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A weighted projection centering method
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Abstract. An iterative method for finding the center of a linear programming polytope is
presented. The method assumes that we start at a feasible interior point and each iterate is
obtained as a convex combination of the orthogonal projection on the half spaces defined by the
linear inequalities plus a special projections on the same half spaces.

The algorithm is particularly suitable for implementation on computers with parallel processors.
We show some examples in two dimensional space to describe geometrically how the method
works.

Finally, we present computational results on random generated polytopes and linear programming
polytopes fromNetLib to compare the centering quality of the center using projections and the

analytic center approach.
Mathematical subject classification: 90C99, 90C90.
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1 Introduction

In this work, we study the center of linear programming polytopes (i.e., a finite,
non-empty intersection of linearinequalities). The importance of this study is due
to the fact that interior point polynomial time algorithms for linear programming
have either an explicit or an implicit centering mechanism.

Our first task in this process is to define the notion of center of a polytope.
This notion is easy for a simple, regular shaped polytope, but, becomes more
complex when we consider a general polytope. This happens because we may
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20 A WEIGHTED PROJECTION CENTERING METHOD

define centers in different ways. For instance, the center of a polytope may
be the center of the least volume ellipsoid that contains the polytope. Or, the
center of the biggest ball inside the polytope. Therefore, the center of a polytope
depends on the definition we are using. But, fortunately, all those definitions are
equivalentin the sense that, if we obtain a center in polynomial time then we can
solve linear programming in polynomial time.

The most used definitions of centers of a polytope are presented in Section 2. In
Section 3, we describe an algorithm to compute a center of linear programming
polytope using weighted projections. The method assumes that we start at a
feasible interior point of the polytope and each iterate is obtained as a convex
combination of the orthogonal projections on the half spaces defined by the
inequalities plus a special projections on the same half spaces. The center is
defined as the fixed point of the sequence generated by the method and we
denote it, from now on, bp-Center.

The computational experiences are presented in Section 4. There, we compare
the p-Center with the analytic center (the most used notion of center in interior
point methods). This comparison is done in terms of centering quality only. We
do not worry about making comparisons in terms of time or number of iterations,
because the methods have different computational features.

The iterative approach used in our method has the following properties.

* no changes are made to the original matrix;

* itis less prone to accumulation errors;

* itis easily implemented in a parallel environment;
* itis less sensitive to redundant constraints;

« in a single iterative step, when we calculate?, the only iterate needed
is the immediate predecessdr.

2 Définitions of center of a polytope

There are several notions for the center of a convex set. We begin by describing
a few of them.
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2.1 Heélly centers

Let C be a convex body ifk". Itis shown in [10] that there exists a poine C
which divides any chord throughinto parts of lengthe andj such that

1 o n

< < . 1)
n+l~" a4+ n+1

We will refer to & as a Helly center, or simply alH center, because of its
connection with the following theorem due to Eduard Helly [10].

Theorem 2.1 (Eduard Helly, 1913). Suppose K isafamily of at least (n + 1)
convex sets in the n-dimensional Euclidean space %" and K is finite or each
member of K is compact. Then if each (n 4+ 1) members of K have a common
point, thereis a point common to all members of K.

2.2 John centers

Another notion of a center for a convex body is the center of the circumscribing
ellipsoid of least volume. Given a polytogelet E denote the ellipsoid of least
volume containingS. We define the center af to be a John center of this
polytope. This is because of the following result due to John [8].

Theorem 2.2 (Fritz John, 1947). Let S be a polytope in the Euclidean n-di-
mensional space N”. Let E denote the elipsoid of least volume containing S.
Then E isunique and if we shrink E by a factor n about its center, we obtain an
ellipsoid contained in S.

It turns out that &/ center is also aif center. And, we can prove (see [2])
that any polynomial algorithm for computing one of these centers gives rise to a
polynomial algorithm for solving linear programming problems.

2.3 Analytic centers

Let S be a polytope described by a system of linear inequa@‘§§1 ajjxj < b;
for i =1,2,...,m. Theanalyticcenter dfisthe point = (&1, &, ... ,&,) €
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M" which solves the maximization problem

m n
Maximize 1_[ (bl — Zaijx])
i—1 =1

subjectto x € S.

()

Since S is bounded this maximization problem has a solution. It can also be
shown that the solution is unique. Thus the analytic center of a polytope is
well-defined.

The analytic center has found widespread use in interior point methods for
linear programming. See for instance, [3], [5], [6], [7], [9], [12], [13].

In [2], the authors proved that given any of the centers described above, we may
construct a polynomial time algorithm for solving linear programming problems.
This shows thatthe centering mechanismis the main ingredient for polynomiality.
And, in this work we propose a new notion of center, which is very easy to
compute and yields a more central (using our measure of centrality) point than
the analytic center approach.

3 Themethod of weighted orthogonal projections

In this section, we describe a method for finding a p-Center of a general poly-
tope. Each iterate is obtained as a convex combination of projections into the
hyperplanes associated with the inequalities that define the polytope. We assume
the polytope described by a set= {x € RN" : Ax < b} is a full dimensional

linear programming polytope and the matrixcontains, also, the nonnegative
constraints. Lek* be a feasible interior point at some iteratibn Then, we
define the following projections.

Definition 3.1 (The orthogonal projection). Let

(bi —alx*) a;

P.(x*) = x* +
laill  lla:ll

be the orthogonal projection of a point x* onto the hyperplane associated with
theinequality a/x < b;.
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Since the orthogonal projectionP;(x*) may be infeasible, we define an
“orthogonal” feasible projection.

Definition 3.2 (The‘‘orthogonal’’ feasible projection). Let
Py (x*) = x* + ; (P (") — x5,
where

o = max {o: x* +a(P;(x*) —x*) € S}
O<a; <

bethe‘*orthogonal’’ feasible projection associated with theinequality a/x < b;.

Note thato; is greater than zero sinoé is assumed to be a feasible interior
point and less or equal to &,(= 1 when the orthogonal projectiat (x¥) yields
a feasible point).

The centroid of the projected points on the boundary @ the centroid of
the convex hull of these points. Therefore, it is reasonable to think that the
more points we have on the boundary, the better the convex hull of these points
resembles the original polytope. With this on mind, we define a “partner” for
each orthogonal projection.

Definition 3.3. Let
P, (%) = xF — 0 (P(xF) — x5,
where

A= max  {a:xk— AP (5 —xF) e s)
O<A <1
be the point obtained from P; (x*) by doing a search in the direction — (P; (x*) —
x5y,
Therefore, our polytope has a chord connectigx*) and P;, (x*) for the
hyperplane associated with tfié inequality. That is, each inequality generates
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two points: Py, (x*) and P;, (x). The new iteratec**! is the average of

. . Py X5+ P, (x%) . .
mldpomtsM,z =1,2,...,m, thatis,

W=—Z%MHWD

= Zx + a; (P (x%) = x5 4+ xF = 2 (P (x5 — x5
i=1

= xF 4 % Z(Oli — 2 (Pi(x*) — x5

ko, 3
:x—l——Z(a,— 3 —alx* a )

Iaz I lail

t k

:x“_z“_ mwmn Z F

=1

1 . N 1 . A
k tyrk k tyirk
= ——A"W*A —A'W*D
X om x+2m
1 . o 1 . ~
= (I — —A"WFAxXk + —A"W*b
( 2m )x+2m

whereW* = diag((ar — A1), ..., (0 — Am)) A is the matrix obtained from
A by replacing the vectar! in row i by HZ—IH andb is the vector obtained from
by replacingp; by 2.

Each iteration of the method is defined as the centroid of the pBints*) and
P, (x* fori =1,2,...,m, wherem is the total number of constraints. Figure
(1) illustrates the geometrical meaning®tx*), P,, (x*) andP;, (x*). Note that
when we projected in constraifit), P;(x) is infeasible, therefore, we need to go
back until feasibility is obtained, generating the palt(x). And, finally, we
walk in the opposite direction generating the paat(x*). The projections on
the other constraints were not labeled but they were represented by the symbol
“ o in the figure.

In Figure (2), we present polytopes 47 to illustrate the path generated by
the mapping described in (3). For each polytope, we started at different initial
points.

We observe that for the given polytopes the sequences generated by the map-
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4 ~<—

Figure 1 — Geometrical meaning & (x),P,, (x) and Py, (x).

ping (3) converged to the same fixed point. Unfortunately, in general, this is not
the case. Although, in our numerical experiences we always obtained the same
fixed point starting from different initial points. But, we can construct a counter-
example in two-dimensions. In the next section we talk about the existence of
fixed points for the sequences generated by the mapping (3).

3.1 Existence of fixed points

The mapping described by (3) contains the mawi¥’, which depends on it-
erationk, making any specific convergence proof a difficult task. But, making
use of a theorem presented by L. Brouwer [1], we can say that there exists fixed
points for our mapping.

Theorem 3.1 (Brouwer fixed point theorem). Let B > Oandlet D = {x €

N : |lx]l < B}. Then, any continuous function with domain D and range
contained in D has at least one fixed point.

Comp. Appl. Math., Vol. 22, N. 1, 2003
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Pathways for polytope 1 Pathways for polytope 2

/< =
3 D

Figure 2 — Rathways for bidimensional polytopes.

Since the mapping (3) is continuous and Sis a polytope then Brouwer’s theorem
proves that there exist a fixed point for sequence generated by (3).

4 Computational experiences

The algorithm proposed in (3) has been implementeMNTLAB. We per-
formed numerical experiences to compare the centering quality of p-Center
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against the analytic center in several polytopes of different dimensions. Firstly,
we show pictures of polytopes in two-dimensional space to illustrate the quality
of the p-Center and the analytic center. Secondly, we present the numerical re-
sults on tables for random generated polytopes. And, finally, we show results on
someNetLib problems. In all these problems, the p-Center behaved very well.

To measure the quality of the center, we propose a combination of two mea-
sures, which will be described next. Furthermore, The p-Center is not sensitive
to the norms of the constraints, but, the analytic center is sensitive. Therefore,
to keep the comparisons fair, we normalize the constraints before calculating the
analytic center in all the problems we worked on.

4.1 Measures of centrality

To measure how good a center is, we need to define a measure of centrality.
Since, a good center is a point that divides each chord passing through it in two
equal parts, we use the following measure for centrality.

Definition 4.1. Let x be a feasible interior point of a polytope S and Py, (x),
P, (x)fori =1,2,..., m beasdefined previously. And, let

di(x) = [Py (x) = x|l and  di(x) = | P, (x) — x|

for each inequality i. We define

min{d; (x), d; (x)} ;

e;(x) = — =12,...,m
max{d; (x), d;(x)}
and the centrality of a point as
" e;(x)
W= 4

i=1

Together with this measure, we use the measure

dmin®) = min{min{d; (x), d;(x)},i = 1,2,... ,m}, (5)
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the minimum distance from to the boundary of the sét as a second measure
of centrality. Therefore, a point has a better centering quality tharif

In fact, the first measure says how balanced the point is. And, the second
measure how far the point is from the boundary. Our goal is to satisfy the
criterion (6) but that is not always possible. Hence, we use a combination of
both measures defining

C(x) = E(x) * dmjn(x). (7)

A good center, for us, will be the point that has a largéx). And, as we are
going to show, for a great variety of instances, the p-Center is a better center than
analytic center for this measure of centrality.

4.2 Examplesin i?

In this section, we presented some example®iin The reason for this is to
better visualize the centering quality of p-Center and analytic center. Figure
(3) presents four polytopes i? showing the p-Center (denoted py and the
analytic center (denoted la).

Table (1) displays the measuréXx),dmin(x) and C(x) for p-Center and
analytic center for each polytope depicted in Figure (3).

Polytope p-Center Analytic center
number E(x) dmin C(x) E(x) dmin C(x)

1 0.785055| 0.838004| 0.657879| 0.751202| 0.633975| 0.476243
2 0.897926| 0.784585| 0.704499| 0.477018| 0.419465| 0.200092
3 0.893993| 0.504127| 0.450686| 0.593612| 0.356582| 0.211671
4 0.829394| 2.358854| 1.956419| 0.473359| 1.110123| 0.525487

Table 1 — Centrality measures for the p-Center and Analytic center.

As we can see from Table (1), the p-Center is a better center than the analytic
centerin all the examples. Furthermore, the p-Center seemsto be less sensitive to
redundant constraints than the analytic center. Figure (4) shows the p-Center and
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Figure 3 — Centering quality for p-Center and Analytic Center.

the analytic center for a redundant polytope. To compare the sensitivity of the
centers, we plotted the p-Center for the nonredundant polytope (i.e., excluding
the constraints of type; < k,k = 3,4,...,202 ) and the p-Center for the
redundant polytopes, we denote thempaandp,respectively. The same was
done for the analytic center. We observed that, the p-Center is less perturbed
than the analytic center when redundancy was added.
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4 - -~
Centrality measures :
ERN C(p) = 0.657879
C(p) = 0.696722
C(a) = 0.476243

C(a) = 0.022537

Figure 4 — Centers’s behaviour under redundancy.

4.3 Randomly generated polytopes

We consider the problem of applying the projection method in randomly gen-
erated polytopes. Since special structure consistent with the class of real world
problems being simulated is welcome, we generated the polytopes based on the
work done by May [11]. We worked on polytopes with different dimensions
and for each dimension we generated 10 different polytopes. The tables be-
low present the measuréXx),dmin(x),C (x) and the average obtained for each
dimension on each measure.

If we take in account the average for each dimension, we observed that the
p-Center behaved better than the analytic center in all those problems.

4.4 Netlib polytopes

Finally, we performed the computational experiences on some Netlib problems.
We have transformed the problem to the dual format, i.e., all the constraints are
of type “ < ". In all the examples we have reached convergence. And, once
more, the p-Center behaved well considering the measure used.
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31

Number
of
cons-
traints

p-Center

Analytic center

E(x)

dmin(¥)

C(x)

E(x)

dmin(¥)

C(x)

25

0.823057
0.793164
0.680669
0.674376
0.717447
0.748472
0.716735
0.747629
0.669877
0.665825

16.271420
11.276783
9.2678320
33.898460
29.610961
21.931323
12.594309
37.460002
21.715826
112.38149

13.392306
8.9443383
6.3083259
22.860321
21.244295
16.414981
9.0267880
28.006183
14.546932
74.826405

0.755212
0.704773
0.711692
0.629528
0.654722
0.686986
0.634101
0.663433
0.704103
0.652976

16.844223
9.1541410
6.8692550
27.125818
23.274599
19.739801
15.495284
39.341569
19.020983
88.743597

12.720959
6.4515914
4.8887938
17.076465
15.238392
13.560966
9.8255810
26.100495
13.392731
57.947438

Average

0.7237251

30.64084

21.55757

0.6797526| 26.560927

17.720341

50

0.541500
0.757013
0.688835
0.752402
0.526056
0.571243
0.581980
0.612918
0.640562
0.581950

21.327091
6.5533620
8.5989720
6.6397840
47.669656
15.357850
24.603624
13.987518
18.527729
39.997945

11.548619
4.9609830
5.9232728
4.9957867
25.076906
8.7730643
14.318817
8.5732010
11.868164
23.276804

0.555919
0.667532
0.636768
0.629279
0.496536
0.587006
0.552443
0.599045
0.602590
0.545435

17.881157
8.8480070
9.2595090
6.9624710
55.978122
12.124344
20.334199
11.338354
19.595930
36.180397

9.9404749
5.9063270
5.8961590
4.3813367
27.795126
7.1170626
11.233485
6.7921850
11.808319
19.734054

Average

0.6254459

20.326353

11.931561

0.5872553| 19.850249

11.060452

Table 2 — Centrality measures random polytopes.

4.5 An application

Let us consider the problem of finding a feasible point in the region

Q={xeR":Ax <b,x >0}

where we assum is a full dimensional polytope. Also, we assume that| =
1,i.e.,b; —alx isthe real distance fromto the hyperplangx € %" : b; —alx =
0}. The following algorithm will explain how the method works.
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Number p-Center Analytic center
of
cons-
traints E(x) dmin) C(x) E(x) dminx) C(x)
0.622865 | 53.025358| 33.027645| 0.589277 | 46.165239| 27.204129
0.549290 | 6.8077300| 3.7394180| 0.604890 | 6.1078850| 3.6945985
0.581511 | 24.427088| 14.204631| 0.615459 | 22.942287| 14.120029
0.616150 | 28.863172| 17.784045| 0.654879 | 26.338567| 17.248569
75 0.554988 | 8.8209260| 4.8955080| 0.560451 | 7.2693650| 4.0741228
0.650793 | 5.7443840| 3.7384060| 0.668768 | 5.4025340| 3.6130410
0.604759 | 23.076588| 13.955774| 0.487623 | 27.811106| 13.561233
0.621851 | 5.6352120| 3.5042622| 0.560382 | 6.2653880| 3.5110106
0.532874 | 31.237540| 16.645672| 0.436269 | 43.935065| 19.167506
0.604972 | 12.370884| 7.4840384| 0.531424 | 12.240412| 6.5048487
Average | 0.5940053| 20.00888 | 11.899794| 0.5709422| 20.446634| 11.269908
0.586188 | 4.2755320| 2.5062655| 0.440676 | 0.0001234| 0.0005437
0.565594 | 8.8421860| 5.0010873| 0.557134 | 7.8125770| 4.3526522
0.497273 | 6.8957210| 3.4290558| 0.470435 | 7.7807460| 3.6603352
0.480339 | 7.6391760| 3.6693941| 0.489061 | 7.0183650| 3.4324086
100 0.517349 | 7.8579990| 4.0653279| 0.509901 | 7.6716810| 3.9117978
0.483505 | 9.9460530| 4.8089663| 0.572132 | 7.2124090| 4.1264499
0.669433 | 5.9635070| 3.9921683| 0.509628 | 8.7899970| 4.4796285
0.574577 | 9.1298940| 5.2458271| 0.376567 | 0.0028410| 0.0010698
0.544314 | 6.7454160| 3.6716243| 0.493139 | 6.7538820| 3.3306026
Average | 0.4918572| 6.7295484| 3.6389716| 0.4418757| 5.3042621| 2.7295488
Table 2 (cont.) — Centrality measures random polytopes.
NetLib p-Center Analytic Center
Problem E(x) dminx) C(x) E(x) dmin) C(x)
AFIRO 0.782673| 3.096488| 2.4235375| 0.770644| 2.647757| 2.040478
SC50A | 0.733962| 7.192810| 5.2792492| 0.498449| 3.593712| 1.7912821
SC50B | 0.749230| 6.227521| 4.6658455| 0.609343| 8.609592| 5.2461946
SC105 | 0.795656| 5.043007| 4.0124987| 0.541323| 1.229604| 0.6656129
SHARE2B | 0.854567| 0.004655| 0.0039780| 0.736210| 0.005152| 0.0037929

Table 3 — Centrality measures fidetLib problems.
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Algorithm: tofind afeasible point in Q
Initialization step:

SO={xeR:0<x<u)

whereu = (M, M, ..., M), M € Nis alarge number
such that2 < S°.

Letx®=2%x(1,1,...,1).

Letk = 0.

The kth iteration:

If x¥ € Q then stop : we have reached a feasible point.
Otherwise :

There exist & such thab, — ajx* > 0.

Let S¥71 = Sk {alx < alxk}.

Let x**1 be the center of**,

Letk =k + 1.

In the next section, we give an example to illustrate this procedure. We also
apply the procedure to the samNetLib problems used in the previous section.
The p-Center needs less cuts than the analytic center to get to a feasible point. We
believe that this happens because the p-Center is more central than the analytic
center.

45.1 Anillustrative example

Let us consider the bidimensional polytope shown in the figures below as a
shaded region. We define a square that contains the original polytope and its
center as the initial point for the process. We ngé¢o denote the initial point

and the symbol '*' is used to denote the center for each iteration. Figure (5)
show that the analytic center used 4 cuts against 2 cuts for the p-Center.

452 NetLib problems

We solved soméNetLib problems to verify the performance of the p-Center
against the analytic center. Table (4) shows the outcomes for the feasibility
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Analytic Center Feasibility Method
100

80 ~ 4

100 T T T T T T T T

60 [ - i

Figure 5 — Number of cuts needed to get a feasible point.

Netlib | Number of cuts forf Number of cuts for
problem| analytic center p-Center
AFIRO 202 151
SC50A 181 170
SC50B 180 153
SC105 340 294

Table 4 — Number of cuts needed to get a feasible point.

problem applied to somietLib problems.

As we can note, the p-Center needed less cuts than the analytic center to get to
a feasible point. We believe this is the case because the p-Center is more central
than the analytic center and, therefore, cuts a larger portion of the polytope.
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4.6 Conclusions

The method described in this article has some nice properties as

* no changes are made to the original matrix: to compute the projections
we need only the original data;

* it is less prone to accumulation errors: in each iteration, we use only the
original data, therefore, there are no rounding errors from one iteration to
the following iterations;

* it is easily implemented in a parallel environment: the projections are
independent, we need only the actual iterate and then the projections can
be done separately;

* itis less sensitive to redundant constraints: since the p-Center is geomet-
rical.

Therefore, it can be applied in an environment of huge, sparse and unstructured
matrices. And, to speed up the results a parallel implementation would be a must.

Based on our numerical experiments, the p-Center is more central than the
analytic center. The performance of the p-Center was better than the analytic
center if we consider our notion of centrality. Also, the p-Center behaved better
for the feasibility problem applied to soniéetLib problems. This brings us
the belief that the p-Center is more central than the analytic center because the
numerical experiences show it cuts a larger portion of the artificial polytope,
pushing the centers towards the original polytope at a faster pace.
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