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Abstract. Let Pm(z) be a matrix polynomial of degreem whose coefficientsAt ∈ Cq×q

satisfy a recurrence relation of the form:hk A0 + hk+1A1 + ∙ ∙ ∙ + hk+m−1Am−1 = hk+m,

k ≥ 0, wherehk = RZkL ∈ Cp×q, R ∈ Cp×n, Z = diag(z1, . . . , zn) with zi 6= zj for i 6= j ,

0 < |zj | ≤ 1, andL ∈ Cn×q. The coefficients are not uniquely determined from the recurrence

relation but the polynomials are always guaranteed to haven fixed eigenpairs,{zj , l j }, wherel j

is the j th column ofL∗. In this paper, we show that thezj ’s are also then eigenvalues of an

n×n matrixCA; based on this result the sensitivity of thezj ’s is investigated and bounds for their

condition numbers are provided. The main result is that thezj ’s become relatively insensitive to

perturbations inCA provided that the polynomial degree is large enough, the numbern is small,

and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical

results corresponding to a matrix polynomial arising from an application in system theory show

that low sensitivity is possible even if the spectrum presents clustered eigenvalues.
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1 Introduction

We are concerned with matrix polynomials

Pm(z) = A0 + z A1 + ∙ ∙ ∙ + zm−1Am−1 − zmI , z ∈ C, (1)

whose coefficientsAt ∈ Cq×q (t = 0 : m − 1) satisfy a recurrence relation of

the form

hk A0 + hk+1A1 + ∙ ∙ ∙ + hk+m−1Am−1 = hk+m, k = 0, 1, ∙ ∙ ∙ (2)

wherehk ∈ Cp×q. The coefficients, known aspredictor parameters, reflect

intrinsic properties of the sequence{hk} such as frequencies, damping factors,

plane waves, etc, whose estimation from a finite data set{hk}T
k=0, is an important

problem in science and engineering [1, 19, 20, 21, 22, 28]. In this work, we

concentrate on polynomials arising in applications where the data are assumed

to be modeled as

hk = R Zk L , k = 0, 1, . . . (3)

whereZ = diag(z1, . . . , zn) with zi 6= zj for i 6= j, |zi | ≤ 1, R ∈ Cp×n is of

rank p andL ∈ Cn×q of rankq with rows scaled to unit length. Also, as usual

in the applications of interest, we shall assume thatn is a small number.

Model (3) covers, e.g., impulse response samples of dynamic linear systems

[1, 4, 19, 28, 29], where thez’s are system poles, time domain nuclear magnetic

resonance (NMR) data [26, 27], and time series defined by

hk =
d∑

j =1

f j coskλ j + gj sinkλ j ,

where f j , gj ∈ Cp×1, thez’s are of the formzj = eıλ j (ı =
√

−1), n = 2d, and

q = 1 (see [22] and references therein).

In these applications, one wants to estimate the parameterszj and the matrices

R, L from a finite data set{hk}T
k=0. The problem is difficult asn is not always

known in advance and the available data are corrupted by noise. However, a

relatively simple polynomial-based approach can be used. The approach relies

on the fact that if the data are free of noise and the coefficients are estimated

from a linear system constructed by stackingm′ successive recurrence relations,
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where we assume thatm′ ≥ m ≥ n, andn is the rank of the coefficient matrix,

then Pm(z) haszj ( j = 1: n) as eigenvalue andl j ( j = 1: n), the j th column

of L∗, as associated left eigenvector [1, 19, 28] (the star symbol denotes conju-

gate transpose). Details about eigenvalues of matrix polynomials can be found

in [12]. The remainingmq − n eigenvalues have no physical meaning and are

commonly known asspurious eigenvalues. Once the eigenpairs{zj , l j } are avail-

able, the estimation ofR is straightforward. The same approach can be used in

the noisy data case but some criterion is needed to separate the eigenvalues of

interest from the spurious ones.

Note that since{zj , l j } are eigenpairs ofPm(z), then there holds

l ∗j Pm(zj ) = 0, j = 1: n. (4)

This is an underdetermined linear system of the form

KmXA = ZmL , (5)

where XT
A =

[
AT

0 ∙ ∙ ∙ AT
m−1

]
andKm is ann × mq full-rank Krylov matrix

defined by

Km = [L Z L Z2L ∙ ∙ ∙ Zm−1L]. (6)

Thus, all polynomials whose coefficients satisfy (2) (and hence (5)) will haven

fixed eigenpairs,{zj , l j }, but the remainder of their eigenstructure will depend on

the solution chosen. In the sequel we refer to thezj ’s as prescribed eigenvalues

of Pm(z) and to the polynomial itself as a polynomial with partially prescribed

eigenstructure, or shortly, as a predictor matrix polynomial. For applications

involving predictor polynomials, the reader is referred to [1, 19, 21, 25, 29, 22].

We observe also that associated withPm(z) there is a block companion matrix

CA defined by

CA =











0 0 ∙ ∙ ∙ 0 A0

Iq 0 ∙ ∙ ∙ 0 A1

0 Iq ∙ ∙ ∙ 0 A2
...

...
. . .

...
...

0 0 ∙ ∙ ∙ Iq Am−1











. (7)

This matrix has the same eigenvalues asPm(z) [12], left eigenvectors of the

form `∗ = [l ∗ zl∗ ∙ ∙ ∙ zm−1l ∗] with l a left eigenvector ofPm(z), and satisfies the
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matrix equation

KmCA = ZKm. (8)

In practice the coefficientsAt are never known exactly and one has to ana-

lyze the sensitivity of thezj ’s to perturbations inAt . The problem has received

the attention of many researchers and many sensitivity analyses for the scalar

case (i.e., forq = 1) are now available, see, e.g., [2, 6, 17, 21, 25]. Some

results concerning sensitivity of eigenvalues of general matrix polynomials can

be found in [14, 24]. However, to the best of our knowledge nothing has been

done on sensitivity analysis of prescribed eigenvalues of predictor polynomials

for q > 1. The goal of this work is to carry out a sensitivity analysis of pre-

scribed eigenvalues only, focusing on the influence of the polynomial degree on

such sensitivity. We show that this can be done by relating thezj ’s to a small

n × n matrix obtained by projectingCA onto an appropriate subspace and then

analyzing the projected eigenproblem. As a result, simple estimates of measures

of sensitivity of thezj ’s in the form of informative upper bounds are given.

The following notation is used throughout the paper. ForA ∈ Cm×n, ‖A‖2

and ‖A‖F denote the 2-norm (or spectral) and Frobenius norm ofA, respec-

tively. A† denotes the Moore-Penrose pseudo-inverse ofA. The i th singular

value of A is denoted byσi (A). The 2-norm condition number ofA, κ(A), is

defined byκ(A) = ‖A‖2‖A†‖2. The spectrum ofA ∈ Cn×n is denoted byλ(A).

The identity matrix of ordern is denoted byIn and its j th column byej .

The paper is organized as follows. In Section 2, we describe results concern-

ing the singular values of projected companion matrices by extending the work

in [5]. The results obtained are then exploited in Section 3, in which we analyze

the departure of the projected companion matrix from normality. In Section 4,

we analyze the condition numbers of thezj ’s introduced by Wilkinson [30],

and the overall 2-norm condition number of the related eigenvalue problem. We

show that these measures of sensitivity are governed by the 2-norm condition

number of the Krylov matrix and conclude that eigenvalues near the unit circle

become relatively insensitive to noise provided that the polynomial degree is

large enough and the eigenvalues themselves are not extremely close to each

other. In addition to this, we provide estimates for the 2-norm condition number

of controllability Gramians of multi-input multi-output discrete dynamical sys-
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tems in diagonal form. Numerical results corresponding to a matrix polynomial

arising from an application in system theory show that low sensitivity is possible

even if some eigenvalues are clustered.

2 Singular value analysis of the projected companion matrix

In order to start our analysis we introduce a new block companion matrix asso-

ciated with the prescribed eigenvalues. LetCB be defined by

CB =











B0 Iq 0 ∙ ∙ ∙ 0

B1 0 Iq ∙ ∙ ∙ 0
...

...
. . .

. . .
...

Bm−2 0 ∙ ∙ ∙ 0 Iq

Bm−1 0 ∙ ∙ ∙ 0 0











(9)

whose first column block, denoted byXB, is any solution of the underdetermined

linear systemKmXB = Z−1L. This definition ensures thatz−1
j ( j = 1: n) is an

eigenvalue ofCB and that there holds

KmCB = Z−1Km. (10)

Let the columns ofV form an orthonormal basis forR(K∗
m), the column

space ofK∗
m. Notice that because of (8) and (10),R(K∗

m) is a left invariant

subspace of bothCA andCB associated with the eigenvalues of interest. Let

CA(m, q) andCB(m, q) be the matrices obtained by projectingCA andCB onto

R(K∗
m), that is,

CA(m, q) = V ∗CAV , CB(m, q) = V ∗CBV . (11)

Then it is clear that

λ(CA(m, q)) = {z1, . . . zn} , λ(CB(m, q)) =
{
z−1

1 , . . . z−1
n

}
.

The goal of this section is to analyze the singular values ofCA(m, q), focusing

on their behavior as function ofm, q. Before proceeding we observe that when

the dependence ofCA(m, q) andCB(m, q) on m, q is not important for the

Comp. Appl. Math., Vol. 24, N. 3, 2005



“main” — 2006/3/9 — 16:18 — page 370 — #6

370 MATRIX POLYNOMIALS WITH PARTIALLY PRESCRIBED EIGENSTRUCTURE

understanding, these matrices will be denoted byCA andCB. Notice also that

the projector orthogonal ontoR(K∗
m), denoted byP, satisfies

P = VV ∗ = K†
mKm. (12)

Two lemmas are needed.

Lemma 2.1. For m ≥ n and q ≥ 1 there holdsCA = C−1
B .

Proof. SinceKmK
∗
m is positive definite Hermitian, it is clear that the columns

of V = K∗
m(KmK

∗
m)−1/2 form an orthonormal basis forR(K∗

m). Using this
basis and the definitions ofCA andCB we have

CACB = (KmK
∗
m)−1/2KmCAK

∗
m(KmK

∗
m)−1/2(KmK

∗
m)−1/2KmCBK

∗
m(KmK

∗
m)−1/2.

This reduces to identity on using (8), (10), and the fact thatKmK
†
m = I . �

Lemma 2.2. Let A = A1A∗
1 − B1B∗

1 with A1 ∈ Cn×p andB1 ∈ Cn×q. Assume

rank([A1 B1]) = p + q < n. Then, the number of positive, negative, and zero

eigenvalues ofA, is p, q, andn − (p + q), respectively.

Proof. Let the nonzero eigenvalues ofA be arranged so thatλ1(A) ≥

λ2(A) ≥ ∙ ∙ ∙ ≥ λp+q(A). Our proof relies on the minimax principle for eigen-

values [11]:

λk(A) = max
dim(S)=k

min
x∈S,x 6=0

x∗ Ax

x∗x
.

Let the matrixP = [B1 | A1] have a QR factorization

P = QR = [Q1 | Q2]

[
R11 R12

0 R22

]

, Q∗Q = I p+q, (13)

whereQ, R are partitioned such thatQ1 ∈ Cn×q, Q2 ∈ Cn×p, R11 ∈ Cq×q,

R12 ∈ Cp×p and R22 ∈ Cp×p. Clearly, bothR11 and R22 are nonsingular.

From (13) it follows that

B1 = Q1R11, and A1 = Q1R12 + Q2R22.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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SubstitutingB1 and A1 into A, it follows that the projection ofA ontoR(Q2),

the subspace spanned by the columns ofQ2, is

Q∗
2 AQ2 = R22R∗

22. (14)

Let x ∈ R(Q2), x 6= 0. Then, becauseQ∗
2 AQ2 is positive definite by (14),

puttingx = Q2β ∈ Cp, β 6= 0, we have

min
x∈R(Q2),x 6=0

x∗ Ax

x∗x
≥ min

x∈R(Q2),x 6=0

β∗Q∗
2 AQ2β

β∗β
> 0,

and so, by the minimax principle, we conclude thatA has at leastp positive

eigenvalues. Considering matrix−A instead ofA and proceeding as before

it follows that A has at leastq negative eigenvalues. Apart from this, it is clear

that A hasn − (p + q) zero eigenvalues. From these conclusions the assertions

of the lemma follow. �

In order to describe our results concerning the singular values ofCm,q, we

first notice that the Krylov matrixKm becomes a weighted Vandermonde

matrix whenq = 1. When the weights are all ones this matrix will be denoted

by Wm. Let the columns ofV̆ form an orthonormal basis forR(W∗
m). Then the

orthogonal projector ontoR(W∗
m), P̆, satisfies

P̆ = W†
mWm = V̆ V̆ ∗. (15)

Using this notation we set

p1 = W†
me, x+ = W†

mZme, (16)

where e = [1, ∙ ∙ ∙ , 1]T ∈ Rn.

We are now ready to describe the singular spectrum of matrixCA(m, q).

Theorem 2.3. Let the singular values ofCA(m, q) be arranged so that

σ1(CA) ≥ ∙ ∙ ∙ ≥ σn(CA). Assume thatrank([ZmL L]) = 2q. Then, for

1 ≤ q < n/2, there holds

σi (CA) > 1 i = 1 : q,

σi (CA) = 1, i = q + 1 : n − q,

0 < σi (CA) < 1 i = n − q + 1 : n.

(17)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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Furthermore, if q = 1 the singular values ofCA(m, 1) do not depend on

the matrix L defined in(3), but rather on the Vandermonde matrixWm. In

this case they are given by

σ 2
1 (CA(m, 1)) =

1

2

[
2 + ‖x+‖2

2 − ‖p1‖
2
2 +

√(
‖x+‖2

2 + ‖p1‖2
2

)2
− 4|x0|2

]

σ 2
j (CA(m, 1)) = 1, j = 2: n − 1.

σ 2
n (CA(m, 1)) =

1

2

[
2 + ‖x+‖2

2 − ‖p1‖
2
2 −

√(
‖x+‖2

2 + ‖p1‖2
2

)2
− 4|x0|2

]

(18)

wherex0 denotes the first component ofx+.

Proof. We use the fact that the squared singular values ofCA are eigenvalues

of CAC
∗
A. In fact, using the definition ofCA,

CAC
∗
A = V ∗CAVV

∗C∗
AV = V ∗CAPC∗

AV = V ∗CAC∗
AV . (19)

The last equality comes from the fact thatPC∗
AV = C∗

AV becauseV is a basis of

the right invariant subspace ofC∗
A associated with prescribed eigenvalues. Now

notice that if we writeCA = [E2 E2 ∙ ∙ ∙ Em XA], whereEj denotes the block

column vector having itsj th entry equal toIq and the remaining ones equal to

the zero matrix, then

CAC∗
A = E2E∗

2 + ∙ ∙ ∙ + EmE∗
m + XAX∗

A,

and this can be rewritten as

CAC∗
A = Imq − E1E∗

1 + XAX∗
A. (20)

Hence, using the fact thatXA solves the system (5), which implies that

XA = X+
A + N, where N is a matrix whose columns belong toN (Km) =

[R(K∗
m)]⊥, we have

CAC
∗
A = In −V ∗E1E∗

1V +V ∗X+
A X+∗

A V

= In −V ∗ P1P∗
1V +V ∗X+

A X+∗
A V ,

(21)

where

P1 = K†
mL = PE1, X+

A = K†
mZmL . (22)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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Now observe that[V ∗X+
A V ∗ P1] = (V ∗K†

m)[ZmL L] and thatV ∗K†
m is

nonsingular. From this and the assumption that rank([ZmL L]) = 2q it fol-

lows that rank([V ∗X+
A V

∗ P1]) = 2q. Thus, ifV ∗X+
A is identified withA1 and

V ∗ P1 with B1 in Lemma 2.2, it follows from (21) thatCAC
∗
A hasn − 2q zero

eigenvalues, the remaining ones being of the form 1+ γi (i = 1 : 2q) with γi

the nonzero eigenvalues of−V ∗ P1P∗
1V + V ∗X+

A X+∗
A V . As q of theseγi are

positive and the otherq are negative, the inequalities in (17) follow, as desired.

To prove the statement of the theorem forq = 1, we observe that in this case

L is a column vector and that the Krylov matrix can be rewritten asKm =

L (1)Wm, whereL (1) = diag(L1,1, . . . , Ln,1) is nonsingular since, by assumption

|L j,1| = 1, j = 1: n. From this observation and pseudo-inverse properties, it is

immediate to see thatP1 reduces top1, X+
A reduces tox+, and neither depend

on L . Hence it follows thatCA(m, 1)CA(m, 1)∗ does not depend onL and that

CA(m, 1)C∗
A(m, 1) = In − V̆ ∗ p1 p∗

1V̆ + V̆ ∗x+x+∗V̆ .

The equalities (18) follow on analyzing the eigenvalues ofCA(m, 1)C∗
A(m, 1)

from this equality; details can be found in [5]. �

Remark 1. The rank condition on[ZmL L] is no serious restriction in practice.

This is because in practical problemsL is dense, in which case one can prove,

under mild conditions, that rank([ZmL L]) = 2q.

Remark 2. Theorem 2.3 generalizes one concerning the singular values of a

particular projected companion matrix by Bazan (see, Thm. 4 in [5]), and shows

also that the singular values of the projected block companion matrix in our

context, inherits to some extent the singular value properties of general block

companion matrices described in Lemma 2.7 in [15].

Since the singular values ofCA(m, 1) do not depend on the matrixL, we can

always compare the singular values ofCA(m, q) for the case whereq > 1 with

those corresponding toq = 1. This is given in the following theorem.

Comp. Appl. Math., Vol. 24, N. 3, 2005
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Theorem 2.4. Let CA(m, q) as before. Then, form ≥ n and 1 < q ≤ 2n,

there holds

σ1(CA(m, q)) ≤ σ1(CA(m, 1)), σn(CA(m, 1)) ≤ σn(CA(m, q)). (23)

Proof. We shall prove the inequalities (23) forq = 2; the proof for the case

q > 2 is similar. Notice that forq = 1, we have

CA(m, 1)C∗
A(m, 1) = In + V̆ ∗x+x+∗V̆ − V̆ ∗ p1 p∗

1V̆
.
= In + E. (24)

while if q = 2, we have from (21)

CA(m, q)C∗
A(m, q) = In +V ∗X1X∗

1V −V ∗ P1
1 P1

1
∗
V

+ V ∗X2X∗
2V −V ∗ P2

1 P2
1

∗
V ,

(25)

where we have assumed thatX+
A = [X1, X2], P1 = [P1

1 , P2
1 ]. The idea behind

the proof is to rewrite (25) in terms of the matrixE introduced in (24). For this

we use the fact that

V ∗Xi = Ti V̆
∗x+, V ∗ Pi

1 = Ti V̆
∗ p1, i = 1, 2. (26)

whereTi = V ∗Ii V̆ , I1 = [e1 e3 ∙ ∙ ∙ e2m−1], I2 = [e2 e4 ∙ ∙ ∙ e2m], in which

ei denotes thei th canonical vector inRmq. This can be seen as follows. Let

L = [L1, L2] andR1 = diag(L1,1, ∙ ∙ ∙ , Ln,1). SinceZ andR1 are diagonal, the

definition of X1 implies (see (22))

X1 = K†
mZmL1 = K†

mZmR1e = K†
mR1WmW†

mZme = K†
mR1Wmx+. (27)

But since R1Wm =
[
R1e R1Ze ∙ ∙ ∙ R1Zm−1e

]
andP = K†

mKm, we have

K†
mR1W =

[
K†

mL1 K
†
m3L1 ∙ ∙ ∙ K†

m3m−1L1
]

= [Pe1 Pe3 ∙ ∙ ∙ Pe2m−1].

Inserting this result in Eq. (27) yields

X1 =
[
Pe1 Pe3 ∙ ∙ ∙ Pe2m−1

]
x+. (28)

A similar work with X2, P1
1 , andP2

1 gives

X2 = [Pe2 Pe4 ∙ ∙ ∙ Pe2m] x+, (29)

P1
1 =

[
Pe1 Pe3 ∙ ∙ ∙ Pe2m−1

]
p1, (30)

P2
1 = [Pe2 Pe4 ∙ ∙ ∙ Pe2m] p1. (31)

Comp. Appl. Math., Vol. 24, N. 3, 2005
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The set of equations (26) follows on multiplying byV ∗ on both sides of equations

(28), (29), (30), and (31). Here we have used the fact thatV̆ V̆ ∗x+ = x+,

V̆ V̆ ∗ p1 = p1, since bothx+ and p1 belong toR(W∗
m).

We turn now to the proof of the theorem. Using the Eq. (26) and (24), we have

CA(m, q)C∗
A(m, q) = In + T1ET

∗
1 + T2ET

∗
2 . (32)

Let u be a unit vector inCp and definewi to be the unit vector with the same

direction asT ∗
i u, i = 1, 2. Forming the Rayleigh-Ritz quotient in (32), we have

u∗CA(m, q)C∗
A(m, q)u = 1 + w∗

1Ew1‖T ∗
1 u‖2 + w∗

2Ew2‖T ∗
2 u‖2

≤ 1 + w∗Ew(‖T ∗
1 u‖2 + ‖T ∗

2 u‖2),
(33)

wherew = wi such thatw∗Ew = max{w∗
1Ew1, w

∗
2Ew2}. Now using the defi-

nition of matrixT1, we have

‖T ∗
1 u‖2 = u∗T1T

∗
1 u = u∗V ∗I1V̆ V̆

∗I∗
1Vu = ‖P̆I∗

1Vu‖2 ≤ ‖I∗
1Vu‖2,

where we have used the fact thatP̆∗P̆ = V̆ V̆ ∗. A similar work gives

‖T ∗
2 u‖2 ≤ ‖I∗

2Vu‖2.

Summing up the two last inequalities it is not difficult to check that

‖T ∗
1 u‖2 + ‖T ∗

2 u‖2 ≤ 1.

Substituting this result in (33) gives

u∗CA(m, q)C∗
A(m, q)u ≤ w∗(I + E)w ≤ σ 2

max(CA(m, 1)),

and the proof of the first inequality in (23) is concluded.

Finally, sinceσn(CA(m, q)) = 1/σ1(CB(m, q)), by Lemma (2.1), proceed-

ing as before it followsσ1(CB(m, q)) ≤ σ1(CB(m, 1)). This proves the second

inequality in (23) and the proof of the theorem is concluded. �

A point that remains for discussion is the behavior of the singular values of

CA(m, q) for fixed q ≥ 1 and varyingm. This is a difficult problem; so we

restrict ourselves to analyzing bounds for them.
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Corollary 2.5 Let X+
A and P1 be as in(22). Then we have

√
1 − ‖P1‖2

2 ≤ σn(CA), σ1(CA) ≤
√

1 + ‖X+
A‖2

2. (34)

Additionally, while the lower bound increases withm, the upper bound decreases.

Proof. First notice from (21) that the squared singular values ofCA that differ

from 1 are the eigenvalues of� defined by

� = I2q +

[
X+∗

A V

−P∗
1V

]

[V ∗X+
A V ∗ P1]

=

[
Iq + X+∗

A X+
A X+∗

A P1

−P∗
1 X+

A Iq − P∗
1 P1

]

.

(35)

By comparing the eigenvalues of� with those of its Hermitian part, it follows

λmin(Iq − P∗
1 P1) ≤ λi (�) ≤ λmax(Iq + X+∗

A X+
A).

This proves (34). We shall now prove that both‖X+
A‖2 and‖P1‖2 are decreasing

functions ofm. Let

K̆m = [L Z L ∙ ∙ ∙ ZmL], X̆+
A = K̆†

mZm+1L , ‖P̆1‖2 = K̆†
mL .

Then we shall prove that‖X̆+
A‖2 ≤ ‖X+

A‖2 and‖P̆1‖2 ≤ ‖P1‖2. In fact, write

K̆m = [L | ZKm] and notice that

K̆†∗
m K̆

†
m = (K̆mK̆

∗
m)−1 = (LL∗ + ZGm,q Z∗)−1,

where

Gm,q = KmK
∗
m. (36)

Applying the Sherman-Morrison formula to the inverse above we obtain

K̆†∗
m K̆†

m = Z−∗G−1
m,q Z−1 − Z−∗G−1

m,q Z−1L(I + L∗Z−∗G−1
m,q Z−1L)−1L∗Z−∗G−1

m,q Z−1

= Z−∗K†∗
m K†

mZ−1 − Z−∗K†∗
m X+

B (I + X+∗
B X+

B )−1X+∗
B K†

mZ−1,

(37)

where we have used the fact thatKmK
†
m = In, and we setX̆+

B = K̆†
mZ−1L .

Pre-multiplication byL∗Zm+1∗
and post-multiplication byZm+1L on both sides

of this equation yields

X̆+∗
A X̆+

A = X+∗
A X+

A − X+∗
A X+

B(I + X+∗
B X+

B)−1X+∗
B X+

A .
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This shows that the singular values of ofX̆+
A can not exceed those ofX+

A , thus

ensuring the statement of the theorem forX+
A . To prove that‖P1‖2 decreases

with m, it is sufficient to partitionK̆m asK̆m = [Km | ZmL], and then proceed

as before. �

The corollary is interesting because it provides a bound for the 2-norm condi-

tion number ofCA of the form

κ(CA) ≤

√
1 + ‖X+

A‖2
2

√
1 − ‖P1‖2

2

(38)

that decreases withm. Thus, reliable bounds forκ(CA) can be obtained provided

both ‖X+
A‖2

2 and‖P1‖2
2 are small enough. For the significant case where the

prescribed eigenvalues lie inside the unit circle, the asymptotic of the bounds as

m is going to infinite is readily determined. To do this the following technical

result, the proof of which is straightforward, is needed.

Lemma 2.6. Suppose allzj fall inside the unit circle. Then‖X+
A‖2 → 0 as

m → ∞.

Corollary 2.7. Suppose allzj lie inside the unit circle. Then, asm → ∞ we

have

κ(CA) ≤
n∏

j =1

|zj |
−1.

Proof. We first notice that forq = 1 we haveσ1(CA(m, 1))σn(CA(m, 1)) =
∏n

j =1 |zj |. Using Corollary 2.5 and Lemma 2.6 it follows that

lim
m→∞

σ1(CA(m, q)) = lim
m→∞

σ1(CA(m, 1)) = 1.

Now sinceσn(CA(m, q)) ≥ σn(CA(m, 1)) for all m ≥ n and fixedq > 1, by

Corollary 2.5 again, there holds

lim
m→∞

σn(CA(m, q)) ≥ lim
m→∞

σn(CA(m, 1)) =
p∏

j =1

|zj |.

The assertion of the corollary follows on using this inequality and the definition

of κ(CA). �
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3 Departure from normality of CA(m, q)

The influence of nonnormality on several problems in scientific computing

has been known for long time and several measures of nonnormality either

of theoretical or practical interest are now available [8, 10, 13]. An exhaus-

tive discussion on the influence of nonnormality on many problems in scientific

computing, using several measures of nonnormality, is given in Chaitin-Chatelin

and Frayseé [8]. ForA ∈ Cn×n the following measure has been introduced

by Henrici (1962):

D2(A) = ‖A‖2
F −

n∑

j =1

|λ j (A)|2. (39)

This measure plays an important role in our context because it can be related

to the conditioning of the eigenbasis ofA whenA is diagonalizable. To clarify

this recall that for generalA ∈ Cn×n with simple eigenvaluesλ j andu j , v j as

associated left and right eigenvectors, the condition number ofλ j , denoted by

κ j (λ j ), is defined by (see. e.g., Wilkinson [30, p. 314])

κ(λ j ) =
‖u j ‖2‖v j ‖2

|u∗
j v j |

. (40)

Smith [23] proved that

κ j (λ j ) ≤

[

1 +
1

n − 1

(
D

δ j

)2
](n−1)/2

, (41)

whereδ j measures the distance ofλ j to the rest of the spectrum. Thus the more

the ill-conditionedλ j , the larger the ratioD/δ j , which means thatD increases

and/orδ j is small. Another interpretation of the above result is possible. Of

course, it says that for the eigenvalueλ j to be well conditioned, it suffices that

D/δ j ≈ 0 andn be a moderate number. We shall return to this point later.

The goal here is to analyzeD(CA(m, q)), concentrating on its behavior as a

function ofm, q for fixedq ≥ 1 and increasingm. The following theorem shows

that this can be made by comparing the singular values ofCA(m, q) with those

of CA(m, 1). This is always possible, since by Theorem 2.3, the singular values

of CA(m, 1) do not depend on the matrixL.
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Theorem 3.1. Let a and b denote respectively the largest and the smallest

singular values ofCA(m, 1) and let the singular valuesσ j ofCA(m, q) be ordered

in the usual way, i.e.,σ1 ≥ σ2 ≥ ∙ ∙ ∙ ≥ σn. Let

σ ∗ = max
{σ1

a
, σ2, ∙ ∙ ∙ , σn−1,

σn

b

}
, and

σ∗ = min
{σ1

a
, σ2, ∙ ∙ ∙ , σn−1,

σn

b

}
.

Define

k̂ =
σ ∗

σ∗
, ρ =

[
a2 − σ 2

1

a2
(a2 − 1) +

σ 2
n − b2

b2
(1 − b2)

]
. (42)

Then, for eachm ≥ n and 1< q ≤ n/2 it holds

‖CA(m, 1)‖2
F − ρ ≤ ‖CA(m, q)‖2

F

≤
q

2
(k̂ + k̂−1)2 − (ρ + 2q) + ‖CA(m, 1)‖2

F .
(43)

Proof. We first notice that, because of Theorem (2.3), we have

‖CA(m, 1)‖2
F = n − 2 + a2 + b2. (44)

Now sinceCA(m, q) has the same spectrum asCA(m, 1) we have

σ 2
1 σ 2

2 ∙ ∙ ∙ σ 2
q σ 2

n−q+1 ∙ ∙ ∙ σ 2
n−1σ

2
n =

n∏

j =1

|zj |
2 = a2b2. (45)

If this is rewritten as

1 =
a2

σ 2
1

1

σ 2
2

∙ ∙ ∙
1

σ 2
q

1

σ 2
n−q+1

1

σ 2
n−q+2

∙ ∙ ∙
1

σ 2
n−1

b2

σ 2
n

,

the geometric-arithmetic mean inequality leads to

2q ≤
a2

σ 2
1

+
1

σ 2
2

+ ∙ ∙ ∙ +
1

σ 2
p

+
1

σ 2
n−p+1

+ ∙ ∙ ∙ +
1

σ 2
n−1

+
b2

σ 2
n

.

Multiplying both sides of this inequality by the sum of the reciprocals of each

term of the right hand side, we obtain
[
σ 2

1

a2
+ σ 2

2 + ∙ ∙ ∙ + σ 2
q + σ 2

n−p+1 + ∙ ∙ ∙ + σ 2
n−1 +

σ 2
n

b2

]
2q ≤ c∗ Ac c∗ A−1c,
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where

A = diag(σ 2
1 /a2, σ 2

2 , . . . , σ 2
q , σ 2

n−q+1, . . . , σ
2
n−1, σ

2
n /b2),

c = [1, 1, . . . , 1]T ∈ R2q.

Kantorovic’s inequality (see Horn and Johnson [16, Thm. 7.4.41]) leads then to
[
σ 2

1

a2
+ σ 2

2 + ∙ ∙ ∙ + σ 2
q + σ 2

n−p+1 + ∙ ∙ ∙ + σ 2
n−1 +

σ 2
n

b2

]
2q ≤

[
q(k̂ + k̂−1)

]2
,

wherek̂ is defined in (42). Hence it follows

σ 2
1 + ∙ ∙ ∙ + σ 2

n ≤
q

2
(k̂ + k̂−1)2 + σ 2

1 −
σ 2

1

a2
+ σ 2

n −
σ 2

n

b2
+ n − 2q. (46)

The upper bound in (43) follows from this inequality on noting that

σ 2
1 −

σ 2
1

a2
+ σ 2

n −
σ 2

n

b2
= −ρ + a2 + b2 − 2, (47)

whereρ is defined in (42). To prove the lower bound, rewrite (45) as

1 =
σ 2

1

a1
σ 2

2 ∙ ∙ ∙ σ 2
q σ 2

n−q+1σ
2
n−q+2 ∙ ∙ ∙ σ 2

n−1

σ 2
n

b2
.

The geometric-arithmetic mean inequality leads then to

2q ≤
σ 2

1

a2
1

+ σ 2
2 + ∙ ∙ ∙ + σ 2

q + σ 2
n−q+1 + σ 2

n−q+2 + ∙ ∙ ∙ + σ 2
n−1 +

σ 2
n

b2

The lower bound in (43) is a consequence of using (47) in this inequality.�

The departure from normality ofCA(m, 1) is analyzed in Bazan [5]. The

conclusion drawn from that analysis is that this matrix becomes close to a

normal matrix provided the eigenvalueszj fall near the unit circle andm is

large enough. This is important in our context since if we take into account

the inequalities (43), we can conclude thatCA(m, q) for the caseq > 1 may be-

come closer to normality thanCA(m, 1). In terms of eigenvalue sensitivity, this

means that prescribed eigenvalues ofPm(z) can be less sensitive to noise when

regarded as eigenvalues ofCA(m, q) with q > 1 than when regarded as eigen-

values ofCA(m, 1). This shall be theoretically demonstrated in the next section.

Here we restrict ourselves to numerically illustrate the behavior ofD(CA(m, q)).
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Example: departure from normality of CA(m, q) arising from a dynamical
system. The dynamical system under analysis is defined by the state space

equations
ẋ = Ax + Bu

y = Cx,
(48)

and corresponds to a computer model of a flexible structure known as Mini-

Mast [18]. MatricesA, B andC are of orders 10× 10, 10× 2 and 2× 10,

respectively; the entries of the matrices can be found in [18]. Impulse response

samples are thus given as

hk = CeA1tk B, k = 0, 1, . . .

MatricesR andL of model (3) are thus of order 2× 10 and 10× 2, respectively,

and can be found readily by computing an eigendecomposition of matrixA.

According to our notation this implies thatn = 10, p = q = 2; the eigenvalues

are of the formzj = esj 1t ( j = 1: 10) where thesj ’s are eigenvalues ofA. The

time step is1t = 0.03s. The model comprises five modes (in complex conjugate

pairs) and involves two closely spaced frequency pairs. Frequencies and damping

expressed as the negative real part of thezj ’s as well as the eigenvalues in modulus

and separationsδ j = min |zj − zi |, i 6= j, are displayed in Table 1.

Mode Damping Frequency |zj | δ j

j rad/s

1 0.32907 27.42011 0.99017 0.32299

2 0.38683 38.68230 0.98846 0.00982

3 0.38352 38.35103 0.98856 0.00982

4 0.09066 5.03555 0.99728 0.00011

5 0.09055 5.03176 0.99728 0.00011

Table 1 – System poleszj and separations.

In order to illustrate the behavior ofD2(CA(m, q)) as a function ofm, q the

norms‖CA(m, q)‖2
F for increasingm andq = 1: 2 were computed from the

relation (see (21))

‖CA(m, q)‖2
F = n + ‖X+

A‖2
F − ‖P1‖

2
F . (49)
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Figure 1 – Departure from normality of matrixCA(m, q) as a function ofm andq on

a logarithmic scale;q denotes the number of columns of matrixL in (3) andm the

degree ofPm(z). The horizontal line points out the asymptotic value ofD2(CA(m, 2))

for largem.

All computations were carried out using MATLAB. The results displayed in

Figure 1 are surprising: they not only show thatD2(CA(m, 2)) really improves

D2(CA(m, 1)) but also that this improvement can be dramatic whenm is near

n = 10. For illustration, while forq = 1 andm = 10, 11 we obtain

D2(CA(10, 1)) = 2.5877× 104, D2(CA(11, 1)) = 3.692× 103,

which illustrate thatCA(10, 1) andCA(11, 1) are highly nonnormal, forq = 2

and the same values ofm we obtain

D2(CA(10, 2)) = 5.4295× 10−1, D2(CA(11, 2)) = 4.9053× 10−1

The influence ofq on D2(CA(m, q)) for q > 2 was also analyzed. For this,

input matricesB with random numbers as entries of ordersq × 10 andq = 1: 4
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Figure 2 – Departure from normality of matrixCA(m, q) as a function ofm andq on

a logarithmic scale;q denotes the number of columns of matrixL in (3) andm the

degree ofPm(z). The horizontal line points out the asymptotic value ofD2(CA(m, 4))

for largem.

were constructed. With these matrices at hand, the matricesL of correspond-

ing orders were obtained in the same way as in the case forq = 2. Results

corresponding to the seed value of the random generator equal to 10 (we use

the MATLAB function randn), displayed in Figure 2, show once more that the

departure from normality of matrixCA(m, q) for q > 1 gets smaller than that

corresponding toq = 1. However no conclusion can be drawn concerning the be-

havior ofD2(CA(m, q)) for valuesq > 2 in comparison with that corresponding

to q = 2.

As in this example all eigenvalues lie inside the unit circle, the asymptotic

value of D2(CA(m, q)) asm is going to infinity can be readily computed: it

suffices to use (49) taking into account that in this case

‖XA‖2
F → 0, ‖P1‖

2
F = Trace(L∗G−1

∞,qL),
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where

G∞,q = lim
m→∞

Gm,q = lim
m→∞

KmK
∗
m, with [Gm,q]i, j = e∗

i LL∗ej
1 − (zi z̄j )

m

1 − zi z̄j
.

Asymptotic values ofD2(CA(m, q)) in this case are:

D2(CA(∞, 1)) = 0.9719× 10−2, D2(CA(∞, 2)) = 0.4915× 10−2,

D2(CA(∞, 3)) = 0.2946× 10−2, D2(CA(∞, 4)) = 0.2489× 10−2

4 Condition numbers

We have seen that the prescribed eigenvalueszj of Pm(z) are eigenvalues of the

projected companion matrixCA(m, q). This fact is exploited here to carry out a

sensitivity analysis of these eigenvalues. To this end , we choose as measures

of sensitivity the Wilkinson condition numbers of thezj ’s (see (40)) viewed

as eigenvalues ofCA(m, q), and the overall 2-norm condition number of the

eigenvalue problem. In order to describe our results we recall that form ≥ n

and fixedq, q ≥ 1,Gm,q = KmK
∗
m is positive definite Hermitian. In the sequel

we shall always assume that the left eigenvector ofPm(z) (the rows of matrixL

in (3)) are scaled using the 2-norm to unit length. The lemma below explains

that the sensitivity of the eigenvalue problem associated with matrixCA(m, q)

is governed by the condition number of matrixGm,q.

Lemma 4.1. LetCA(m, q) be as before. Then there holds

CA(m, q) = (Gm,q)
−1/2Z(Gm,q)

1/2.

Consequently, the sensitivity of the eigenvalue problem related to the prescribed

eigenvalues is governed by
√

κ(Gm,q).

Proof. SetV = K∗
m(Gm,q)

−1/2. It is immediate to check that the columns of

V form an orthonormal basis ofR(K∗
m). Using the definition ofCA(m, q) and

this basis, we have

CA(m, q) = V ∗CAV

= (Gm,q)
−1/2KmCAK

∗
m(Gm,q)

−1/2.

The proof concludes on using (8). �
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In the following, the condition number ofzj related toCA(m, q) for q > 1

(and hence toPm(z)) is denoted byκq(zj ), while the condition number of the

same eigenvalue but related toCA(m, 1) is denoted byκ1(zj ).

Theorem 4.2. For m ≥ n the following properties hold

(a) For 1 ≤ q ≤ n/2 we have

κq(zj ) =
√

1 + |zj |2 + |zj |4 + ∙ ∙ ∙ + |zj |2(m−1) ‖K†
mej ‖2 ( j = 1: n). (50)

(b) The condition numbersκ1(zj ) do not depend on the matrixL but rather

on the Vandermonde matrixWm.

(c) For fixedm ≥ n andq > 1 there holdsκq(zj ) ≤ κ1(zj ).

(d) Let δ j = min
1≤k≤n

1≤ j ≤n, j 6=k

|zj − zk| Then, for1 ≤ q ≤ n/2 there holds

κq(zj ) ≤

[

1 +
n − 1 + ‖x+‖2

2 +
∏n

j =1 |zj |2 −
∑n

j =1 |zj |2

(n − 1)δ2
j

](n−1)/2

, (51)

wherex+ denotes the minimum norm solution of the system(5) for the

caseq = 1.

Proof. To prove(a)notice from Lemma 4.1 thatv j = G
−1/2
m,q ej andu j = G

1/2
m,qej

are left and right eigenvectors ofCA(m, q), respectively, associated with the

eigenvaluezj . These eigenvectors satisfy the conditionu∗
j v j = 1. Besides this

‖v j ‖
2
2 = v∗

j v j = e∗
jG

−1
m,qej = ‖K†

mej ‖
2
2,

and

‖u j ‖
2
2 = e∗

jGm,qej = ‖K∗
mej ‖

2
2 = 1 + |zj |

2 + |zj |
4 + ∙ ∙ ∙ + |zj |

2(m−1).

The last equality is because the rows ofL in (3) are scaled to unit length by

assumption. The equality (50) follows from these relations on using the defini-

tions given in (40).

To prove property(b) notice thatL becomes a column vector inCn whenq = 1.

In this case we can writeGm,q = L(1)WmW∗
mL(1)∗ whereL(1) denotes a diagonal
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matrix with the components ofL as entries andWm the Vandermonde matrix

introduced in the previous section. From this observation and the definition (40)

it is immediate that

κ1(zj ) = ‖e∗
j Wm‖2‖W†

mej ‖2,

which proves(b).

The proof of(c) is based on the property that‖K†
mej ‖2 ≤ ‖W†

mej ‖2, which

can be seen as follows. Letφ j = K†
mej . This means thatφ j is the minimum

2-norm solution of the underdetermined linear system

Kmφ = ej . (52)

Let K̃m = [L(1)Wm ∙ ∙ ∙ L(q)Wm], whereL (i ) = diag(L1,i , . . . Ln,i ), i = 1 . . . q.

It is clear thatK̃m = KmJ with J an appropriate permutation matrix. Introduce

K̃D
m defined by

K̃D
m =







W†
mL (1)

...

W†
mL (q)





 .

Then

K̃mK̃
D
m = L (1)L(1)∗ + ∙ ∙ ∙ L (q)L (q)∗ = In,

and thereforeK̃D
m is a right inverse of̃Km. Define nowφ = JK̃D

mej . It is not

difficult to check that this vector is a solution of the system (52). Additionally

‖φ‖2
2 = ‖Wmej ‖2

2|L j,1|2 + ‖Wmej ‖2
2|L j,2|2 + ∙ ∙ ∙ + ‖Wmej ‖2

2|L j,q|2

= ‖Wmej ‖2
2(|L j,1|2 + |L j,2|2 + ∙ ∙ ∙ + |L j,q|2)

= ‖Wmej ‖2
2.

This equality proves property (c) asφ j is the solution of minimum norm of (52).

Finally, property(d) is a consequence of estimate (41), property (c), and

Lemma 7 in Bazán [5] where it is proved that

D2(CA(m, 1)) ≤ n − 1 + ‖x+‖2
2 +

n∏

j =1

|zj |
2 −

n∑

j =1

|zj |
2.

The main conclusion that can be drawn from the Theorem 4.2 is that the sensitivity

of thezj ’s regarded as eigenvalues of the projected companion matrix essentially
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depends on intrinsic characteristics of the eigenvalues themselves and on the

degree of the associated matrix polynomial. Concerning the estimates (51), since

n is assumed to be small, the conclusion is that they can approach the optimum

value 1 provided‖x+‖2
2 ≈ 0 and the eigenvalues in modulus are reasonably close

to the unit circle but not extremely close to each other. In spite of the fact that this

conclusion seems to emerge under rather stringent conditions, namely,n small

andzj ’s close to the unit circle, we emphasize that there are many applications in

which these conditions appear frequently. In fact, in modal analysis of vibrating

structures, the analysis of slow-decaying signals often involves eigenvalues very

close to the unit circle andn small; in [4, 1, 19] examples are reported with

n ranging from 15 to 20. Numerical examples showing that‖x+‖2
2 ≈ 0 for

moderate values ofm are discussed in [7]. Another example involving the

condition n small is encountered in NMR; genuine applications in this field

point outn ranging from 2 to 16 [26, 27]. The condition‖x+‖2
2 ≈ 0 in NMR is

numerically verified in [3].

Apart from the conclusion above, a remark concerning the meaning of prop-

erty(c) must be done: It predicts reduction in sensitivity of prescribed eigenval-

ues when extracted from projected companion matrices related to polynomials

with q > 1. This will be illustrated numerically later.

The following theorem states that the conditioning of the eigenvalue problem

associated withCA(m, q) improves the conditioning of the eigenvalue problem

associated with matrixCA(m, 1).

Theorem 4.3. SetĞm = WmW∗
m. Then for eachm ≥ n, we have that

κ(Gm,q) ≤ κ(Ğm).

Proof. We shall prove that

λ1(Gm,q) ≤ λ1(Ğm), and λn(Gm,q) ≥ λn(Ğm). (53)

In fact, letK̃m be as in the proof of the previous theorem. Then it is clear that

K̃mK̃
∗
m = Gm,q. Using this result, for all unit vectoru ∈ Cn, we have that

u∗Gm,qu = u∗K̃mK̃
∗
mu

= u∗L(1)ĞmL (1)∗u + ∙ ∙ ∙ + u∗L (q)ĞmL (q)∗u.
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Let v j ( j = 1: q) be the unit vector with the same direction asL( j )∗u. Substi-

tuting v j in the above equation and using the Rayleigh-Ritz characterization of

eigenvalues of symmetric matrices, we get

u∗Gm,qu = v∗
1Ğmv1‖L( j )∗u‖2 + ∙ ∙ ∙ + v∗

qĞmvq‖L(q)∗u‖2

≤ λ1(Ğm)(‖L( j )∗u‖2 ∙ ∙ ∙ + ‖L(q)∗u‖2).

The first inequality in (53) follows on noting that(‖L( j )∗u‖2 ∙ ∙ ∙+‖L(q)∗u‖2) = 1

because by assumption all rows ofL have 2-norm equal to one. The second

inequality in (53) follows in the same way and the proof concludes. �

Note that because of its definition, whenever allzj fall inside the unit circle,

the limit of Gm,q asm → ∞ is always guaranteed to exist, and the same result

applies forĞm.

Corollary 4.4. LetG∞,q denote the limiting value ofGm,q asm → ∞. Suppose

all prescribed eigenvalueszj of Pm(z) fall inside the unit circle. Define

α = max|zj |, β = min |zj |, and δ = min |zi − zj |, i 6= j, 1 ≤ i, j ≤ n.

Then

κ(G∞,q) ≤
1

2

(
η +

√
η2 − 4

)
,

where

η = n

[

1 +
n − 1 +

∏n
j =1 |zj |2 −

∑n
j =1 |zj |2

(n − 1)δ2

](n−1)/2
√

1 − β2

1 − α2
− n + 2

Proof. This corollary is a consequence of Theorem 4.3 and Corollary 9 in

Bazán [5]. �

Example: conditioning of Mini-Mast eigenvalues. To confirm the theore-

tical predictions of Theorem 4.2 we have computed the condition numbersκq(zj )

of the eigenvalues associated with the Mini-Mast model described in the previous

section. The goal is to verify that severe reduction in sensitivity is possible when

extracting thezj ’s from projected companion matrices related to polynomials

with q > 1. Results corresponding toq ranging from 1 to 4 and some values of

m are displayed in Table 2. Reduction in sensitivity is apparent from this table.
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Mode κ1(zj ) κ1(zj ) κ2(zj ) κ2(zj ) κ3(zj ) κ4(zj )

j m = 10 m = 20 m = 10 m = 20 m = 10 m = 10

1 0.00017×107 0.00130×103 1.77339 1.00929 1.19281 1.12292

2 0.00127×107 0.02310×103 2.30402 1.50635 1.19617 1.04022

3 0.00136×107 0.02311×103 1.64077 1.49986 1.13957 1.08176

4 3.10889×107 4.75131×103 7.56466 3.86546 1.75153 1.19145

5 3.11084×107 4.75306×103 8.07200 3.86827 1.37293 1.29589

Table 2 – Condition numbers of prescribed eigenvalueszj .

4.1 An application to linear system theory

We shall show that the Corollary 4.4 can be applied to estimating the 2-norm

condition number of controllable Gramians in linear system theory. Consider a

dynamical discrete linear systemS described by the state equations

xk+1 = Axk + Buk

yk = Cxk
(54)

whereA ∈ Rn×n, B ∈ Rn×q, andC ∈ Rq×n. Assumeλi (A) 6= λ j (A), for i 6= j ,

and|λi (A)| < 1 (i = 1 : n). Assume also that the system is controllable, i.e.,

the extended controllable matrixCq
m defined by

Cq
m = [B AB A2B ∙ ∙ ∙ Am−1B], m ≥ n, q ≥ 1 (55)

satisfies rank(Cq
m) = n. Then the controllable Gramian of the systemS, defined

as [9]

Q =
∞∑

j =0

B Aj Aj ∗B∗, (56)

is guaranteed to be symmetric and positive definite, and its eigenvalues are

known to concentrate information that plays a crucial role when solving sys-

tem identification and model order reduction problems. It turns out that if the

system eigenvaluesλ j (A) are distinct, a change of basis of the state vector

x̂k = T−1xk with T a matrix of right eigenvectors ofA, will transform the state

space representation (54) to another one in diagonal form. When this is done,

C
q
m reduces to a matrix like the block Krylov matrixKm and the controllable

GramianQ reduces to one likeG∞,q. This shows that the estimate forκ(G∞,q)

of the Corollary 4.4 applies to estimating the 2-norm condition number of the

GramianQ.
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5 Conclusions

Based on the fact that prescribed eigenvalues of predictor polynomials can be

regarded as eigenvalues of projected block companion matrices, an eigenvalue

sensitivity analysis was performed. As a result, simple estimates of measures

of eigenvalue sensitivity in the form of informative upper bounds were derived.

In particular, under the assumption thatn is small, it was proved that prescribed

eigenvalues near the unit circle can be relatively insensitive to noise provided the

polynomial degree is large enough. The effect of the dimension of the coeffi-

cients on the sensitivity was also analyzed and it was concluded that prescribed

eigenvalues of predictor polynomials can be less sensitive to noise when regarded

as eigenvalues of projected companion matrices related to matrix polynomials

with coefficients of orderq > 1 than when regarded as eigenvalues of projected

companion matrices related to scalar polynomials. The theory was numerically

illustrated using a matrix polynomial with clustered eigenvalues arising from

the modal analysis field. The results are of interest in system analysis where

estimates for the 2-norm condition number of controllability Gramians of multi-

input multi-output discrete dynamical systems play a crucial role.

The author is aware that further research is desirable for the case where the pre-

scribed eigenvalues are almost defective: the bounds in property (d) of Thm. 4.2

can be pessimistic in this case as the ratioD/δ j is no longer small, but as il-

lustrated in Table 2, the conditioning itself remains excellent. Furthermore, an

analysis for the case where the prescribed eigenvalues are defective is needed.

This challenging development is the subject of future research.
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