XO)TZO

Lemma 4.5. Assume that x%and lare strictly feasible, u° = = — and

8§(X9Z0%, ) < % Moreover; let x* and z* be the vectors obtained after k

. . . . T . .
iterations. Then the inequality (xk) X < e is satisfied for

1 0\T 0
k}[glog(x)z]

Proof. We have after k iterations that u* = (1 — 0)*u°. Using Lemma 4.3,
it follows that (xk)Tzk < npf = (1= 0)Fx%T% Hence the inequality
(xk)Tzk < e holds if (1 — 0)F(x%)7z° < e. By taking logarithms of both
sides, we obtain

klog(l—6) +1log(x®)7z° < loge.
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The estimate for the log function
—log(l—6)>6 foradl 0<6 <1
O)TZO
&

Therefore theinequality (x*)" z* < ¢ isfulfilled if k > log &=, O

For the default & = 1/(2./n), we obtain the following theorem.

Theorem 4.6. Suppose that the pair (x°, z°) is strictly feasible and let 1° =
(xOTZ0/n. If 6 = 1/(2/n), then the algorithm 4.1 requires at most

(XO)TZO]

&

[Zﬁ log
. . . T _k
iterations. For the resulting vectors we have (x ) " <e.

5 Conclusion

In this paper, we have described a new primal-dual path-following method to
solve convex quadratic programs. We have proved that the short-update algo-
rithm can find an e-solution for (QP) in

(XO)TZO

2/nlog

&
iterations, where x° and z° are the initial positive starting points. Theinitializa-
tion of the algorithm can be achieved asin linear optimization by using self-dua
embedding techniques. Hence, if x° = y° = ¢, we get the best well-known
short step complexity

2/nlog (g)
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