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Abstract. A trust-region method with two subproblems and backtracking line search for

solving unconstrained optimization is proposed. At every iteration, we use the truncated conjugate

gradient method or its variation to solve one of the two subproblems approximately. Backtracking

line search is carried out when the trust-region trail step fails. We show that this method have

the same convergence properties as the traditional trust-region method based on the truncated

conjugate gradient method. Numerical results show that this method is as reliable as the traditional

one and more efficient in respect of iterations, CPU time and evaluations.
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1 Introduction

Consider the unconstrained optimization problem

min
x∈Rn

f (x), (1)
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where f is a real-valued twice continuously differentiable function, which we

assume bounded below. Unconstrained optimization problems are essential in

mathematical programming because they occur frequently in many real-world

applications and the methods for such problems are fundamental in the sense

that these methods can be either directly applied or extended to optimization

problems with constraints. There are many effective algorithms designed for

unconstrained optimization problems (see [6, 13]), most of the algorithms can be

classified into two categories: line search algorithm and trust region algorithms.

Trust-region method is efficient for solving (1). It has mature framework,

strong convergence properties and satisfactory numerical results (see [4]). How-

ever, sometimes the trust-region step may be too conservative, especially when

the objective function has large “convex basins”. The standard trust-region tech-

nique may require quit a few iterations to stretch the trust region in order to

contain the local minimizer. Thus, it is natural for us to consider modifying

the standard trust region method to give an new algorithm which can maintain

the convergence properties of the standard trust-region method and need less

computational cost.

In the previous research [12], we obtained a trust-region method with two

subproblems and backtracking line search. A subproblem without trust-region

constraint was introduced into the trust-region framework in order to use the

unit stepsize Newton step. This unconstrained subproblem normally gives a

longer trail step, consequently it is likely that the overall algorithm will reduce

the computational cost. Based on the information in the previous iterations,

either the trust-region step or the Newton step is used. Moreover, the idea of

combining trust-region and line search techniques (see [8]) is also used in that

algorithm. The algorithm inherits the convergence result of traditional trust-

region method and gives better performance by making good use of the Newton

step and backtracking line search. However, as the exact minimizer of the trust-

region subproblem is need and the Cholesky factorization of the Hessian matrix

is used to decide whether the model function is convex, that algorithm is obvi-

ously not fit for large problems.

Therefore, in this paper we propose a new trust-region algorithm with two

subproblems using truncated conjugate gradient method and its variation to
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solve the subproblems. Our method can be regarded as a modification to the

standard trust region method for unconstrained optimization in such a way that

the Newton step can be taken as often as possible. A slightly modified trun-

cated conjugate gradient method is used to compute the Newton step. The

global convergence and local superlinear convergence results of the algorithm

are also given in the paper.

The paper is organized as follows. In the next section, we give the framework

of the method and describe our new algorithm. The convergence properties are

presented in Section 3 and the numerical results are provided in Section 4. Some

conclusions are given in Section 5.

2 The algorithm

First we briefly review the framework of trust-region method with two subprob-

lems and backtracking line search.

One of the two subproblems is the trust-region subproblem. At the current

iteration xk , the trust-region subproblem is
{

min
s∈Rn

Qk(s) = gT
k s + 1

2 sT Hks,

s.t. ‖s‖ ≤ 1k

, (1)

where Qk(s) is the approximate model function of f (x) within the trust-region,

gk = g(xk) = ∇ f (xk) and Hk = ∇2 f (xk) or an approximation of ∇2 f (xk).

We usually choose Qk to be the first three terms of the Taylor expansion of the

objective function f (x) at xk with the constant term f (xk) being omitted as this

term does not influence the iteration process.

Another subproblem is defined by

min
s∈Rn

Qk(s) = gT
k s +

1

2
sT Hks, (2)

where gk, Hk has the same meaning as in (2). Since in this subproblem we do

not require the trust region constraint, we call it unconstrained subproblem.

In the ideal situation, the unconstrained subproblem should be used when the

model function is convex and gives an accurate approximation to the objective

function. Define

ρk =
f (xk) − f (xk + s)

Qk(0) − Qk(s)
. (3)
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The ratio ρk is used by trust region algorithms to decide whether the trial step

is acceptable and how to update the trust-region radius. In the method given

in [12], we also use the value of ρk and the positive definiteness of ∇2 f (xk)

to decide the model choice since we solve the trust-region subproblem exactly.

In this paper, we use the truncated conjugate gradient method (see [1, 10]) to

compute a minimizer of the trust-region subproblem approximately, as Cholesky

factorization cannot be used for large scale problems. Now, we consider how to

compute the unconstrained model minimizer approximately.

Consider using the conjugate gradient method to solve the subproblem (3).

The subscript i denotes the interior iteration number. If we do not know whether

our quadratic model is strictly convex, precautions must be taken to deal with

non-convexity if it arises. Similarly to the analysis of the truncated conjugate

gradient method (see [4]), if we minimize Qk without considering whether or

not ∇2 f (xk) is positive definite, the following two possibilities might arise:

(i) the curvature 〈pi , H pi 〉 is positive at each iteration. This means the current

model function is convex along direction pi , as we expect. In this case,

we just need to continue the iteration of the conjugate gradient method.

(ii) 〈pi , H pi 〉 ≤ 0. This means the model function is not strictly convex.

Qk is unbounded from below along the line si + σ pi . The unconstrained

subproblem is obviously not fit for reflecting the condition of the objective

function around the current iteration now. So we should add the trust-

region constraint and minimize Qk along si + σ pi as much as we can

while staying within the trust region. In this case, what we need to do is

finding the positive root of ‖si + σ pi‖ = 1.

In order to avoid conjugate gradient iterations that make very little progress in

the reduction of the model quadratical function, the iteration are also terminated

if one of the following conditions

‖∇Qk(s j )‖ ≤ 10−2‖∇Qk(0)‖, (4)
[
Qk(s j−1) − Qk(s j )

]
≤ 10−2

[
Qk(0) − Qk(s j )

]
(5)

is satisfied (see [9]). The iterations are also terminated if the theoretical upper

bound n is reached.
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Now, we can give an algorithm for solving the unconstrained subproblem

approximately. It is a variation of the truncated conjugate gradient method.

Algorithm 2.1

Step 1 Initialization Set s0 = 0, v0 = g0 = ∇x f (xk), p0 = −g0, curq = 0,

preq = 1, kappag = 0.01, εk = min(kappag,
√

‖g0‖), i termax =

n.

Step 2 While i ≤ i termax

if preq − curq ≤ kappag ∗ (−curq), stop.

κi = pT
i H pi ,

if κi ≤ 0, then

info:= 1, if ‖si‖ ≥ 1k then stop, else compute σ as the

positive root of ‖si + σ pi‖ = 1k , si+1 = si + σ pi , stop.

end if

αi = 〈gi , vi 〉/κi ,

si+1 = si + αi pi ,

update preq, curq, gi+1,

if ‖gi+1‖/‖g0‖ ≤ εk , stop.

vi+1 = gi+1,

βi = 〈gi+1, vi+1〉/〈gi , vi 〉,

pi+1 = −vi+1 + βi pi ,

i = i + 1,

goto step 2.

The above modification of the conjugate gradient method can deal with neg-

ative curvature directions. Such technique is also discussed in [1] as well. In

the above algorithm, if info equals 1, the current model function is not convex.

It is easy to see that the computation cost in each iteration of the above algo-

rithm is mainly one matrix-vector multiplication. Thus, it is very likely that the
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above algorithm is faster than solving Hks = −gk by carrying out the Cholesky

factorization of Hk directly.

We now describe the algorithm of using truncated conjugate gradient method

in the trust-region method with two subproblems and backtracking line search.

We use ρk and flag info to decide the model choice. If the value of ρk of an

unconstrained subproblem is smaller than a positive constant η2 or in f o = 1,

we may consider that the unconstrained model is not proper and choose the trust-

region subproblem in the next iteration. We take the unconstrained model if the

ratio ρk of the trust-region trail step is bigger than a constant β (β → 1 and

β < 1) in 2 consecutive steps. The overall algorithm is given as follows.

Algorithm 2.2 (A trust region method with two subproblems)

Step 1 Initialization.

An initial point x0 and an initial trust-region radius 10 > 0 are given.

The stopping tolerance ε is given. The constants η1, η2, γ1, γ2 and β

are also given and satisfy 0 < η1 ≤ η2 < β < 1 and 0 < γ1 < 1 ≤ γ2.

Set k := 0, btime := 0 and fmin := f (x0). Set flag T R0 := 0, info

:= 0.

Step 2 Determine a trial step.

if T Rk = 0, then compute sk by Algorithm 2.1;

else use truncated CG method to obtain sk.

xt := xk + sk.

Step 3 Backtracking line search.

ft := f (xt).

if ft < fmin go to step 4;

else if T Rk = 1, then carry out backtracking line search;

else then

T Rk+1 := 1, btime := 0, k := k + 1, go to step 2.

Step 4 Acceptance of the trial point and update the flag TRk+1 and the trust-

region radius.
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xk+1 := xt . fmin := f (xt).

Compute ρk according to (4).

Update 1k+1 :

1k+1 =






γ11k i f T Rk = 1 and ρk < η1 ,

or T Rk = 0 and ρk < η1 and ‖sk‖ ≤ 1k ;

γ21k i f T Rk = 1 and ρk ≥ η2 ,

or T Rk = 0 and ρk ≥ η2 and in f o = 1 ;

1k otherwise.

Update btime and T Rk+1 :

btime =






0 i f T Rk = 1 and ρk ≤ β ,

or T Rk = 0 and ρk ≥ η2 and

in f o = 1 ,

or T Rk = 0 and 0 < ρk < η2 ;

btime + 1 i f T Rk = 1 and ρk > β.

T Rk+1 =






0 i f btime = 2 ;

1 i f T Rk = 0 and ρk ≥ η2 and in f o = 1 ,

or T Rk = 0 and 0 < ρk < η2 ;

T Rk otherwise.

if btime = 2, btime := 0.

k := k + 1.

go to step 2.

In the above algorithm, backtracking line search is carried out using the same

formula as in [12]. We try to find the minimum positive integer i such that

f (xk +αi s) < f (xk), where α ∈ (0, 1) is a positive constant (see [8]). The step

size α is computed by polynomial interpolation since f (xk), g(xk), ∇2 f (xk) and

f (xk + s) are all known. Denote q = 1
2 sT ∇2 f (xk)s, then

α = −
gT

k s

q +
√

(q2 − 3gT
k s( f (xk + s) − q − gT

k s − f (xk))

(6)

(
choose α = −gT

k s/sT ∇2 f (xk)s or the result of truncated quadratic interpola-

tion when the denominator equals to zero
)
. Set αk = max[0.1, α], in case that
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αk is too small. It is obvious that to evaluate the objective function on two close

points is a waste of computational cost and available information. The idea of

discarding small steps computed as minimizers of interpolation functions was

also explored in [2] and [3].

3 Convergence

In this section we present the convergence properties of the algorithm given in

the previous section.

In our algorithm, if the unconstrained subproblem is chosen and the Hessian

matrix is not positive definite, the trial step will be truncated on the boundary

of trust-region just the same as truncated conjugate gradient method. So the

difference arises when the model function is convex and the trail step is large,

which provides more decrease of the model function. Thus in fact the uncon-

strained model is used only when the model function is convex. The proof of

our following theorem is similar to that of Theorem 3.2 of Steihaug [11] and

Powell [10].

Theorem 3.1. Suppose that f in (1) is twice continuously differentiable and

bounded below and the norm of Hessian matrix is bounded. Let εk be the relative

error in the truncated conjugate gradient method and the Algorithm 2.1. Iteration

{xk} is generated by the Algorithm 2.2. If εk ≤ ε < 1, then

lim inf
k→∞

‖g(xk)‖ = 0. (1)

Proof. Since we have

Qk(sk) ≤ min
{

Qk(−σg(xk)) : ‖σg(xk)‖ ≤ ‖sk‖
}

(2)

no matter the trail step sk is computed by the trust-region subproblem or the

unconstrained subproblem, it follows from Powell’s result [10] that

−Qk(sk) ≥ c1‖g(xk)‖ min
{
‖sk‖,

‖g(xk)‖

‖Hk‖

}
, (3)

with c1 =
1

2
.

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/6/30 — 16:00 — page 97 — #9

MINGYUN TANG and YA-XIANG YUAN 97

We prove the theorem by contradiction. If the theorem were not true, we can

assume that

‖g(xk)‖ ≥ δ for all k. (4)

Thus, due to (4) and the boundedness of ‖Hk‖, there exists a positive constant δ

such that

−Qk(sk) ≥ δ min
{
‖sk‖, 1

}
. (5)

First we show that

∑

k≥0

‖sk‖ < +∞ . (6)

Define the following two sets of indices:

S =
{
k : ρk ≥ η1

}
, (7)

U =
{
k : T Rk = 0

}
. (8)

Since f is bounded below, we have

+∞ > f0 − min f (x) ≥
∞∑

k=1

[
f (xk) − f (xk+1)

]
(9)

≥
∑

k∈S

[
f (xk) − f (xk+1)

]
≥ η1

∑

k∈S

−Q(sk)

≥ η1δ
∑

k∈S

min
{
‖sk‖, 1

}
,

which shows that ∑

k∈S

‖sk‖ < +∞. (10)

Hence there exists k0 such that

‖sk‖ ≥ 1k ∀k ≥ k0, k ∈ S (11)

because ‖Hksk + gk‖ ≥ 1
2δ for all sufficiently large k. This shows that

1k+1 ≤ γ21k ≤ γ2‖sk‖ ∀k ≥ k0, k ∈ S. (12)
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First we consider the case that U is a finite set. In this case, there exists an

integer k1 such that T Rk = 1 for all k ≥ k1 and Algorithm 2.2 is essentially the

standard trust-region algorithm for all large k. Thus

1k+1 ≤ γ11k ∀k ≥ k1, k /∈ S. (13)

Let k2 = max{k0, k1}, we have that

∑

k≥k2

‖sk‖ ≤
∑

k≥k2, k∈S

‖sk‖ +
∑

k≥k2, k /∈S

1k (14)

≤
∑

k≥k2, k∈S

‖sk‖ +
1k2 + γ2

∑
k≥k2, k∈S 1k

1 − γ1

≤
1k2

1 − γ1
+

(
1 +

γ2

1 − γ1

) ∑

k≥k2, k∈S

‖sk‖

< +∞,

which shows that (6) is true.

Now we consider the case that U has infinitely many elements.

If k /∈ S, T Rk = 0 and k is sufficiently large, we have that T Rk+1 = 1 and

1k+1 =

{
γ11k if ‖sk‖ ≤ 1k ,

1k if ‖sk‖ > 1k .
(15)

while k /∈ S, T Rk = 1, always have 1k+1 = γ11k . Therefore there exists k3

such that

∑

k≥k3, k /∈S

1k ≤
(

1k3 +
∑

k≥k3, k∈S

1k

)
2γ2

1 − γ1
(16)

≤
(

1k3 +
∑

k≥k3, k∈S

‖sk‖
)

2γ2

1 − γ1
.

Hence

∑

k≥k3, k /∈S

1k < +∞ . (17)
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Relation (10), (11) and (17) indicate that

∞∑

k=1

1k < +∞ , (18)

which implies that limk→∞ 1k = 0. Therefore, when k → +∞ and ‖sk‖ ≤ 1k ,

we have

ρk → 1. (19)

Thus, 1k+1 ≥ 1k if k is sufficiently large and if ‖sk‖ ≤ 1k . If ‖sk‖ > 1k , we

know that T Rk = 0, our algorithm gives either 1k+1 = 1k or 1k+1 = γ21k .

This shows that 1k+1 ≥ 1k for all large k. This contradicts to (18). So (4) must

therefore be false, which yields (1). �

The above theorem shows that our algorithm is globally convergent. Fur-

thermore, we can show that our algorithm converges superlinearly if certain

conditions are satisfied.

Theorem 3.2. Suppose that f in (1) in Section 1 is twice continuously differ-

entiable and bounded below and the norm of Hessian matrix is bounded, the

iteration {xk} generated by Algorithm 2.2 satisfies xk → x∗ as k → ∞ and the

Hessian matrix H(x∗) of f is positive definite. Let εk be the relative error in the

truncated conjugate gradient method and Algorithm 2.1. If εk → 0 then {xk}

converges superlinearly, i.e.,

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= 0. (20)

Proof. Because xk → x∗ and H(x∗) > 0, there exists k1 such that

‖H−1(xk)‖ ≤ 2‖H−1(x∗)‖ for all k ≥ k1. Therefore the Newton step s N
k =

−H−1(xk)g(xk) satisfies that

‖s N
k ‖ ≤ 2‖H−1(x∗)‖‖g(xk)‖ (21)

for all k ≥ k1. Therefore, no matter sk generated by our algorithm is a trust-

region step or a truncated Newton step, we have that

‖sk‖ ≤ 2‖H−1(x∗)‖‖g(xk)‖, ∀k ≥ k1. (22)
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Our previous theorem implies that ‖g(xk)‖ → 0. Inequality (22) shows that

lim
k→∞

ρk = 1. (23)

Consequently, xk+1 = xk + sk and 1k+1 ≥ 1k for all sufficiently large k.

Consequently, ‖sk‖ < 1k for all sufficiently large k. Namely sk is an inexact

Newton step for all large k, which indicates that

‖g(xk) + Hksk‖/‖g(xk)‖ ≤ εk, (24)

for all sufficiently large k. Relation (24) shows that

lim
k→∞

‖g(xk+1)‖

‖g(xk)‖
= lim

k→∞

‖g(xk + sk)‖

‖g(xk)‖
(25)

= lim
k→∞

‖g(xk) + Hksk‖ + o(‖sk‖)

‖g(xk)‖

= lim
k→∞

‖g(xk) + Hksk‖

‖g(xk)‖

≤ lim
k→∞

εk = 0.

Now, (20) follows from the fact that H(x∗) > 0 and xk → x∗. �

4 Numerical results

In this section we report numerical results of our algorithm given in Section 2,

and we also compare our algorithm with traditional trust region algorithm as

given in [6, 13]. Test problems are the 153 unconstrained problems from the

CUTEr collection (see [7]). The names and dimensions of the problems are

given in Tables 1-3.

The starting point and the exact first and second derivatives supplied with the

problem were used. Numerical tests were performed in double precision on a

Dell OptiPlex 755 computer (2.66 GHz, 1.96 GB of RAM) under Linux (fedora

core 8) and the gcc compiler (version 4.2.3) with default options. All attempts

to solve the problems are limited to a maximum of 1000 iterations or 1 hour of

CPU time. The choice of the parameters do not have a uniform standard and the

Comp. Appl. Math., Vol. 29, N. 2, 2010
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Problem n Problem n Problem n

AKIVA 2 CURLY10 1000 DJTL 2

ALLINITU 4 CURLY20 1000 DQDRTIC 1000

ARGLINA 100 CURLY30 1000 DQRTIC 1000

ARGLINB 100 DECONVU 61 EDENSCH 2000

ARGLINC 10 DENSCHNA 2 EG2 1000

ARWHEAD 1000 DENSCHNB 2 EIGENALS 110

BARD 3 DENSCHNC 2 EIGENBLS 110

BDQRTIC 1000 DENSCHND 2 EIGENCLS 30

BEALE 2 DENSCHNE 2 ENGVAL1 1000

BIGGS6 6 DENSCHNF 2 ENGVAL2 3

BOX3 3 DIXMAANA 1500 ERRINROS 50

BRKMCC 2 DIXMAANB 1500 EXPFIT 2

BROWNAL 10 DIXMAANC 300 EXTROSNB 10

Table 1 – Test problems and corresponding dimensions.

parameters are not sensitive to the algorithm. So we choose the common values

as (for example, see [6, 13]) γ1 = 0.25, γ2 = 2, η1 = 0.1, η2 = 0.75, β = 0.9,

10 = 1. The truncated conjugate gradient method (see [11]) is used to solve the

trust-region subproblem. Both algorithms stop if ‖∇ f (xk)‖ ≤ 10−6.

Our algorithm solved 125 problems out of the 153 CUTEr test problems, while

the traditional trust-region method solved 120 problems. Failure often occurs

because the maximal iteration number is reached. Thus, we found that the new

algorithm is as reliable as the traditional one.

Both algorithms fail on the same set of 27 problems. For the other 126 prob-

lems, the new algorithm needs less iterations on 88 problems. The two algorithms

have the same number of iterations on 22 problems and the traditional trust-

region method wins on 16 problems. Figure 1 gives the performance profiles

(see [5]) for the two algorithms for iterations. Figure 2 gives the performance

profiles for CPU times. Considering account inaccuracies in timing, we only

compare the CPU times of the 49 test problems whose run-times are longer than

0.1 second and dimensions are larger than 100. The new method takes less time

to solve 33 among these 49 problems. Figure 3, 4 and 5 give the performance

profiles for function, gradient and Hessian evaluations. Advantage of the new
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Problem n Problem n Problem n

BROWNBS 2 DIXMAAND 300 FLETCBV2 1000

BROWNDEN 4 DIXMAANE 300 FLETCBV3 10

BROYDN7D 1000 DIXMAANF 300 FLETCHBV 10

BRYBND 1000 DIXMAANG 300 FLETCHCR 100

CHAINWOO 1000 DIXMAANH 300 FMINSRF2 121

CHNROSNB 50 DIXMAANI 300 FMINSURF 121

CLIFF 2 DIXMAANJ 300 FREUROTH 500

COSINE 10 DIXMAANK 15 GENHUMPS 500

CRAGGLVY 100 DIXMAANL 300 GENROSE 100

CUBE 2 DIXON3DQ 1000 GROWTHLS 3

GULF 3 MAQRTBLS 100 SCOSINE 10

HAIRY 2 NONCVXU2 100 SCURLY10 100

HATFLDD 3 NONCVXUN 100 SCURLY20 100

HATFLDE 3 NONDIA 1000 SCURLY30 100

HEART6LS 6 NONDQUAR 1000 SENSORS 10

HEART8LS 8 NONMSQRT 49 SINEVAL 2

HELIX 3 OSBORNEA 5 SINQUAD 500

HIELOW 3 OSBORNEB 11 SISSER 2

HILBERTA 2 OSCIPATH 15 SNAIL 2

HILBERTB 10 PALMER1C 8 SPARSINE 1000

HIMMELBB 2 PALMER1D 7 SPARSQUR 1000

HIMMELBF 4 PALMER2C 8 SPMSRTLS 499

HIMMELBG 2 PALMER3C 8 SROSENBR 1000

HIMMELBH 2 PALMER4C 8 STRATEC 10

HUMPS 2 PALMER5C 6 TESTQUAD 1000

HYDC20LS 99 PALMER6C 8 TOINTGOR 50

INDEF 1000 PALMER7C 8 TOINTGSS 1000

JENSMP 2 PALMER8C 8 TOINTPSP 50

KOWOSB 4 PENALTY1 100 TIONTQOR 50

LIARWHD 1000 PENALTY2 100 TQUARTIC 1000

Table 2 – Test problems and corresponding dimensions.
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Problem n Problem n Problem n

LOGHAIRY 2 PENALTY3 50 TRIDIA 1000

MANCINO 100 POWELLSG 1000 VARDIM 100

MARATOSB 2 POWER 100 VAREIGVL 50

MEXHAT 2 QUARTC 1000 VIBRBEAM 8

MEYER3 3 ROSENBR 2 WATSON 12

MODBEALE 2000 S308 2 WOODS 1000

MOREBV 1000 SBRYBND 100 YFITU 3

MSQRTALS 100 SCHMVETT 1000 ZANGWIL2 2

Table 3 – Test problems and corresponding dimensions.

algorithm is also shown by total number of evaluations since it is dominative on

77 problems.

It is easy to see from these figures that the new algorithm is more efficient than

the traditional trust-region algorithm.
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Figure 1 – Performance profiles for iterations.

5 Conclusions

We have proposed a new trust-region algorithm with two subproblems and back-

tracking line search using truncated conjugate gradient method and its variation
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Figure 2 – Performance profiles for CPU times.
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Figure 3 – Performance profiles for function evaluations.

to solve the subproblems. This new algorithm for unconstrained optimization

is global convergence and has local superlinear convergence rate when the Hes-

sian matrix of the objective function at the local minimizer is positive definite.
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Numerical results on problems from CUTEr collection are also given. The re-

sults show that the new algorithm is more efficient than the standard trust-region

method in term of the number of iterations and evaluations as well as CPU time.
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Figure 4 – Performance profiles for gradient evaluations.
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Figure 5 – Performance profiles for Hessian matrix evaluations.
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