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Abstract. In this paper, we deal with the ridge-type estimator for fuzzy nonlinear regression

models using fuzzy numbers and Gaussian basis functions. Shrinkage regularization methods are

used in linear and nonlinear regression models to yield consistent estimators. Here, we propose

a weighted ridge penalty on a fuzzy nonlinear regression model, then select the number of basis

functions and smoothing parameter. In order to select tuning parameters in the regularization

method, we use the Hausdorff distance for fuzzy numbers which was first suggested by Dubois

and Prade [8]. The cross-validation procedure for selecting the optimal value of the smoothing

parameter and the number of basis functions are fuzzified to fit the presented model. The simulation

results show that our fuzzy nonlinear modelling performs well in various situations.
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1 Introduction

Finding the relationships if any, existing in a set of variables when at least one

is random, is known as an important task in statistics. On one hand, regression

analysis, especially nonlinear regression, is an essential tool to analyze data.
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Many researchers use nonlinear regression more than any other statistical tool.

Nonlinear models have been applied to a wide range of situations, even to finite

populations. These models tend to be used either when they are suggested by

theoretical considerations or to build known nonlinear behavior into a model (see

for example [22, 27, 30]).

On the other hand, in most statistical practices, particularly in biology, business

or government, the underlying processes are generally complex and not well

understood. Also, a model obtained as the solution of a differential equation

generating from engineering, chemistry, or physics is usually nonlinear. Much

applied work using linear models represents a distortion of the underlying subject

matter. This means that we have no idea about the form of the relationship (see

[12, 27]). One of the major advantages in using nonlinear regression is the wide

range of functions that can be fit.

In many practical situations, it may be unrealistic to predetermine a fuzzy para-

metric regression especially for a large data set with a complicated underlying

variation trend. In this respect, some other approaches have been developed to

deal with the fuzzy regression problems without predefining a specific form of

the underlying regression relationship or with a nonlinear form of regression

relationship.

The multicolinearity [21] among the independent variables leads to increasing

error in estimating of regression coefficients. Shrinkage estimators have been

developed for many situations including the linear and nonlinear regression mod-

els. To yield consistent estimators, the nonlinear models, instrumental variables

estimation seems necessary. For this reason, the use of shrinkage estimation

to nonlinear settings is recommended. The Poisson regression model [25] and

the probit model [1] as well as to the Box-Cox transformation [18] are cases of

such models. These papers provide theoretical results indicating the superior

performance in terms of risk of certain shrinkage estimators over unrestricted

estimation [10].

One of the most commonly used regularization methods is ridge regulariza-

tion, which was first used in the context of least square regression in [17]. We

consider applying this regularization method to nonlinear regression models in-

volving basis expansions, which are useful tools to analyze the data with complex
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structures. Expressing regression functions as a linear combination of known

nonlinear functions called basis functions is the main purpose in basis expan-

sions. However, natural cubic splines, B-splines, Fourier series and radial basis

functions are widely used as basis functions [24]. In the current study, we use

Gaussian basis functions [4] because they can be expressed in a simple form

and can be easily implemented. When Gaussian basis functions are constructed

for unequally spaced data, narrow basis functions with very small dispersions

might be constructed, which can unsmoothing or unstable results if we employ

these bases. Therefore, to overcome this problem, a shrinkage estimation, which

allows to avoid these effects on the narrow basis functions by estimating their

coefficients towards exactly zero can be used [29].

The structure of paper is as follows: Section 2 explains basic concepts of

fuzzy numbers which we used in this paper. In Section 3, multivariate fuzzy

nonlinear regression model based on ridge estimation will be presented. In Sec-

tion 4, we discuss the selection of number basis functions and the smoothing

parameter. Finally, in the last two sections, some numerical examples and com-

ments are given.

2 Preliminaries

In this section, we read some definitions and introduce the notations which will

be used throughout the paper.

Definition 2.1. ([3]) Let X be a nonempty set. A fuzzy set ũ in X is characterized

by its membership function ũ : X → [0, 1]. For each x ∈ X, ũ(x) is interpreted

as the degree of membership of an element x in the fuzzy set ũ.

Let us denote by RF the class of fuzzy subsets of the real axis R (i.e. ũ : R →

[0, 1]) satisfying the following properties:

(i) ũ is normal, i.e., there exists s0 ∈ R such that ũ(s0) = 1,

(ii) ũ is a convex fuzzy set, i.e.,

ũ(ts + (1 − t)r) ≥ min{ũ(s), ũ(r)}, ∀t ∈ [0, 1], s, r ∈ R

(iii) ũ is upper semi-continuous on R,

(iv) cl{s ∈ R | ũ(s) > 0} is compact, where cl denotes the closure of a subset.

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 10:47 — page 326 — #4

326 RIDGE-TYPE REGULARIZATION IN FUZZY NONLINEAR REGRESSION

RF is called the space of fuzzy numbers, and obviously R ⊂ RF .

For 0 < α ≤ 1 denote [ũ]α = {s ∈ R | ũ(s) ≥ α} and [ũ]0 = cl{s ∈

R | ũ(s) > 0} . It is clear that the α−level set of a fuzzy number is a closed and

bounded interval [uα, uα], where uα denotes the left-hand endpoint of [ũ]α and

uα denotes the right-hand endpoint of [ũ]α .

Another definition for a fuzzy number is as follows.

Definition 2.2. ([3]) A fuzzy number ũ in parametric form is a pair (u, u) of

functions u(α), and u(α), 0 ≤ α ≤ 1, which satisfies the following require-

ments:

(i) u(α) is a bounded non-decreasing left continuous function in (0, 1], and

right continuous at 0,

(ii) u(α) is a bounded non-increasing left continuous function in (0, 1], and

right continuous at 0,

(iii) u(α) ≤ u(α), 0 ≤ α ≤ 1.

A crisp number a is simply represented by u(α) = u(α) = a, 0 ≤ α ≤ 1.

We recall that for a < b < c, which a, b, c ∈ R, the triangular fuzzy number

ũ = (a, b, c) determined by a, b, c is given such that u(α) = a + (b − c)α and

ū(α) = c − (c − b)α are the endpoints of the α-level sets, for all α ∈ [0, 1].

For arbitrary ũ = (u(α), u(α)), ṽ = (v(α), v(α)), we define the following

(i) (ũ ⊕ ṽ)(α) = (u(α) + v(α), u(α) + v(α)), ∀α ∈ [0, 1],

(ii) (ũ − ṽ)(α) = (u(α) − v(α), u(α) − v( α)), ∀α ∈ [0, 1],

(iii) (k ⊗ ũ)(α) =

{
(ku(α), ku(α)), k ≥ 0

(ku(α), ku(α)), k < 0
, ∀α ∈ [0, 1],

where k is a scalar. Moreover, when k = −1, we have k ⊗ ũ = −ũ.

The Hausdorff distance between fuzzy numbers given by D : RF × RF →

R+
⋃

{0},

D(ũ, ṽ) = sup
α∈[0,1]

max
{ ∣

∣ u(α) − v(α)
∣
∣ , | u(α) − v(α) |

}
,

where, ũ = (u(α), u(α)), ṽ = (v(α), v(α)) ⊂ R.

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 10:47 — page 327 — #5

R. FARNOOSH, J. GHASEMIAN and O. SOLAYMANI FARD 327

Note that (RF , D) is a complete metric space (see [3, 11, 13]) and has the

following properties,

(i) D(ũ ⊕ w̃, ṽ ⊕ w̃) = D(ũ, ṽ), ∀ ũ, ṽ, w̃ ∈ RF ,

(ii) D(k ⊗ ũ, k ⊗ ṽ) = |k| D(ũ, ṽ), ∀ k ∈ R, ũ, ṽ ∈ RF ,

(iii) D(ũ ⊕ ṽ, w̃ ⊕ ẽ) ≤ D(ũ, w̃) + D(ṽ, ẽ), ∀ ũ, ṽ, w̃, ẽ ∈ RF .

Definition 2.3. ([3]) A mapping f : RF → RF is called a fuzzy process.

Therefore, its α-level set can be written as follows,

[ f (x̃)]α = [ f α(x̃), f
α
(x̃)], x̃ ∈ RF , α ∈ [0, 1].

Definition 2.4. ([11]) A mapping f : RF → RF is called continuous at point

x̃0 ∈ RF provided for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists

δ(ε, α) such that D([ f (x̃)]α, [ f (x̃0)]α) < ε, whenever D([x̃]α, [x̃0]
α
) < δ(ε, α)

for all x̃ ∈ RF .

3 Multivariate Fuzzy Nonlinear Regression Model Based on

Ridge Estimation

A fuzzy nonlinear regression model with multivariate fuzzy input and output is

considered in this section and, a fitting procedure is proposed for this model.

Suppose that we have n independent observations (ỹi , x̃i ); i = 1, 2, . . . , n.

Here, a fuzzy nonlinear regression model is considered as follows,

ỹi = m(x̃i ) ⊕ ε̃i , i = 1, 2, . . . , n (1)

In this model, x̃i = (x̃i1, . . . , x̃i p) ∈ (RF)p; i = 1, 2, . . . , n, are vectors of

p-dimensional independent variables(inputs) and ỹi ∈ RF is univariate output.

The function m(.), a mapping from (RF)p to RF , is an unknown fuzzy smooth

function. Moreover, ε̃i ∈ RF for which ε̃α
i = (εi (α), εi (α)), and εi (α) and εi (α))

are independently, normally distributed with mean zero and variance σ 2(α).

Regarding Definition 2.3, the fuzzy function m(.) can be expressed as

mα(x̃i j ) =
[
mα(xi j ), mα(xi j )

]
; i = 1, 2, . . . , n, j = 1, 2, . . . , p.
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So, we can write the model ỹ = m(x̃) ⊕ ε̃, as the follow form,





y(α) = mα(x̃) + ε(α)

y(α) = mα(x̃) + ε(α)
(2)

that equivalent to 




y(α) = m(x, x; α) + ε(α)

y(α) = m(x, x; α) + ε(α)
(3)

We may assume any component of m(.) or m(.) has a linear combination of basis

functions φl(x, x, α); l = 1, . . . , k in the form

m(x, x, α) = b0(α) +
k∑

l=1

bl(α)φl(x, x, α) (4)

and

m(x, x, α) = b0(α) +
k∑

l=1

bl(α)φl(x, x, α) (5)

where

b(α) = (b0(α), b1(α), . . . , bk(α))T and b(α) = (b0(α), b1(α), . . . , bk(α))T

are fuzzy unknown coefficient parameter vectors and for Xα = (x, x, α), Gaus-

sian basis functions are given by






φl(Xα, μ
l
(α), hl(α)) = exp

(
−

||Xα−μ
l
(α)||2

2h2
l (α)

)
,

φl(Xα, μl(α), hl(α)) = exp
(

−||Xα−μl (α)||2

2h
2
l (α)

)
,

(l = 1, . . . , k) (6)

where μ
l
(α) and μl(α) are p-dimensional vector determining the center of the

basis functions, hl
2(α) and hl

2
(α) are the width parameters and ||.|| is the Euclid-

ian norm. Unknown parameters in the models (4) and (5) include the coefficient

parameters b(α) = (b(α), b(α)), and the centers μ
l
(α), μl(α) and width param-

eters hl
2(α), hl

2
(α) required for Gaussian basis functions. These parameters are

generally determined in a two-stage procedure in order to avoid local minimum
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and identification problems. In the first stage, the centers μ
l
(α), μl(α) and dis-

persion hl
2(α), hl

2
(α) are determined by using the k-means clustering algorithm.

The data set of observations of the explanatory variables (x1(α), . . . , xn(α)) and

(x1(α), . . . , xn(α)) are divided respectively into k clusters (C1(α), . . . , Ck(α))

and (C1(α), . . . , Ck(α)); centers μ
l
(α), μl(α) and dispersions hl

2(α), hl
2
(α) are

determined by





μ̂
l
(α) = 1

nl

∑
xi (α)∈Cl

xi (α),

μ̂l(α) = 1
nl

∑
xi (α)∈Cl

xi (α),

ˆh2
l (α) = 1

nl

∑
xi (α)∈Cl

||xi (α) − μ
l
(α)||2,

ˆ
h

2
l (α) = 1

nl

∑
xi (α)∈Cl

||xi (α) − μl(α)||2,

(l = 1, . . . , k) (7)

where nl is the number of observations included in the l-th cluster Cl or Cl .

Replacing μl(α) = (μ
l
(α), μl(α)) and h2

l (α) = (hl
2(α), hl

2
(α)) in (6) by (7)

respectively, we obtain a set of 2k basis functions





φl(Xα, μ̂
l
(α), ĥl(α)) = exp

(
−

||Xα−μ̂
l
(α)||2

2ĥ
2
l (α)

)
,

φl(Xα, μ̂l(α), ĥl(α)) = exp
(

−||Xα−μ̂l (α)||2

2ĥ
2

l (α)

)
,

(l = 1, . . . , k) (8)

For n independent observations (ỹi , x̃i ); i = 1, 2, . . . , n, the fuzzy nonlinear

regression model based on Gaussian basis functions

φl(X
α, μ

l
(α), hl(α)), φl(X

α, μl(α), hl(α)), l = 1, . . . , k

given in (6) is expressed as





y
i
(α) = bT (α)φ(Xα

i , μ
l
(α), hl(α)) + εi (α)

yi (α) = b
T
(α)φ(Xα

i , μl(α), hl(α)) + εi (α)

(9)

where

φ(Xα
i , μ

l
(α), hl(α)) = (1, φ1(X

α
i , μ

l
(α), hl(α)), . . . , φk(X

α
i , μ

l
(α), hl(α))),

φ(Xα
i , μl(α), hl(α)) = (1, φ1(X

α
i , μl(α), hl(α)), . . . , φk(X

α
i , μl(α), hl(α))),

b(α) = (b0(α), b1(α), . . . , bk(α))T , b(α) = (b0(α), b1(α), . . . , bk(α))T ,
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and εi (α), εi (α) are error terms. If the error terms are independently and nor-

mally distributed with mean 0 and variance h2
l (α) = (hl

2(α), hl
2
(α)), for all

α ∈ [0, 1] the nonlinear regression model (9) has a probability density function





f
(

y
i
(α)|Xα

i ; b(α), h2(α)
)

= 1√
2πh2(α)

exp
[
−

{y
i
(α)−bT (α)φ(Xα

i )}2

ˆ2h2(α)

]
,

f
(

yi (α)|Xα
i ; b(α), h

2
(α)

)

= 1√
2πh

2
(α)

exp
[
−

{yi (α)−b
T
(α)φ(Xα

i )}2

ˆ
2h

2
(α)

]
, (i = 1, . . . , n)

(10)

Then the maximum likelihood estimates of the coefficient vectors b(α), b(α)

and h2
l (α) = (hl

2(α), hl
2
(α)) are respectively given by






b̂(α) = (8T 8)−18T y(α)

b̂(α) = (8
T
8)−18

T
y(α)

ĥ
2
(α) = 1

n [y(α) − 8 b̂(α)]T [y(α) − 8 b̂(α)]

1
n [y(α) − 8 b̂(α)]T [y(α) − 8 b̂(α)]

(11)

where

8 = (φ(Xα
1 , μ

l
(α), hl(α)), . . . , φ(Xα

n , μ
l
(α), hl(α))),

8 = (φ(Xα
1 , μl(α), hl(α)), . . . , φ(Xα

n , μl(α), hl(α))),

y(α) = (y
1
(α), y

2
(α), . . . , y

n
(α))T ,

y(α) = (y1(α), y2(α), . . . , yn(α))T .

We estimate b(α) = (b(α), b(α)) and h2(α) by the regularization method,

because the maximum likelihood method often yields unstable estimates in fitting

a nonlinear model to data with a complex structure. We consider maximizing the

penalized log-likelihood function, instead of using the log-likelihood function,





lλ(θ(α)) =
∑n

i=1 log f
(
yα

i
|Xα

i ; b(α), h(α)
)
− nλH(b(α))

lλ(θ(α)) =
∑n

i=1 log f
(
yα

i |Xα
i ; b(α), h(α)

)
− nλH(b(α))

(12)
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where

θ(α) = (bT (α), h2(α))T , θ(α) = (b
T
(α), h

2
(α))T ,

and H(b(α)) = [H(b(α)), H(b(α))] is a penalty function for b(α) and λ(> 0)

is a smoothing parameter that controls the smoothness of the fitted model. Based

on the ridge penalty, in l2 norm, (H(b(α)), H(b(α))) given by





H(b(α)) = 1
2

∑k
l=1 bl

2(α) = 1
2 bT (α)b(α),

H(b(α)) = 1
2

∑k
l=1 bl

2
(α) = 1

2 b
T
(α)b(α).

(13)

Then, the maximum penalized likelihood estimates of b(α) = (b(α), b(α)) and

h2(α) = (h2(α), h
2
(α)) are respectively given by






b̂(α) = [8T 8 + nλĥ
2
(α)Il+1]−18T y(α),

b̂(α) = [8
T
8 + nλĥ

2
(α)Il+1]−18

T
y(α),

ĥ
2
(α) = 1

n [y(α) − 8 b̂(α)]T [y(α) − 8 b̂(α)],

ĥ
2
(α) = 1

n [y(α) − 8 b̂(α)]T [y(α) − 8 b̂(α)].

(14)

Il+1 is an (l + 1) dimensional identity matrix. Note that these estimators

depend on each other. Therefore, we provide an initial value for the variance(
h2

X̃α(0)(α), h
2
X̃α(0)(α)

)
first, then (b̂(α), b̂(α)) and

(
h2

X̃α (α), h
2
X̃α (α)

)
are up-

dated until convergence. This estimation method is the maximum penalized

likelihood with the quadratic form (see [9, 23]). The consistency and the rate of

convergence of these estimators proved in ([5, 15, 20]).

4 Selection of the number of basis function and the smoothing parameter

The estimates that achieved in (14) by the regularization method depends upon

the number of basis functions 2k and the value of the smoothing parameter λ.

Appropriate determining these values is a crucial issue. The fuzzified cross-

validation procedure based on the Hausdorff distance between fuzzy numbers,

can be described as follows. Let





ŷ
i
(α) = m̂α

(x̃i ) = b̂
T
(α)φ(Xα

i , μ
l
(α), hl(α))

ŷi (α) = m̂
α
(x̃i ) = b̂

T
(α)φ(Xα

i , μl(α), hl(α)),

(15)
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be the predicted fuzzy ridge nonlinear regression function at input Xα
i computed

by our method. Let

CV (k, λ)=
1

n

n∑

i=1

D(ỹi , ˆ̃yi ). (16)

The CV (k, λ) quantity gives an overall measurement of the difference between

the actual values of dependent variable and its estimation. However, because of

the error term in model (1) the CV (k, λ) cannot efficiently reflect the close-

ness between the underlying fuzzy nonlinear regression function m(x̃) and its

estimate. Therefore, we define a quantity for measuring the bias between the

objective function and its estimate, which is

B I AS(k, λ)=
1

n

n∑

i=1

D(m(x̃i ), m̂(x̃i )). (17)

The B I AS(k, λ) makes sense for examining the performance of the different

methods by simulation. Both CV (k, λ) and B I AS(k, λ) will be reported in our

simulations to numerically evaluate the performance of the proposed method.

Choose k0 and λ0 as the optimal values such that

CV (k0, λ0) = min
k>0,λ>0

CV (k, λ), and,

B I AS(k0, λ0) = min
k>0,λ>0

B I AS(k, λ).

In practice, we may compute for a series of values of k and λ to obtain k0 and

λ0. A smoother regression function generally corresponds to a larger value of k

while a more fluctuating regression function tends to select a smaller value of k.

5 Numerical results

In this section, we use Monte Carlo simulations to investigate the performance

of the proposed model by computing CV (k, λ) and B I AS(k, λ). Here, two

simulation examples are considered: a curve fitting and a surface fitting. The

results are obtained for some values of sample size, k and λ.

Example 5.1. Curve fitting. In this simulation repeated random samples (ỹi , x̃i );

i = 1, 2, . . . , n with n = 100 or 120 were generated from a true nonlinear

Comp. Appl. Math., Vol. 31, N. 2, 2012
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regression model ỹi = m(x̃i ) ⊕ ε̃i where

m(x̃) = exp(2x̃2).

The design points x̃i are uniformly distributed in [0, 1]F ⊆ RF and the

errors ε̃α
i = (εi (α), εi (α)), which εi (α) and εi (α) are independently, normally

distributed. The mean of distribution is zero and the standard deviations are

respectively τ = 0.1Rm and τ = 0.1Rm with Rm, Rm being the ranges of m(x̃)

or m(x̃) over x̃i ∈ [0, 1]F .

CV (k, λ) and B I AS(k, λ) are used to numerically evaluate the performance

of method and the related results are summarized in Table 1. In this example it

is clear that the ridge estimation must be used.

Sample Size(n) λ k B I AS CV

100 0 (without ridge) 20 21.310 21.28

100 1.15e-1 50 3.99e-4 0.008

100 1.15e-5 20 4.31e-4 0.0084

100 7.15e-5 20 0.0017 0.0081

100 1.15e-2 20 0.0102 0.0114

100 1.15e-3 20 0.0043 0.009

100 1.15e-7 20 4.96e-6 0.0081

100 8.15e-10 10 0.0041 0.0082

100 1.15e-3 10 0.09 0.0896

100 7.15e-5 5 0.38 0.37

100 8.15e-10 5 0.09 0.0917

120 1.15e-3 30 6.35e-4 0.0084

120 7.15e-5 30 3.96e-5 0.0083

Table 1 – The simulation results obtained by the proposed method.

Example 5.2. Surface fitting. Next, we applied the modeling strategy to surface

data. We generated random samples (ỹi , x̃1i , x̃2i ); i = 1, 2, . . . , n with n = 100

or 120 from a true model ỹi = m(x̃1i , x̃2i ) ⊕ ε̃i where

m(x̃1, x̃2) = exp
(

−2
√

x̃1
2 + x̃2

2
)

.
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The design points (x̃1i , x̃2i ) are uniformly distributed in [0, 1]F × [0, 1]F ⊆

(RF)2. The errors ε̃α
i = (εi (α), εi (α)), which εi (α) and εi (α) are independently,

normally distributed. The mean of distribution is zero and the standard devia-

tions are respectively τ = 0.1Rm and τ = 0.1Rm with Rm, Rm being the ranges

of m(x̃1, x̃2) or m(x̃1, x̃2) over (x̃1, x̃2) ∈ [0, 1]F × [0, 1]F .

Table 2 shows the result for this dataset. The results show that the ridge method

still produces a quite satisfactory estimate of the fuzzy nonlinear regression in

the case of two-dimensional input.

Sample Size(n) λ k B I AS CV

120 0 (without ridge) 30 6.12 6.01

100 1.15e-1 50 0.0030 0.0090

100 1.15e-5 20 2.52e-6 0.008

100 7.15e-5 20 1.57e-5 0.0085

100 1.15e-2 20 0.0023 0.0098

100 1.15e-3 20 2.50e-4 0.0083

100 1.15e-7 20 2.88e-8 0.009

100 8.15e-10 10 3.61e-6 0.0082

100 1.15e-3 10 0.0058 0.0096

100 7.15e-5 5 0.0179 0.0182

100 8.15e-10 5 0.0165 0.0177

120 1.15e-3 30 1.68e-5 0.0086

120 7.15e-5 30 0.0014 0.0093

Table 2 – The simulation results for two-dimensional dataset obtained by the proposed method.

Example 5.3. Consider the below function from [31].

g(x) = 10 + 5 sin(0.25π(1 − x2))

Let 




yi = g(xi ) + rand[−0.5, 0.5],

σi = 1
3 g(xi ) + rand[−0.25, 0.25],

i = 1, 2, . . . , 100,

The observed fuzzy outputs are

ỹi = (y
i
, yi ) = (yi − σi , yi + σi ), i = 1, 2, . . . , 100.
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Table 3 shows the result for this dataset.

Method Kernel λ k B I AS CV

The proposed method – 0.001 20 0.0031 0.0032

– 0.001 10 0.0318 0.0321

– 0.01 20 0.0162 0.0178

– 0.01 10 2.8874e-4 3.2981e-4

– 0.03 10 0.2692 0.2944

– 0.03 20 0.1758 0.1982

– 0.003 20 2.2701e-5 4.3991e-5

LLS Gauss 0.21 – 0.0520 0.2252

Epanechnikov 0.52 – 0.0552 0.2544

KS Gauss 0.15 – 0.0821 0.2080

Epanechnikov 0.34 – 0.0848 0.2337

Table 3 – The simulation results obtained by different methods.

In this example LLS and KS, respectively stand for the local linear smoothing

and kernel smoothing methods.

6 Conclusions

In this study, we dealt with estimating the ridge regularization in fuzzy non-

linear regression model with modelling the data with multivariate fuzzy input

and output. The ridge estimation of fuzzy nonlinear regression models based

on Gaussian basis function with the cross-validation procedure for selecting the

optimal values of the smoothing parameter and the number of basis function was

proposed. Some simulation experiments were conducted to assess the perfor-

mance of the method. By computing the CV (k, λ) and B I AS(k, λ), we found

that the proposed method performs quite well in reducing the error and producing

a satisfactory estimate of the parameters of nonlinear regression function.

As demonstrated by the numerical experiments, the increasing of k, the number

of basis function, increases the accuracy of model. In this case we can decrease

the smoothing parameter λ. The small values of CV (k, λ) and B I AS(k, λ)

indicates that the proposed method tends to produce estimates that are more

close to their right values and gives less biased estimates of the real function.
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