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366 MATRIX POLYNOMIALS WITH PARTIALLY PRESCRIBED EIGENSTRUCTURE

1 Introduction

We are concerned with matrix polynomials
Pn(2) = Ao+ 2zA+- + 2" An 1 - 2", z€C, (1)

whose coefficient®y € C9*9 (t = 0: m — 1) satisfy a recurrence relation of
the form

heAg + g1 Ar+ -+ heem1Anor = heem, k=0,1,--- (2)

wherehy € CP*9, The coefficients, known agredictor parametersreflect
intrinsic properties of the sequenfi&} such as frequencies, damping factors,
plane waves, etc, whose estimation from a finite datemealzo, is an important
problem in science and engineering [1, 19, 20, 21, 22, 28]. In this work, we
concentrate on polynomials arising in applications where the data are assumed
to be modeled as

he = RZL, k=0,1,... (3)

whereZ = diag(zy, ..., z,) with z # z; fori # j, |z] <1, Re CP*"is of
rank p andL € C"*9 of rankqg with rows scaled to unit length. Also, as usual
in the applications of interest, we shall assume thigta small number.

Model (3) covers, e.g., impulse response samples of dynamic linear systems
[1, 4, 19, 28, 29], where thBs are system poles, time domain nuclear magnetic
resonance (NMR) data [26, 27], and time series defined by

d
he =) f;coskij + g; sinka,;,
j=1

wheref;, gj € CP*1, thez's are of the formg; = €% (1 = v/=1),n = 2d, and
g = 1 (see [22] and references therein).

In these applications, one wants to estimate the parangtarsl the matrices
R, L from a finite data sethy}}_,. The problem is difficult a® is not always
known in advance and the available data are corrupted by noise. However, a
relatively simple polynomial-based approach can be used. The approach relies
on the fact that if the data are free of noise and the coefficients are estimated
from a linear system constructed by stackingsuccessive recurrence relations,
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FERMIN S. VILOCHE BAZAN 367

where we assume that > m > n, andn is the rank of the coefficient matrix,
then Py (2) hasz; (j = 1: n) as eigenvalue and (j = 1: n), the jth column
of L*, as associated left eigenvector [1, 19, 28] (the star symbol denotes conju-
gate transpose). Details about eigenvalues of matrix polynomials can be found
in [12]. The remainingng — n eigenvalues have no physical meaning and are
commonly known aspurious eigenvalue©nce the eigenpaifg;, | ;} are avail-
able, the estimation aR is straightforward. The same approach can be used in
the noisy data case but some criterion is needed to separate the eigenvalues of
interest from the spurious ones.

Note that sincez;, |} are eigenpairs oPy(2), then there holds

I7Pm(zj)) =0, j=1:n. 4)
This is an underdetermined linear system of the form
KmXa=2Z"L, (5)

whereX; = [A] -~ Al_;] and Ky, is ann x mq full-rank Krylov matrix
defined by
Km=[L ZL Z2L--- Z™1L]. (6)

Thus, all polynomials whose coefficients satisfy (2) (and hence (5)) will have
fixed eigenpairsjz;, |}, butthe remainder of their eigenstructure will depend on
the solution chosen. In the sequel we refer tozfig as prescribed eigenvalues
of Pyn(2) and to the polynomial itself as a polynomial with partially prescribed
eigenstructure, or shortly, as a predictor matrix polynomial. For applications
involving predictor polynomials, the reader is referred to [1, 19, 21, 25, 29, 22].

We observe also that associated wWih(z) there is a block companion matrix
Ca defined by

0 0O ... 0 A
gy 0 - 0 A
Ca= 0 Ig --- 0 A, . (7)
_O O A Iq Am_l_

This matrix has the same eigenvaluesPagz) [12], left eigenvectors of the
forme¢* = [I* zI* - .. Z" Y *] with | a left eigenvector 0P, (2), and satisfies the
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368 MATRIX POLYNOMIALS WITH PARTIALLY PRESCRIBED EIGENSTRUCTURE

matrix equation
KmCa = ZKnm. (8

In practice the coefficientdy are never known exactly and one has to ana-
lyze the sensitivity of thg;’s to perturbations inA;. The problem has received
the attention of many researchers and many sensitivity analyses for the scalar
case (i.e., fog = 1) are now available, see, e.g., [2, 6, 17, 21, 25]. Some
results concerning sensitivity of eigenvalues of general matrix polynomials can
be found in [14, 24]. However, to the best of our knowledge nothing has been
done on sensitivity analysis of prescribed eigenvalues of predictor polynomials
for g > 1. The goal of this work is to carry out a sensitivity analysis of pre-
scribed eigenvalues only, focusing on the influence of the polynomial degree on
such sensitivity. We show that this can be done by relatingzflseto a small
n x n matrix obtained by projectin@ onto an appropriate subspace and then
analyzing the projected eigenproblem. As aresult, simple estimates of measures
of sensitivity of thez;’s in the form of informative upper bounds are given.

The following notation is used throughout the paper. Boe C™", ||All2
and ||Al|lr denote the 2-norm (or spectral) and Frobenius nornfofrespec-
tively. A" denotes the Moore-Penrose pseudo-invers@.ofheith singular
value of A is denoted by (A). The 2-norm condition number &, «(A), is
defined byk (A) = || All2|| AT|l2. The spectrum oA € C"*" is denoted by.(A).

The identity matrix of orden is denoted by, and itsjth column bye;.

The paper is organized as follows. In Section 2, we describe results concern-
ing the singular values of projected companion matrices by extending the work
in [5]. The results obtained are then exploited in Section 3, in which we analyze
the departure of the projected companion matrix from normality. In Section 4,
we analyze the condition numbers of thgs introduced by Wilkinson [30],
and the overall 2-norm condition number of the related eigenvalue problem. We
show that these measures of sensitivity are governed by the 2-norm condition
number of the Krylov matrix and conclude that eigenvalues near the unit circle
become relatively insensitive to noise provided that the polynomial degree is
large enough and the eigenvalues themselves are not extremely close to each
other. In addition to this, we provide estimates for the 2-norm condition number
of controllability Gramians of multi-input multi-output discrete dynamical sys-
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tems in diagonal form. Numerical results corresponding to a matrix polynomial
arising from an application in system theory show that low sensitivity is possible
even if some eigenvalues are clustered.

2 Singular value analysis of the projected companion matrix

In order to start our analysis we introduce a new block companion matrix asso-
ciated with the prescribed eigenvalues. Cgtbe defined by

[ By Ig O .- 07
Bl 0 g 0
Cg = : ol e 9)
| Bnz O -~ 0 0 |

whose first column block, denoted g, is any solution of the underdetermined
linear systemk,,Xg = Z~1L. This definition ensures tha}rl (j=1:n)isan
eigenvalue ofCg and that there holds

Let the columns ofV form an orthonormal basis faR (X};), the column
space ofX},. Notice that because of (8) and (133,(X}) is a left invariant
subspace of botle, and Cg associated with the eigenvalues of interest. Let
Ca(m, g) andCg(m, ) be the matrices obtained by projecti@g andCg onto
R(XK}), thatis,

Ca(m, q) = V*CAV, Cg(Mm,q) = ’V*CBV (11)
Then itis clear that
AMCAM, Q) ={z1,... 20}, A(Cam @) = {z,...z,}.

The goal of this section is to analyze the singular valugs,gm, q), focusing
on their behavior as function o, g. Before proceeding we observe that when
the dependence afa(m, q) and Cg(m, q) on m, q is not important for the
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370 MATRIX POLYNOMIALS WITH PARTIALLY PRESCRIBED EIGENSTRUCTURE

understanding, these matrices will be denoted”lhyand Cg. Notice also that
the projector orthogonal ontB (K}, denoted byP, satisfies

P=VV*= XK Kpn. (12)

Two lemmas are needed.

Lemma2.1. For m>n and q > 1 there holdsCp = Cgl.

Proof. SinceXnX}, is positive definite Hermitian, it is clear that the columns
of V = K (KnX;) Y2 form an orthonormal basis faR (K7). Using this
basis and the definitions @fy andCg we have

CACB = (Km&K) ™ Y2 KmC aK i (KmKi) ™Y 2 (Km K ™Y 2 KnC Ky (Km K i) ~ Y2,

This reduces to identity on using (8), (10), and the fact iigtk! = 1. O

Lemma?2.2. LetA= AjA; — BB} with Ay € C"™*PandB; € C"*4. Assume
rank([A; Bi]) = p + q < n. Then, the number of positive, negative, and zero
eigenvalues oA, is p, g, andn — (p + Q), respectively.

Proof. Let the nonzero eigenvalues & be arranged so that,(A) >
A2(A) > -+ = Apiq(A). Our proof relies on the minimax principle for eigen-
values [11]:

. X*AX
A(A) = max min .
dim(S)=k xeS$,x#0 X*X

Let the matrixP = [B; | A;] have a QR factorization

Ri1 | Rz

P=QR=[Q1|Q2]{ 0 | Ry

} . Q'Q=lpiq, (13)
where Q, R are partitioned such thad,; € C"™9, Q, € C™P, Ry; € CI*9,

R € CP*P and Ry, € CP*P, Clearly, bothR;; and Ry, are nonsingular.
From (13) it follows that

Bi = QiRi1, and A; = QiRi2+ Q2R.
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SubstitutingB; and A; into A, it follows that the projection oA onto R(Q>),
the subspace spanned by the column®agfis

Q3AQ2 = Rx2RY,. (14)
Let x € R(Q2), X # 0. Then, becaus®;AQ; is positive definite by (14),
puttingx = Q8 € CP, B # 0, we have
X" AX i BQBAQ

min >
XeR(Q2),Xx£0 X*X XeR(Q2),x£0 B*B

0,

and so, by the minimax principle, we conclude tiahas at leasp positive
eigenvalues. Considering matrixA instead of A and proceeding as before

it follows that A has at leastj negative eigenvalues. Apart from this, it is clear
that A hasn — (p + q) zero eigenvalues. From these conclusions the assertions
of the lemma follow. O

In order to describe our results concerning the singular values,gf we
first notice that the Krylov matrixK,, becomes a weighted Vandermonde
matrix whenq = 1. When the weights are all ones this matrix will be denoted
by W, Let the columns ofV form an orthonormal basis faR (W;). Then the
orthogonal projector ont® (W), P, satisfies

P =WIWy, = VV* (15)
Using this notation we set
pL=Wle X" =W!Z" (16)

wheree=11,---,1]" € R".
We are now ready to describe the singular spectrum of mauix, q).

Theorem 2.3. Let the singular values ofa(m,q) be arranged so that
01(Cp) > -+ > op(Cp). Assume thartank([Z™L L]) = 2g. Then, for
1< q < n/2, there holds

gi(Cp) >1 i=1:q,
0i(Ca) =1, i=q+1:n—q, (17)
O0<oai(Cp <1 i=n—-qg+1:n.
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Furthermore, ifqg = 1 the singular values ofCa(m, 1) do not depend on
the matrixL defined in(3), but rather on the Vandermonde mati¥,. In
this case they are given by

1

o2(Ca(m, 1)) 5

2
[2+ XT3 — Il pall3 + \/(||x+||§ +Ipal3)” — 4|xO|2]

of(Cam 1) =1, j=2:n-1 (18)

o2(Ca(m, 1))

1 2
> [2+ Ix*15 — I pali3 — \/(||x+||§ +lpal3)” - 4|xO|2]

wherex, denotes the first componentxof.
Proof. We use the fact that the squared singular values,oére eigenvalues
of CACi. In fact, using the definition of 4,

CaCr = V*CAVV*CLV = V*CaPCLV = V*CACLYV. (29)

The last equality comes from the fact i€,V = C3V becauséV is a basis of
the right invariant subspace 6f; associated with prescribed eigenvalues. Now
notice that if we writeCa = [E; E>--- Em Xal, WhereE; denotes the block
column vector having itgth entry equal td4 and the remaining ones equal to
the zero matrix, then

CaCh = E2ES + - - -+ EnE + Xa X3,
and this can be rewritten as
CACZ = Imq — ElEI + XAXZ- (20)

Hence, using the fact thaX, solves the system (5), which implies that
Xa = XA 4+ N, whereN is a matrix whose columns belong & (Xpy) =
[R(X})]*, we have

= In—V*PP}V + V*X XV,

where
Po=XIL="PE, Xi=xX}z"L. (22)
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Now observe thaf V*X% V*Pi] = (V*X)[Z™L L] and thatV*X] is
nonsingular. From this and the assumption that (oL L]) = 2q it fol-
lows that rank[ V* X} V*Py]) = 2q. Thus, if V*X7 is identified withA; and
V*Pp with By in Lemma 2.2, it follows from (21) tha€AC% hasn — 2q zero
eigenvalues, the remaining ones being of the form % (i = 1 : 2q) with
the nonzero eigenvalues ef V* P, P}V + V* XA X *V. As g of thesey, are
positive and the othar are negative, the inequalities in (17) follow, as desired.
To prove the statement of the theorem dp& 1, we observe that in this case
L is a column vector and that the Krylov matrix can be rewritterigs =
LDW,, whereL® = diag(L11, ..., Ln1) is nonsingular since, by assumption
ILj1l =1, j = 1: n. From this observation and pseudo-inverse properties, it is
immediate to see tha®, reduces tap;, X} reduces toc*, and neither depend
on L. Hence it follows thatCa(m, 1)Ca(m, 1)* does not depend on and that

Ca(m, )M, 1) = Iy — VipptV 4+ VixFxV.

The equalities (18) follow on analyzing the eigenvaluegatm, 1)C3(m, 1)
from this equality; details can be found in [5]. O

Remark 1. The rank condition ofZ™L L] is no serious restriction in practice.
This is because in practical problerbhds dense, in which case one can prove,
under mild conditions, that rafkZ™L L]) = 2q.

Remark 2. Theorem 2.3 generalizes one concerning the singular values of a
particular projected companion matrix by Bazan (see, Thm. 4 in [5]), and shows
also that the singular values of the projected block companion matrix in our
context, inherits to some extent the singular value properties of general block
companion matrices described in Lemma 2.7 in [15].

Since the singular values @fa(m, 1) do not depend on the matrlx, we can
always compare the singular values@f(m, q) for the case wherg > 1 with
those corresponding tp= 1. This is given in the following theorem.
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Theorem 2.4. LetCa(m, q) as before. Then, fom > nandl1l < q < 2n,
there holds

01(Ca(M, ) < 01(Ca(M, 1)), 0n(Ca(M, 1)) < on(Ca(M, q)).  (23)

Proof. We shall prove the inequalities (23) fqr= 2; the proof for the case
g > 2 is similar. Notice that fog = 1, we have

Ca(m, 1)Ci(M, 1) = Iy + VXXV = VippiV = |, + E. (24)
while if g = 2, we have from (21)

Ca(M, CAM, Q) = ln+ V* X1 X;V — VPPV

+ VX X5V = VFPEPETY,

where we have assumed théf = [Xi, Xz], Py = [P}, P?]. The idea behind
the proof is to rewrite (25) in terms of the matkintroduced in (24). For this
we use the fact that

(25)

VEXi = TV, VPl =T, Vip, i =12 (26)

whereT; = V*1V, 1y = [e1 & -+ &m_1], T2 = [& € -+ €], in which

e denotes théth canonical vector ilR™M9. This can be seen as follows. Let
L =[Lj, LoJandRy = diag(L11, -+, Ln1). SinceZ andR; are diagonal, the
definition of X1 implies (see (22))

X1 =XK1 Z" = KT Z"Rie = KT RiWn W ZMe = K RiWixt.  (27)
But since RiWn = [Rie RiZe --- RiZ™’e] and? = K[ Km, we have
KEIRW = [KI Ly ALy - KEA™IL] = [Pey Pes -+ Peomil.
Inserting this result in Eq. (27) yields
X1 = [Pey Pe3 - -+ Pepm_1] x*. (28)

A similar work with X,, P, andP? gives

Xo = [Pe, Pey -+ Peom] X, (29)
Pl = [Pe; Pes -+ Pem 1] p1, (30)
PZ = [Pe; Pey - Peum] Pr. (31)

Comp. Appl. Math., Vol. 24, N. 3, 2005



FERMIN S. VILOCHE BAZAN 375

The set of equations (26) follows on multiplying B%* on both sides of equations
(28), (29), (30), and (31). Here we have used the fact Hat*x™ = x*,
VV*py = pu, since bothx* and p; belong toR (W).

We turn now to the proof of the theorem. Using the Eq. (26) and (24), we have

Ca(m, Q)Ca(M, q) = In+ THET] + THoETS. (32)

Let u be a unit vector inCP and definew; to be the unit vector with the same
directionasT;*u, i = 1, 2. Forming the Rayleigh-Ritz quotientin (32), we have

UCAM OCAM U = 1+ wiwi | T7ul + wiFuwel| T5ul?

(33)
1+ w*Fw (| T3 ull® + 175 ull?),

IA

wherew = w; such thaw*Fw = maxw;Zwi, w3Fw,}. Now using the defi-
nition of matrix 741, we have

I T u)? = U T1T7u = VLV VI VU = | PTEVU|? < |1 Vu)?,
where we have used the fact tHat? = VV*. A similar work gives
IT3ul® < 1173Vl
Summing up the two last inequalities it is not difficult to check that
1T ull? + 175 ull? < 1.
Substituting this result in (33) gives
U*Ca(m, )CA(M, DU < w*(l + F)w < 05, (Ca(M, 1)),

and the proof of the first inequality in (23) is concluded.

Finally, sinceo,(Ca(m, q)) = 1/01(Cg(M, q)), by Lemma (2.1), proceed-
ing as before it followsr (Cg(M, q)) < 01(Cg(M, 1)). This proves the second
inequality in (23) and the proof of the theorem is concluded. O

A point that remains for discussion is the behavior of the singular values of
Ca(m, q) for fixed g > 1 and varyingm. This is a difficult problem; so we
restrict ourselves to analyzing bounds for them.
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Corollary 2.5 Let X} and P; be as in(22). Then we have

V1= 1Pl < on(Ca), 01(Ca) < /1 +IIXEI3. (34)

Additionally, while the lower bound increases withthe upper bound decreases.

Proof. First notice from (21) that the squared singular values othat differ
from 1 are the eigenvalues &f defined by

Xev ] oo
Q = |2q+|: _él*,v :|[V XX VP

(35)

lg + XK X5 XAPy
— Py X% lg— PyPL |

By comparing the eigenvalues @fwith those of its Hermitian part, it follows
Amin(lg — PIPD) < 4i () < Amax(lq + XJ/K*XJ/K)-

This proves (34). We shall now prove that bt || and|| Py ||, are decreasing
functions ofm. Let

Km=[L ZL---Z"L], Xfi=KIzZ™IL |Py,=K"L.

Then we shall prove thatX £ [l2 < [ Xk]l2 and|Pyll2 < [|Py]l2. In fact, write
Km = [L | ZKm] and notice that

KKl = (K Kip) ™ = (LL* + ZGmaZ9 7,
where
Applying the Sherman-Morrison formula to the inverse above we obtain

KKh = Z7%6nqZ 1 = 27" GnqZ L + L' Z 7 GrgZ T I 2 Gzt

37)

=z kTt - X+ XX TG achz

where we have used the fact th&}, K = 1., and we seiXg = KT z-1L.
Pre-multiplication byl *Z™" and post-multiplication b ™1L on both sides
of this equation yields

XAXA = XRXE = XEXEA + XEXE) TIXE* XA
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This shows that the singular values of X, can not exceed those &f}, thus
ensuring the statement of the theorem ¥of. To prove that| P, ||, decreases
with m, it is sufficient to partitionKy, asKm = [Km | Z™L], and then proceed
as before. O

The corollary is interesting because it provides a bound for the 2-norm condi-
tion number ofC of the form

k(Cp) <

/ +112
l+||XA||2 (38)
V21— P

that decreases with. Thus, reliable bounds far(C,) can be obtained provided
both || X% |12 and || P1||3 are small enough. For the significant case where the
prescribed eigenvalues lie inside the unit circle, the asymptotic of the bounds as
m is going to infinite is readily determined. To do this the following technical
result, the proof of which is straightforward, is needed.

Lemma 2.6. Suppose alg; fall inside the unit circle. ThetjX%|. — 0 as
m — oo.

Corollary 2.7. Suppose alg; lie inside the unit circle. Then, as — oo we
have

kCo) <] ]IzI™

j=1

Proof. We first notice that fog = 1 we haves;(Ca(M, 1))on(Ca(m, 1)) =
]_['j‘:1 |zj|. Using Corollary 2.5 and Lemma 2.6 it follows that
Iim o1(Ca(m, @) = lim o1(Ca(m, 1)) = 1.

Now sinceo,(Ca(M, q)) > on(Ca(m, 1)) for all m > n and fixedq > 1, by
Corollary 2.5 again, there holds

P
lim on(Ca(m. @) > lim on(Ca(m. 1) =[] Iz1.
m— oo m— oo j:]_
The assertion of the corollary follows on using this inequality and the definition
of kK (Cp). O

Comp. Appl. Math., Vol. 24, N. 3, 2005
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3 Departure from normality of Ca(m, Q)

The influence of nonnormality on several problems in scientific computing
has been known for long time and several measures of nonnormality either
of theoretical or practical interest are now available [8, 10, 13]. An exhaus-
tive discussion on the influence of nonnormality on many problems in scientific
computing, using several measures of nonnormality, is given in Chaitin-Chatelin
and Frayseé [8]. FoA € C"™" the following measure has been introduced
by Henrici (1962):

D*(A) = [[AIE — Y 14(A (39)
j=1

This measure plays an important role in our context because it can be related
to the conditioning of the eigenbasis Afwhen A is diagonalizable. To clarify

this recall that for generah e C"™*" with simple eigenvalues; anduj, v; as
associated left and right eigenvectors, the condition numbgf ,adenoted by
kj(Aj), is defined by (see. e.g., Wilkinson [30, p. 314])

_lujli2llvjliz
|UTUJ'|

k(Aj) (40)

Smith [23] proved that

1 D 2 (n-1)/2
kj(Aj) < |:1+ no1 <E> i| ) (41)

wheres; measures the distanceof to the rest of the spectrum. Thus the more
the ill-conditioned) j, the larger the rati® /§;, which means thab increases
and/org; is small. Another interpretation of the above result is possible. Of
course, it says that for the eigenvalugto be well conditioned, it suffices that
D/é; ~ 0 andn be a moderate number. We shall return to this point later.

The goal here is to analyZe(Ca(m, gq)), concentrating on its behavior as a
function ofm, q for fixedq > 1 and increasing. The following theorem shows
that this can be made by comparing the singular valugs.om, q) with those
of Ca(m, 1). This is always possible, since by Theorem 2.3, the singular values
of Ca(m, 1) do not depend on the matrix
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Theorem 3.1. Leta andb denote respectively the largest and the smallest

379

singular values of o(m, 1) and let the singular values; of Ca(m, q) be ordered

in the usual way, i.eqy; > 0o > --- > oy,. Let

. o1 On
of = max{—,crg,--- , On—1, —}, and
a b
min {Ul Gn}
O, — —5 02, ,0n-1, /(-
* a 2 n-1 b
Define
. o* a? —o? o2 —b?
k=—, =|—2@ -1+ 2" 1-b%|.
o " [ PER ) T )

Then, for eactm > nand 1< q < n/2 it holds

[CA(M, D2 —p < [ICa(M, q)2

< %(E +RH2 = (p +2q) + [Ca(m, D)2

Proof. We first notice that, because of Theorem (2.3), we have
ICA(M, D[ =n—2+a”+b”

Now sinceCa(m, ) has the same spectrum@s(m, 1) we have
n
2 2 2 2 2 2 _ 12 212
0103 " 040 _qi1° " Op 105 = 1_[|ZJ| = a“b’.
j=1

If this is rewritten as

1 a? 1 1 1 1 1 b?
=2 27" 2°2 2 T2 o
0102 9900 q+1%-qg+2  %n-19n

the geometric-arithmetic mean inequality leads to

a? 1 1 1 1 b?
20< 5+ gt gt
01 02 9%  On_pt1 Op—1  On

Multiplying both sides of this inequality by the sum of the reciprocals of each

term of the right hand side, we obtain

In

b2

(42)

(43)

(44)

(45)

5 2
o
[—aé +022+"'+0(]2+0r12—P+1+ T +Unz—1+ ]Zq <c'Acc'Alc,
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where

: 2,2 2 2 2 2 2 /2
A = diaglof/a ,02,...,aq,an_q+l,...,an_l,on/b ),

c=[11,...,1" e RA.

Kantorovic’s inequality (see Horn and Johnson [16, Thm. 7.4.41]) leads then to

of 2 2 2 2 of o o-11°
¥+02+"'+Uq+Gn—p+l+"'+an—1+§ ZCISI:Q(I("Fk )] )
wherek is defined in (42). Hence it follows
2 2
. -~ o o
of+~-+onz§§(k+k1)2+of—a—12+a§—b—g+n—2q. (46)

The upper bound in (43) follows from this inequality on noting that

012—0—1+02—G—n=—p+a2+b2—2, (47)

wherep is defined in (42). To prove the lower bound, rewrite (45) as

2 2
o (of
1.2 2.2 2 2 n
1 — _0'2 [ O'q O'n_q lo’n_q 2 Gn—l_z'

ai
The geometric-arithmetic mean inequality leads then to

2 2
91 2 2 2 2 2 o
2q < ¥+az + - +oy +an_q+1+an_q+2+---+on_l+b—rz‘
The lower bound in (43) is a consequence of using (47) in this inequalitly]

The departure from normality afa(m, 1) is analyzed in Bazan [5]. The
conclusion drawn from that analysis is that this matrix becomes close to a
normal matrix provided the eigenvalues fall near the unit circle anan is
large enough. This is important in our context since if we take into account
the inequalities (43), we can conclude tlaim, q) for the case) > 1 may be-
come closer to normality thafia(m, 1). In terms of eigenvalue sensitivity, this
means that prescribed eigenvaluedgfz) can be less sensitive to noise when
regarded as eigenvalues©f(m, q) with g > 1 than when regarded as eigen-
values ofCa(m, 1). This shall be theoretically demonstrated in the next section.
Here we restrict ourselves to numerically illustrate the behavi@r@a(m, q)).
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Example: departure from normality of Ca(m, q) arising from a dynamical
system. The dynamical system under analysis is defined by the state space
equations

X = AXx+ B

X X+ Bu (48)

y =Cx,
and corresponds to a computer model of a flexible structure known as Mini-
Mast [18]. MatricesA, B andC are of orders 10< 10, 10x 2 and 2x 10,
respectively; the entries of the matrices can be found in [18]. Impulse response

samples are thus given as
he =Ce**B, k=0,1,...

MatricesR andL of model (3) are thus of order2 10 and 10x 2, respectively,

and can be found readily by computing an eigendecomposition of matrix
According to our notation this implies that= 10, p = g = 2; the eigenvalues

are of the formg; = €%4! (j = 1: 10) where thes;’s are eigenvalues oA. The

time stepisAt = 0.03s. The model comprises five modes (in complex conjugate
pairs) and involves two closely spaced frequency pairs. Frequencies and damping
expressed as the negative real part ofifeas well as the eigenvalues in modulus
and separationy = min|z; — z|, i # j, are displayed in Table 1.

Mode | Damping| Frequenc| |z;] 8j
i rad/s
1 0.32907 | 27.42011| 0.99017| 0.32299
2 0.38683 | 38.68230 | 0.98846| 0.00982
3 0.38352 | 38.35103 | 0.98856| 0.00982
4 0.09066 | 5.03555 | 0.99728| 0.00011
5 0.09055 | 5.03176 | 0.99728| 0.00011

Table 1 — System poleg and separations.

In order to illustrate the behavior @?(Ca(m, g)) as a function ofn, q the
norms||Ca(m, g)[|2 for increasingm andq = 1: 2 were computed from the
relation (see (21))

ICA(M, Q)12 = n+ [|X4IIZ — [IPy]IZ. (49)
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-810 20 30 40 50 60 70 80 90 100
m
Figure 1 — Departure from normality of matr&a(m, q) as a function ofn andq on
a logarithmic scaleq denotes the number of columns of mattixin (3) andm the
degree ofPn(2). The horizontal line points out the asymptotic valueDf(Ca(m, 2))
for largem.

All computations were carried out using MATLAB. The results displayed in
Figure 1 are surprising: they not only show tiz#(Ca(m, 2)) really improves
D2(Ca(m, 1)) but also that this improvement can be dramatic wheis near

n = 10. For illustration, while fog = 1 andm = 10, 11 we obtain

D2(Ca(10, 1)) = 2.5877x 10*, D?(Ca(11, 1)) = 3.692 x 10,

which illustrate thatCa(10, 1) andCa(11, 1) are highly nonnormal, fogq = 2
and the same values of we obtain

D2(Ca(10, 2)) = 5.4295x 107!, D?(Ca(1l,2)) = 4.9053x 10!

The influence ofy on D?(Ca(m, q)) for g > 2 was also analyzed. For this,
input matriceB with random numbers as entries of ordgrs 10 andq = 1: 4
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12

< Qo Q9 o
BwN

-8
10 20 30 40 50 60 70 80 90 100

Figure 2 — Departure from normality of matria(m, q) as a function ofm andq on
a logarithmic scaleq denotes the number of columns of mattixin (3) andm the
degree ofPn(2). The horizontal line points out the asymptotic valueDf(Ca(m, 4))
for largem.

were constructed. With these matrices at hand, the matticafscorrespond-
ing orders were obtained in the same way as in the casq fer 2. Results
corresponding to the seed value of the random generator equal to 10 (we use
the MATLAB function randn), displayed in Figure 2, show once more that the
departure from normality of matri€a(m, q) for g > 1 gets smaller than that
corresponding tq = 1. However no conclusion can be drawn concerning the be-
havior of D?(Ca(m, q)) for valuesg > 2 in comparison with that corresponding
tog =2

As in this example all eigenvalues lie inside the unit circle, the asymptotic
value of D?(Ca(m, g)) asm is going to infinity can be readily computed: it
suffices to use (49) taking into account that in this case

IXallg = 0, [|PL|Z = TracegL*G .}, L),
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where

: ; * ; * * 1-(z zj)m
Goo,q = nlinoo Gmq = n!inoo KKy, With [Gmgli,j = € LL" g 1——2.2,

Asymptotic values 0D?(Ca(m, q)) in this case are:

D2(Ca(00, 1)) = 0.9719% 102, D?(Ca(o0, 2)) = 0.4915x% 1072,
D?(Ca(00, 3)) = 0.2946x 102, D?(Ca(o0, 4)) = 0.2489x 102

4 Condition numbers

We have seen that the prescribed eigenvatyes P, (z) are eigenvalues of the
projected companion matria(m, q). This fact is exploited here to carry out a
sensitivity analysis of these eigenvalues. To this end , we choose as measures
of sensitivity the Wilkinson condition numbers of tzg's (see (40)) viewed

as eigenvalues of o(m, ), and the overall 2-norm condition number of the
eigenvalue problem. In order to describe our results we recall thamhforn

and fixedq, g > 1, Gmq = KmXK}, is positive definite Hermitian. In the sequel
we shall always assume that the left eigenvectd?gfz) (the rows of matrix.

in (3)) are scaled using the 2-norm to unit length. The lemma below explains
that the sensitivity of the eigenvalue problem associated with mai, q)

is governed by the condition number of matgy, 4.

Lemma4.1l. LetCa(m, q) be as before. Then there holds

Ca(M, @) = (Gmq) Y2Z(Gmq)"?.

Consequently, the sensitivity of the eigenvalue problem related to the prescribed
eigenvalues is governed Qﬁ(gm,q).

Proof. SetV = K} (Gmgq) V2. Itis immediate to check that the columns of
Vv form an orthonormal basis @t (K};). Using the definition oCs(m, ) and
this basis, we have

Ca(m,q) = V*CpV
= (Gm,q)_1/2~'KmCA~fK;1(gm,q)_l/2-

The proof concludes on using (8). O

Comp. Appl. Math., Vol. 24, N. 3, 2005



FERMIN S. VILOCHE BAZAN 385

In the following, the condition number df; related toCa(m, q) forq > 1
(and hence tdPy(2)) is denoted by (z;), while the condition number of the
same eigenvalue but related@@(m, 1) is denoted by(z;).

Theorem 4.2. For m > n the following properties hold

(a) For1l < g < n/2we have

ka(Z) = \/1+ 1212+ 1z + -+ 172D | Kyl (j=1:n). (50)

(b) The condition numbers,(z;) do not depend on the matrix but rather
on the Vandermonde matri¥,.

(c) Forfixedm > nandq > 1there holdscy(zj) < k1(Z)).

(d) Lets; = min |z; — z| Then, forl < g < n/2 there holds
1§jl§|rfnj7ék
(n-1)/2
N — 14 x* 13+ [T}, 121> — X]_, 121
z)< |1+ 1= L . (B1
Kq( J)—|: (n— 157 (51)

wherext denotes the minimum norm solution of the sys¢Byrfor the
caseqg = 1.
Proof. Toprove(a) notice fromLemmad4.1that = g;],lcfzej andu; = Gr]f{(zqej
are left and right eigenvectors @fa(m, q), respectively, associated with the
eigenvaluez;. These eigenvectors satisfy the conditign; = 1. Besides this

2 -1 T 2
Ioll3 = vivj = € Gnke; = IK1e I3

The last equality is because the rowslofn (3) are scaled to unit length by
assumption. The equality (50) follows from these relations on using the defini-
tions given in (40).

To prove propertyb) notice thal. becomes a column vector@ wheng = 1.
In this case we can writ6m g = LYWW LP* whereL ™ denotes a diagonal
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matrix with the components df as entries anilV, the Vandermonde matrix
introduced in the previous section. From this observation and the definition (40)
it is immediate that

k1(Z)) = (1€ Whnll2 Wihej 2.

which provegb).

The proof of(c) is based on the property thi e[l < [[W]e; |2, which
can be seen as follows. Lgt = K[ e;. This means thap; is the minimum
2-norm solution of the underdetermined linear system

Kmp = €. (52)

Let Km = [LOWy, - - - LOW;,], whereL® = diag(Lyi,...Ln;).i =1...q.
Itis clear thatK,, = Ky J with 7 an appropriate permutation matrix. Introduce
K P defined by

W%L(l)

WanL(Q)
Then
szﬂzg =LOLO* 4 L@@ —

and thereforeX? is a right inverse ofK,,. Define nowgp = 7:K2e;. It is not
difficult to check that this vector is a solution of the system (52). Additionally

P15 = IWme; 5L} 117 + [Winej I51Lj 2% + - - - + [|Winej 151 L I
= [Wmej 5L a” + ILj2l* +-- -+ ILj gl
= [[Wnejll3-

This equality proves property (c) &g is the solution of minimum norm of (52).
Finally, property(d) is a consequence of estimate (41), property (c), and
Lemma 7 in Bazan [5] where it is proved that

n n
DXCam. D) <n—1+ x 13+ ]1z12 =D 1z~
j=1 i=1

The main conclusion that can be drawn from the Theorem 4.2 is that the sensitivity
of thez;’s regarded as eigenvalues of the projected companion matrix essentially
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depends on intrinsic characteristics of the eigenvalues themselves and on the
degree of the associated matrix polynomial. Concerning the estimates (51), since
n is assumed to be small, the conclusion is that they can approach the optimum
value 1 provided x* ||5 ~ 0 and the eigenvalues in modulus are reasonably close
to the unit circle but not extremely close to each other. In spite of the fact that this
conclusion seems to emerge under rather stringent conditions, nansahall
andz;’s close to the unit circle, we emphasize that there are many applications in
which these conditions appear frequently. In fact, in modal analysis of vibrating
structures, the analysis of slow-decaying signals often involves eigenvalues very
close to the unit circle and small; in [4, 1, 19] examples are reported with

n ranging from 15 to 20. Numerical examples showing that |3 ~ 0 for
moderate values ofn are discussed in [7]. Another example involving the
conditionn small is encountered in NMR; genuine applications in this field
point outn ranging from 2 to 16 [26, 27]. The conditidix™ |5 ~ 0 in NMR is
numerically verified in [3].

Apart from the conclusion above, a remark concerning the meaning of prop-
erty (c) must be done: It predicts reduction in sensitivity of prescribed eigenval-
ues when extracted from projected companion matrices related to polynomials
with g > 1. This will be illustrated numerically later.

The following theorem states that the conditioning of the eigenvalue problem
associated witl o(m, q) improves the conditioning of the eigenvalue problem
associated with matri€(m, 1).

Theorem 4.3. SetGm = WnW,;. Then for eacm > n, we have that

K(Gm.q) < k(Gm).

Proof. We shall prove that

A(Gmg) < A1(Gm),  and Ain(Gmgq) = An(Gm). (53)

In fact, letK be as in the proof of the previous theorem. Then it is clear that
KK} = Gmgq- Using this result, for all unit vectar € C", we have that

UGmgl = U KnKiu
WLDGL DU 4 - -« 4+ U L@ G, L @5y,
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Letv; (j = 1: g) be the unit vector with the same directionla$*u. Substi-
tuting v; in the above equation and using the Rayleigh-Ritz characterization of
eigenvalues of symmetric matrices, we get

UGmqt = viGmuil LD U2 + - + v} Grvg | L @*ul|2

A (Gm)(ILD*U2 - - - 4 [[L@*ulj?).

A

The firstinequality in (53) follows on noting théfL *u||2 - - -4 ||L@*u||?) = 1
because by assumption all rows lofhave 2-norm equal to one. The second
inequality in (53) follows in the same way and the proof concludes. O

Note that because of its definition, wheneverzlfall inside the unit circle,
the limit of G, g asm — oo is always guaranteed to exist, and the same result
applies forGn,.

Corollary4.4. LetG q denote the limiting value @, q asm — oco. Suppose
all prescribed eigenvalues of Py (2) fall inside the unit circle. Define
a = max|zj|, B =min|z;|, and §=min|z —zj|, i #], 1<i,j <n.

Then 1
k(Goo,q) < > (n +vn?— 4) :

where

(n-1)/2
=n 1-|-n_14_1_[?:1'2”2_Z?=1|Zi|2 " 1_ﬁ2_n+2
n= (n — 1)82 1— o2

Proof. This corollary is a consequence of Theorem 4.3 and Corollary 9 in
Bazan [5]. O

Example: conditioning of Mini-Mast eigenvalues. To confirm the theore-

tical predictions of Theorem 4.2 we have computed the condition nunape;9

of the eigenvalues associated with the Mini-Mast model described in the previous
section. The goal is to verify that severe reduction in sensitivity is possible when
extracting thez;’s from projected companion matrices related to polynomials
with g > 1. Results corresponding ¢pranging from 1 to 4 and some values of

m are displayed in Table 2. Reduction in sensitivity is apparent from this table.
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Mode k1(zj) k1(z) k2(zj)) | Kk2(zj) | «3(zj) | «a(z)j)
j m =10 m =20 m=10 | m=20 | m=10 | m=10
1 | 0.00017x107 | 0.00130<103 | 1.77339| 1.00929| 1.19281| 1.12292
2 | 0.00127x10" | 0.02310<103 | 2.30402| 1.50635| 1.19617| 1.04022
3 0.00136x107 | 0.02311x103 | 1.64077| 1.49986| 1.13957| 1.08176
4 3.10889x 107 | 4.75131x103 | 7.56466| 3.86546| 1.75153| 1.19145
5 3.11084x 107 | 4.75306<10% | 8.07200| 3.86827| 1.37293| 1.29589

Table 2 — Condition numbers of prescribed eigenvalijes

4.1 An application to linear system theory

We shall show that the Corollary 4.4 can be applied to estimating the 2-norm
condition number of controllable Gramians in linear system theory. Consider a
dynamical discrete linear systefrdescribed by the state equations

Xkr1 = AXc+ Bug
Y« = CX
whereA e R™", B € R™9, andC € R™". Assumer; (A) # Aj(A), fori # j,

and|r (A)] < 1 (i = 1:n). Assume also that the system is controllable, i.e.,
the extended controllable matrix, defined by

(54)

Cd=[BAB AB-.-A™!B], m>n,q>1 (55)

satisfies raniCfh) = n. Then the controllable Gramian of the systémefined
as [9]

0

9=> BAA*B",

j=0
is guaranteed to be symmetric and positive definite, and its eigenvalues are
known to concentrate information that plays a crucial role when solving sys-
tem identification and model order reduction problems. It turns out that if the
system eigenvalues;(A) are distinct, a change of basis of the state vector
X = T~x with T a matrix of right eigenvectors o, will transform the state
space representation (54) to another one in diagonal form. When this is done,
Chh reduces to a matrix like the block Krylov matrik,,, and the controllable
Gramiang reduces to one lik€, 4. This shows that the estimate fo(Gw o)
of the Corollary 4.4 applies to estimating the 2-norm condition humber of the
Gramian@.

(56)
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5 Conclusions

Based on the fact that prescribed eigenvalues of predictor polynomials can be
regarded as eigenvalues of projected block companion matrices, an eigenvalue
sensitivity analysis was performed. As a result, simple estimates of measures
of eigenvalue sensitivity in the form of informative upper bounds were derived.
In particular, under the assumption timais small, it was proved that prescribed
eigenvalues near the unit circle can be relatively insensitive to noise provided the
polynomial degree is large enough. The effect of the dimension of the coeffi-
cients on the sensitivity was also analyzed and it was concluded that prescribed
eigenvalues of predictor polynomials can be less sensitive to hoise when regarded
as eigenvalues of projected companion matrices related to matrix polynomials
with coefficients of ordeq > 1 than when regarded as eigenvalues of projected
companion matrices related to scalar polynomials. The theory was numerically
illustrated using a matrix polynomial with clustered eigenvalues arising from
the modal analysis field. The results are of interest in system analysis where
estimates for the 2-norm condition number of controllability Gramians of multi-
input multi-output discrete dynamical systems play a crucial role.

The author is aware that further research is desirable for the case where the pre-
scribed eigenvalues are almost defective: the bounds in property (d) of Thm. 4.2
can be pessimistic in this case as the rdits; is no longer small, but as il-
lustrated in Table 2, the conditioning itself remains excellent. Furthermore, an
analysis for the case where the prescribed eigenvalues are defective is needed.
This challenging development is the subject of future research.
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