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ming) algorithm, recently introduced for solving nonlinear programming problems, obtaining the
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1 Introduction

We consider the following nonlinear semidefinite programming problem

(NLSDP)

min
x∈Rn
{ f (x) ; h(x) = 0, G(x) � 0}, (P)

where f : Rn → R, h : Rn → Rp and G : Rn → Sm are C2-functions, Sm

denotes the linear space of m×m real symmetric matrices equipped with the inner

product A ∙ B := trace(AB) =
∑m

i, j=1 Ai j Bi j for all matrices A = (Ai j ), B =

(Bi j ) ∈ Sm , and � denotes the negative semidefinite order, that is, A � B iff
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A − B is a negative semidefinite matrix. The order relations ≺, � and � are

defined similarly.

A particular important case of the above model is the Linear SemiDefinite

Programming (LSDP) problem, which appears when constraint h(x) = 0 is

omitted, and f (x) and G(x) are linear mappings (e.g. [47, 50, 53]). The LSDP

model is one of the most active research field in the last 15 years with a huge

amount of applications in control theory, optimal design, among others, and links

to relaxation methods for combinatorial problems. See for instance [5, 8, 43].

The mentioned research effort has produced a lot of different approaches for

solving the LSDP problem. Let us just mention the fundamental approach of

interior point polynomial methods [1, 5, 39], penalty/barrier and augmented

Lagrangian methods [26, 37], spectral bundle methods [21], cutting plane meth-

ods [2, 20, 28], among others.

The LSDP model is however insufficient for solving important application

problems, see e.g. [38, 42]. The more general nonlinear problem NLSDP has

been then also used for modelling in, for instance, feedback control, structural

optimization and truss design problems. See [4, 22], and more recently [3, 24,

27] and references therein.

The first- and second-order optimality conditions for NLSDP have been widely

characterized, see for instance [7] and the references therein. Concerning nu-

merically efficient solution algorithms the situation for NLSDP is completely

different to the one of the LSDP case. In fact, few existing approaches have been

recently proposed and are mainly still in a development stage.

Leibfritz and Mostafa developed in [34, 35] an interior point constrained trust

region algorithm for a special class of NLSDP problems.

Another approach was developed by Jarre [23]. It generalizes the predictor-

corrector interior-point method to nonconvex semidefinite programming.

An augmented Lagrangian algorithm and a code (PENNON) supporting

NLSDP problems without equality constraints were developed by Kočvara and

Stingl [25, 26]. The code was successfully tested for LSDP but recent experi-

ments with nonconvex NLSDP [27] reported still unsatisfactory performance.

In a serie of papers, Apkarian, Noll and others have suggested different ap-

proaches for solving NLSDP problems. For instance, the partially augmented
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Lagrangian approach [3, 11, 42], the spectral bundle methods [40, 41], and

the sequential semidefinite programming algorithm [12]. In this paper we are

mainly interested in the last idea.

The sequential semidefinite programming (SSDP) method [12] is an extension

of the classical Sequential Quadratic Programming (SQP) algorithm to the cone

S p
+ of symmetric positive semidefinite matrices. Here a sequence of Karush-

Kuhn-Tucker points (see the definition in Section 2) is generated by solving at

each step a tangent problem to NLSDP. The subproblems can be stated as LSDP

and efficiently solved. In [12] it was shown the local fast convergence of the

SSDP method.

The SSDP method was later deduced from a different viewpoint by Freund

and Jarre in [16]. They also provided in [17] another proof of local quadratic

convergence. Another recent paper dealing with local convergence properties of

the SSDP algorithm is [10], where the difficulties associated with carrying the

quadratic local convergence from the SQP approach are discussed.

Correa and Ramı́rez proved in [9] the global convergence of SSDP using a

merit function (called Han penalty function) and a line search strategy.

Motivated by the local convergence properties obtained for the SSDP algo-

rithm and the global ones obtained for the filter SQP, the aim of this paper is to

exploit this recent filter methodology in order to propose a globally convergent

algorithm for solving NLSDP.

In [17] the authors report a good experience with a filter strategy for SSDP,

but a proof of the global convergence is not provided.

The filter methods were first introduced by Fletcher and Leyffer in [14]. In

this technique the trial points are accepted when they improve either the ob-

jective function or a constraint violation measure. These criteria are compared

to previous iterates collected in a filter. This idea offers an efficient alterna-

tive to traditional merit functions with penalty terms which adjustment can be

problematic.

The filter approach was first used as a tool for proving global convergence

of algorithms for NLP, but soon it was successfully exploited in many ways for

quite different algorithmic ideas in NLP. For instance, global convergence results

of trust region filter SQP methods were established in [13, 15]. Local conver-
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gence of a particular filter trust region SQP, avoiding the Maratos effect, was

given in [49]. Global and local convergence results for filter SQP algorithms us-

ing line search were also presented in [51, 52]. Furthermore, filter methods have

been successfully combined with many approaches like, for instance, interior

point [6, 48], merit functions [19], etc.

The paper is organized as follows. In the next section some notations and

preliminary results are introduced. In the third section the filter SDP algorithm

is given in details and some first auxiliary results are stated. The fourth sec-

tion is devoted to the proof of the main global convergence results. Finally, the

fifth section contains numerical tests on selected problems from the COMPleib

library and the sixth section establishes some short concluding remarks.

2 Preliminaries

We say that (λ̄, Ȳ ) is a Lagrange multiplier associated with x̄ , if (x̄, λ̄, Ȳ ) ∈

Rn ×Rp × Sm satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

∇x L(x̄, λ̄, Ȳ ) = ∇ f (x̄)+ Dh(x̄)>λ̄+ DG(x̄)>Ȳ = 0, (1a)

G(x̄)Ȳ = 0, (1b)

G(x̄) � 0, h(x̄) = 0, Ȳ � 0, (1c)

where L : Rn × Rp × Sm → R is the Lagrangian function of problem (P)

L(x, λ, Y ) := f (x)+ h(x)>λ+ Y ∙ G(x). (2)

Here and throughout the paper Dh(x) :=
[

∂hi (x)

∂x j

]

i j
denotes the p × n Jacobian

matrix of h and ∇ f (x) ∈ Rn the column gradient vector of f at x . Note that,

for a linear operator Ay :=
∑m

i=1 yi Ai with Ai ∈ Sm , as DG(x), we have for its

adjoint operator A> the formula:

A>Z = (A1 ∙ Z , . . . , An ∙ Z)>, ∀Z ∈ Sm . (3)

A pair (x̄, λ̄, Ȳ ) satisfying (1) will be also called critical point or KKT-point

of problem (P), and the set of Lagrange multipliers associated with x̄ will be

denoted by 3(x̄). Finally, x̄ is called a critical point or critical solution of (P) if

3(x̄) 6= ∅.
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Also, let q = m − r with r := rank(G(x̄)), and denote by E = E(x̄) ∈ Rm×q

a matrix whose columns are an orthonormal basis of Ker G(x̄). Using this

notation, KKT conditions (1) can be equivalently written in terms of 8̄ :=

E>Ȳ E ∈ Sq as follows

∇ f (x̄)+ Dh(x̄)>λ̄+ DG(x̄)>(E8̄E>) = 0, (4a)

G(x̄) � 0, h(x̄) = 0, 8̄ � 0. (4b)

Hence 8̄ can be seen as a reduced Lagrangian multiplier associated with the

SDP constraint of problem (P) that obviously satisfies that Ȳ = E8̄E>.

In this paper, we will use Robinson’s constraint qualification condition [44]

defined at a feasible point x̄ of (P) as

0 ∈ int

{(
G(x̄)

h(x̄)

)

+

(
DG(x̄)

Dh(x̄)

)

Rn −

(
Sm
−

{0}

)}

, (5)

where int C denotes the topological interior of the set C , and Sm
− = {A ∈

Sm | A � 0} . It is easy to see that condition (5) is equivalent to Mangasarian-

Fromovitz constraint qualification condition (MFCQ)

{∇h j (x̄)}pj=1 is linearly independent, and (6a)

∃d̄ ∈ Rn s. t.

{
Dh(x̄)d̄ = 0

and G(x̄)+ DG(x̄)d̄ ≺ 0.
(6b)

Also, it can be shown that under (5) the set of Lagrange multipliers 3(x̄) is

nonempty and also bounded [29]. Actually, when x̄ is assumed to be a local

solution of (P), condition (5) is equivalent to saying that 3(x̄) is nonempty and

compact.

Given a matrix A = (Ai j ) ∈ Sm we denote by ‖A‖Fr its norm associated

with the mentioned (trace) inner product in Sm . This is also called the Frobenius

norm of A and is given by

‖A‖Fr =
√

trace(A2) =

√√
√
√

m∑

i, j=1

A2
i j =

√√
√
√

m∑

i=1

λi (A)2,

where (λ1(A), . . . , λm(A)) denotes the vector of eigenvalues of A in non-in-

creasing order. In particular it holds that

|λ j (A)| ≤ ‖A‖Fr , j = 1, . . . , m. (7)
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With the linear operator DG(x) we can also associate a Frobenius norm defined

as follows

‖DG(x)‖Fr =

√√
√
√

n∑

i=1

∣
∣
∣
∣

∣
∣
∣
∣
∂G(x)

∂xi

∣
∣
∣
∣

∣
∣
∣
∣

2

Fr

,

which satisfies the relation

‖DG(x)d‖Fr ≤ ‖d‖2‖DG(x)‖Fr . (8)

Here and from now on ‖v‖2 denotes the Euclidian norm of a given vector v.

The operator D2G(x) : Rn × Rn −→ Sm , obtained from the second deriva-

tive of G(x), is defined by

D2G(x)(d, d̂) = d>D2G(x)d̂ =
n∑

i, j=1

di d̂ j
∂2G(x)

∂xi x j
.

The corresponding Frobenius norm can be analogously defined as

‖D2G(x)‖Fr =

√√
√
√

n∑

i, j=1

∣
∣
∣
∣

∣
∣
∣
∣
∂2G(x)

∂xi x j

∣
∣
∣
∣

∣
∣
∣
∣

2

Fr

.

Hence, the following relationship holds trivially for all j = 1, . . . , m

|λ j (d
>D2G(x)d)| ≤ ‖d>D2G(x)d‖Fr ≤ ‖d‖

2
2‖D

2G(x)‖Fr . (9)

Indeed, it follows from the equality

‖d>D2G(x)d‖Fr =

√√
√
√

m∑

k,l=1

(d>D2Gkl(x)d)2,

where Gkl(x) is the (k, l) entry of G(x).

Lemma 1 (Debreu’s Lemma). Let A � 0 be negative semidefinite. There exists

r > 0 such that B + r A ≺ 0 if and only if B|Ker A ≺ 0.

In this lemma the notation B|Ker A ≺ 0 means that the matrix B is negative

definite on the linear space Ker A. This is equivalent to saying that the matrix

V>BV is negative definite, for any matrix V such that their columns build a

linear basis of Ker A. Moreover, due to the Sylvester’s law of inertia (e.g. [18,

Thm. 4.5.8]) the fact that V>BV be negative definite does not depend on the

selected basis V .

Comp. Appl. Math., Vol. 29, N. 2, 2010
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Remark 2. A simple consequence of Debreu’s Lemma is that: if A � 0 and

B|Ker A ≺ 0 then there exists a τ̄ > 0 such that A + τ B ≺ 0 for all τ ∈ (0, τ̄ ].

The following useful lemma relates the fulfillment of the KKT optimality

conditions and the MFCQ constraint qualifications.

Lemma 3. Let us suppose that the point x̄ is feasible for (P) satisfying the

MFCQ condition (6). If x̄ is not a critical solution of (P), then there exist a

unitary vector s̄ ∈ Rp and some η̄ > 0 such that for all η ∈ (0, η̄] we have

∇ f (x̄)>s̄ < 0, (10a)

Dh(x̄)s̄ = 0, (10b)

G(x̄)+ ηDG(x̄)s̄ ≺ 0. (10c)

Proof. Note that the vectors {∇h j (x̄)}pj=1 are linearly independent due to the

fact that MFCQ is fulfilled at x̄ .

Since KKT conditions are not satisfied at x̄ , we can separate the point 0 ∈ Rn

from the convex and closed set L(Rp × Sq
+), where

L(λ,8) := ∇ f (x̄)+ Dh(x̄)>λ+ DG(x̄)>(E8E>)

is a linear function in (λ,8) ∈ Rp × Sq
+, q is the dimension of Ker G(x̄), and

E ∈ Rm×q is a matrix whose columns are an orthonormal basis of Ker G(x̄)

(see (4)).

We obtain therefore the existence of a unitary vector s̄ ∈ Rn such that

0 > ∇ f (x̄)>s̄ + λ>Dh(x̄)s̄ + DG(x̄)s̄ ∙ (E8E>)

= ∇ f (x̄)>s̄ + λ>Dh(x̄)s̄ + (E>DG(x̄)s̄ E) ∙8, ∀(λ,8) ∈ Rp × Sq
+.

Since the latter inequality is valid for all (λ,8) ∈ Rp × Sq
+ and x̄ satisfies

MFCQ, it directly follows that conditions (10a) and (10b) hold, as well as

E>DG(x̄)s̄ E ≺ 0 (by redefining, if necessary, s̄ as s̄ + δd̄ with δ > 0 small

enough and d̄ given by (6b)). This last inequality together with Debreu’s lemma

(see also remark 2) finally implies (10c) for all positive η smaller than some

η̄ > 0. �
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3 The Filter-SDP Algorithm

Let us first adapt the filter SQP algorithm of Fletcher et al. [15] to problem (P).

For a given point x ∈ Rn and a positive radius ρ > 0 we define the following

trust region local semidefinite approximation of the problem (P):

Q P(x, ρ) min
d∈Rn

∇ f (x)>d + 1
2 d>Bd

s.t. h(x)+ Dh(x)d = 0

G(x)+ DG(x)d � 0

‖d‖∞ ≤ ρ.

(11)

Here B ∈ Sn is a matrix containing second order information of the problem (P)

at x . Since its definition is not crucial for the analysis of the global convergence,

it is not specified in detail.

Remark 4. In classical nonlinear programming the use of the Euclidian norm

‖∙‖2 would add extra difficulties in the resolution of the subproblems Q P(x, ρ).

However, since the constraint ‖d‖2 ≤ ρ can be expressed as a second-order

cone constraint (see [5] for a definition), which at the same time can be seen as

a SDP constraint, its use does not increase the difficulty of the problem. Hence,

this modification could be tested to obtain numerical improvements. From a

theoretical point of view, the use of ‖ ∙ ‖2 only modifies slightly the proofs given

onwards.

The filter algorithm deals simultaneously with the optimality and feasibility

aspects of (P) using a dominance strategy typical of multiobjective problems.

In order to quantify the feasibility let us define

θ(x) := ‖h(x)‖2 + λ1(G(x))+. (12)

where λ1(A) is the largest eigenvalue of the matrix A, and (α)+ := max{0, α}

denotes the positive part of the real number α. This function is obviously positive

and vanishes exactly on the feasible points of (P).

A filter, denoted by F , is a finite collection of two dimensional vectors. In

the vectors of the filter the first and second component refer to the value of the

feasibility function, θ , and of the objective function, f , respectively.

Comp. Appl. Math., Vol. 29, N. 2, 2010
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The new candidate (θ̄ , f̄ ) is called acceptable to the filter F = {(θ j , f j )}Nj=1 ,

if for each j = 1 . . . N at least one of the following two conditions is fulfilled:

θ̄ ≤ βθ j , (13a)

f̄ + γ θ̄ ≤ f j , (13b)

where β ∈ (0, 1) and γ ∈ (0, β) are two fixed parameters.

Let us suppose that the point (θ̄ , f̄ ) is acceptable for F . The new filter

Add((θ̄ , f̄ ),F) is defined as

Add((θ̄ , f̄ ),F) = (F ∪ {(θ̄ , f̄ )}) \ {(θ j , f j ) ∈ F | θ̄ ≤ θ j , f̄ ≤ f j }

Note that a two dimensional vector is acceptable to Add((θ̄ , f̄ ),F) if and only

if it is acceptable for F ∪ (θ̄ , f̄ ). Also, acceptability considered in this way uses

smaller filters because all the dominated pairs are removed.

Let us now fix the parameters of our filter version of the SSDP algorithm as

follows: β ∈ (0, 1), γ ∈ (0, β), ρmax > ρ̄ > 0, σ ∈ (0, 1) and u > 0.

Filter-SDP Algorithm

Step 0 Define k = 1, F0 = {(u,−∞)}.

Step 1 Find some vector xk and a corresponding trust region radius ρmax ≥ ρ ≥

ρ̄ such that

(A1) (θ(xk), f (xk)) is acceptable to F k−1

(B1) Q P(xk, ρ) is feasible.

Go to Step 3.

Step 2 If Q P(xk, ρ) is not feasible then set F k = Add((θ(xk), f (xk)),F
k−1),

k = k + 1 and go to Step 1.

Step 3 If d = 0 is a critical solution of Q P(xk, ρ) then STOP. Otherwise, fix

an optimal solution d 6= 0 of Q P(xk, ρ).

Step 4 If (θ(xk + d), f (xk + d)) is not acceptable to the filter F k−1 ∪ {(θ(xk),

f (xk))} then set ρ ← ρ/2 and go to Step 2.

Comp. Appl. Math., Vol. 29, N. 2, 2010
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Step 5 If the following conditions are fulfilled

∇ f (xk)
>d +

1

2
d>Bd < 0, (14a)

f (xk)+ σ

(
∇ f (xk)

>d +
1

2
d>Bd

)
< f (xk + d), (14b)

then set ρ ← ρ/2 and go to Step 2.

Step 6 If ∇ f (xk)
>d + 1

2 d>Bd ≥ 0 then F k = Add((θ(xk), f (xk)),F
k−1),

otherwise set F k = F k−1.

Step 7 Define ρk = ρ, dk = d . Set xk+1 = xk+dk , k = k+1. Finally, initialize

ρmax ≥ ρ ≥ ρ̄ and go to Step 2.

In what follows, Step 1 is called restoration phase and the loop between the

Steps 2 and 5 is defined as the inner loop.

Remark 5. The restoration phase in Step 1 should be seen as an isolated rou-

tine mainly dealing with the problem of approaching feasible points (for both

problems: (P) and (QP)). From a theoretical point of view, no particular algo-

rithm is explicitely considered in this phase. However, in practice, a reasonable

and simple routine consists of few minimizing steps for a function measuring

the feasibility of the original problem (see, for instance, [19, 45] in the NLP

case). This is also the approach we follow in the numerical experiences of Sec-

tion 5 where the function θ is used to measure the feasibility of the problem (P).

Nevertheless, for this type of routines, the eventual convergence towards a local

minimizer of the feasibility function, which is infeasible for the original problem

(and consequently, perhaps not acceptable for the filter) is an important obstacle

for the global convergence of the whole algorithm. This difficulty is also found

in the NLP framework, as the reader can see in the references mentioned above.

In the above algorithm the iterates xk are generated at Steps 2 and 7. Once

Step 7 is achieved and a new iterate xk+1 is computed, the filter remains the same

only if the following condition holds:

f (xk)− f (xk+1) ≥ −σ

(
∇ f (xk)

>d +
1

2
d>Bd

)
> 0. (15)

Comp. Appl. Math., Vol. 29, N. 2, 2010
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In this case xk is called an f -type iteration, because the above condition guar-

antees an adequate improvement of the objective function f . Otherwise, when

(θ(xk), f (xk)) is entered to the filter, either at Step 2 or at Step 6, we say that a

θ -type iteration xk was accomplished.

Lemma 6. Let us suppose that the MFCQ condition is satisfied at every feasi-

ble point of (P). If F k is a filter generated by the above algorithm, then

τ k = min
(θ, f )∈Fk

θ > 0.

Proof. It suffices to show that every point added to the Filter must be infeasi-

ble. By contradiction, suppose that (θ(xk), f (xk)) is added to the filter and that

xk is a feasible point of (P). There are only two steps where a new member can

be added to the filter: Steps 2 or 6.

Firstly, the feasibility of xk implies that d = 0 is a feasible point of Q P(xk, ρ)

for all ρ ≥ 0. Consequently (θ(xk), f (xk)) could not be added to the filter at

step 2.

Secondly, at Step 6 the problem Q P(xk, ρ) is supposed to be feasible but with

a nonnegative optimal value. According to Step 3, vector d = 0 is a feasible but

not a critical point of Q P(xk, ρ). Now since at d = 0 the norm inequality is not

active, the KKT conditions for (P) at xk and for Q P(xk, ρ) at d = 0 coincide.

We thus deduce that xk is not a critical point of (P). Then Lemma 3 implies the

existence of a nonzero vector s ∈ Rn such that for all t ∈ (0, 1)

∇ f (xk)
>s < 0,

h(xk)+ Dh(xk)ts = 0,

G(xk)+ DG(xk)ts � 0.

Therefore s is a local feasible descent direction of Q P(xk, ρ) at d = 0. This

contradicts the fact that the optimal value of this auxiliary problem is nonnega-

tive. �

Remark 7. The above lemma ensures that Step 1 is always realizable when

the original problem (P) is feasible.
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The following two lemmas concerning sequences generated by the Filter can

be found in [15, pp. 47–48]. Both results are independent to the SDP con-

straint appearing in (P). Nevertheless, we present for the sake of completeness a

slightly different proof of the second result.

Lemma 8. Consider a sequence {(θk, fk)}∞k=1 such that θk ≥ 0, { fk}∞k=1 is

decreasing and bounded below, and (θk+1, fk+1) is acceptable to (θk, fk) for all

k. Then θk converges to zero.

Lemma 9. Consider a sequence of iterations {(θk, fk)}∞k=1 entered into the

filter in the above algorithm and such that { fk}∞k=1 is bounded below. It follows

that θk converges to zero.

Proof. Since the initial filter is given by F0 = {(u,−∞)}, Lemma 6 implies

that {θk}∞k=1 ⊂ (0, u]. If we now suppose that {θk}∞k=1 does not converge to zero,

then there must exist a minimal index l̄ ≥ 0 such that

card
({

k ∈ N | β l̄+1u < θk ≤ β l̄ u
})
= ∞, (16a)

card
({

k ∈ N | βl+1u < θk ≤ βlu
})

<∞, ∀ 0 ≤ l < l̄, (16b)

where card(S) denotes the cardinality of a given set S. Note that (β l̄+1u, β l̄ u]

contains a subsequence of {θk}∞k=1 converging to lim supk θk . As a consequence

we can find an index k̄ > 0 such that

θk ≤ β l̄ u, ∀ k ≥ k̄, (17a)

card
({

k ∈ N | k ≥ k̄, β l̄+1u < θk ≤ β l̄ u
})
= ∞. (17b)

We proceed to define recursively the following subsequence {θk(i)}i∈N. First

θk(1) = θk̄ . Then, given θk(i) we define θk(i+1) by taking

k(i + 1) = min
{
k > k(i) | θk > βθk(i)

}
.

Note that k(i + 1) > k(i) is well defined due to (17). It follows also from the

above definition that

θk ≤ βθk(i), ∀ k(i) < k < k(i + 1). (18)
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Since all iterates are entered to the filter, it follows

f (xk(i))− f (xk(i+1)) ≥ γ θk(i+1) > 0, ∀ i = 1, 2, . . .

This implies that
{

f (xk(i))
}

i∈N is decreasing, and taking into account that
{

fk
}∞

k=1 is bounded below it is then obtained

∞∑

i=1

θk(i) <∞.

Obtaining that θk(i) −→ 0. The convergence of θk to zero follows then finally

from (18). �

4 Convergence results

In the remainder of this article we assume the following hypotheses:

(i) The points sampled by the algorithm lie in a nonempty compact set X ⊂

Rn .

(ii) The MFCQ condition is satisfied at each feasible point of (P) lying in the

set X .

(iii) There exists a positive constant M > 0 such that ‖Bk‖2 ≤ M for all k.

This set of hypotheses will be called (H) in the sequel. Without loss of gen-

erality we suppose that the quantities ‖∇ f (x)‖2, ‖D2 f (x)‖2, ‖Dhi (x)‖2,

‖D2hi (x)‖2, ‖DG(x)‖Fr and ‖D2G(x)‖Fr are all bounded by M on a suf-

ficiently large compact convex set containing X . In what follows we just de-

note B = Bk avoiding the index notation.

Remark 10. Let us note that all points of the form xk + d rejected by the

algorithm in Steps 2 or 5 belong to a ρmax-neighborhood of points xk , that were

already accepted in Steps 1 or 7. Therefore, Assumption (i) applies, a posteriori,

to all points generated, by the algorithm including even the trial points that are

finally rejected.

The first lemma of this section provides useful bounds for the variation of

the feasibility and the objective functions, when feasible points of the local

approximated problem are considered.
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Lemma 11. Let the above assumptions (H) be fulfilled. If d is a feasible point

of Q P(xk, ρ), then the following inequalities hold true.

f (xk + d)−
(

f (xk)+ ∇ f (x)>d +
1

2
d>Bd

)
≤ nρ2 M, (19a)

|hi (xk + d)| ≤
1

2
nρ2 M, i = 1, . . . , p (19b)

G(xk + d) �
1

2
(nρ2 M)I (19c)

Proof. The first inequality is a direct consequence of a second order approxi-

mation of f at xk

f (xk + d) = f (xk)+ ∇ f (x)>d +
1

2
d>D2 f (xk + ξd)d,

where ξ ∈ (0, 1). Indeed,

f (xk + d)−
(

f (xk)+ ∇ f (x)>d +
1

2
d>Bd

)
=

1

2
d>(D2 f (xk + ξd)− B)d

≤
1

2
‖d‖2

2‖D
2 f (xk + ξd)− B‖2 ≤ ‖d‖

2
2 M ≤ n‖d‖2

∞M ≤ nρ2 M.

The second inequality follows in the same way, since

|hi (xk + d)| = |
1

2
d>D2hi (xk + ξd)d| ≤

1

2
‖d‖2

2‖D
2hi (xk + ξd)‖2 ≤

1

2
nρ2 M.

The same idea used for G leads to

G(xk+d) = G(xk)+DG(xk)d+
1

2
d>D2G(xk+ξd)d �

1

2
d>D2G(xk+ξd)d.

Using now (9) we obtain

λ1(d
>D2G(xk + ξd)d) ≤ ‖d‖2

2‖D
2G(xk + ξd)‖Fr ≤ nρ2 M.

This is equivalent to the condition

d>D2G(xk + ξd)d − (nρ2 M)I � 0,

that trivially implies (19c). �

The next result gives a condition on ρ that ensures the acceptability of new

iterates for previous filters as required in Step 4.
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Lemma 12. Let the assumptions (H) be satisfied. If

ρ2 ≤
2βτ k−1

(p + 1)nM

and d is a feasible point of QP(xk, ρ), then (θ(xk + d), f (xk + d)) is accept-

able to the filter F k−1.

Proof. It suffices to prove the inequality

θ(xk + d) ≤ βτ k−1. (20)

In virtue of the definition of θ and inequalities (19b) and (19c), it follows that

θ(xk + d) = ‖h(xk + d)‖2 + λ1(G(xk + d))+ ≤ (p + 1)
1

2
nρ2 M.

Inequality (20) is now straightforwardly obtained from the assumption

ρ2 ≤
2βτ k−1

(p + 1)nM
. �

Now we proceed to extend the main lemma of [15].

Lemma 13. Let us assume the set of hypotheses (H) concerning the problem

(P). Let us further suppose x̄ to be a feasible point that is not a critical one. Then

there exist a neighborhood N of x̄ and strictly positive constants ε, μ, and κ

such that if x ∈N ∩ X, ρ > 0 and

μθ(x) ≤ ρ ≤ κ, (21)

then there exists a feasible point d of the problem QP(x, ρ) satisfying the follow-

ing inequalities

f (x + d)+ γ θ(x + d) ≤ f (x), (22a)

f (x + d)− σ(∇ f (x)>d +
1

2
d>Bd) ≤ f (x), (22b)

∇ f (x)>d +
1

2
d>Bd < −

1

3
ρε. (22c)

Moreover, the above inequalities hold also true at any optimal solution of

Q P(x, ρ).
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Proof. Due to hypotheses (H) the MFCQ condition holds at the feasible point

x̄ . Then, since x̄ is not a critical point, it follows from Lemma 3 the existence of

a unitary vector s̄ and a real number η > 0 such that conditions (10) are satisfied.

Let x ∈ N , with N a neighborhood of x̄ . Denote by Px(y) the orthogonal

projection of a vector y ∈ Rn onto Ker Dh(x). Notice that, since Dh(∙) is

continuous, vectors ∇h j (x), with j = 1, .., p, are linear independent when x

is close enough to x̄ . Thus, we can write Px(y) = (I − A†
x Ax)y for all y,

where Ax := Dh(x) and A† denotes the Moore-Penrose inverse of the matrix A.

Recall that when the matrix A is surjective it follows that A† = A>(AA>)−1.

Denote by q = q(x) := −A†
x h(x) and φ = φ(x) := ‖q‖2. In order to directly

deal with conditions related to equality constraints h(x) = 0, we project the vec-

tor s̄ onto Ker Dh(x), normalize it, and obtain then s = s(x) := Px(s̄)/‖Px(s̄)‖2.

Note that s depends continuously on x ∈ N , and s = s̄ when x = x̄ . Thus, it

follows from conditions (10a) and (10c) that there exist a constant ε > 0 and a

(smaller) bounded neighborhood N of x̄ such that

∇ f (x)>s < −ε and G(x)+ ηDG(x)s ≺ −ε I, ∀x ∈N . (23)

Let us now fix some κ > 0 satisfying the following inequality

κ < min
{
η,

ε

M
,

1

3

(1− σ)ε

nM
,

2

3

σε

γ (p + 1)nM

}
. (24)

The continuity properties of functions f, h, and G imply the existence of a

constant C > 0 such that the following three inequalities hold on the (eventually

reduced) neighborhood N :

φ ≤ Cθ(x), λ1(DG(x)q) ≤ Cθ(x), and
(
‖∇ f (x)‖2 + ε +

1

2
Mφ + κ M

)
φ ≤ Cθ(x), ∀x ∈N .

(25)

Let us finally fix some μ > 0 so that

μ > max
{
(1+ C)(1+ η/ε),

6C

ε

}
. (26)

In what follows, we consider a fixed value ρ > 0 satisfying (21). Note that

such a ρ exists, since the neighborhood N can be taken small enough in order

to ensure the inequality

μθ(x) < κ, ∀x ∈N .
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Inequality (26) in particular implies that μ > C , which together with (21)

yields

φ < ρ and 0 <
ρ − φ

η
< 1. (27)

We proceed to prove that d1 = q + (ρ − φ)s is a feasible vector of problem

Q P(x, ρ). Due to the definition of q and s the equality constraint h(x) +

Dh(x)d1 = 0 is satisfied. Also, since q and s are orthogonal, we get

‖d1‖2 =
√

φ2 + (ρ − φ)2 =
√

ρ2 − 2ρφ + 2φ2 ≤ ρ.

Hence, d1 satisfies the trust region constraint ‖d1‖∞ ≤ ρ of Q P(x, ρ). It is just
left to verify the inequality constraint G(x) + DG(x)d1 � 0. Condition (23)
and the first inequality in (27) imply

G(x)+ DG(x)d1 = G(x)+ DG(x)q + (ρ − φ)DG(x)s

=
(

1−
ρ − φ

η

)
G(x)+ DG(x)q +

ρ − φ

η

[
G(x)+ ηDG(x)s

]

�
(

1−
ρ − φ

η

)
G(x)+ DG(x)q − ε

(
ρ − φ

η

)
I.

By applying the largest eigenvalue function λ1(∙) to this last matrix inequality,
Weyl’s theorem (e.g. [18]), and by using inequalities (27) and (25), respectively,
we obtain

λ1(G(x)+ DG(x)d1) ≤ λ1

((
1−

ρ − φ

η

)
G(x)+ DG(x)q

)
− ε

(
ρ − φ

η

)

≤
(

1−
ρ − φ

η

)
λ1(G(x))+ λ1(DG(x)q)− ε

(
ρ − φ

η

)

≤
(

1−
ρ − φ

η

)
λ1(G(x))+ + λ1(DG(x)q)− ε

(
ρ − φ

η

)

≤ λ1(G(x))+ + λ1(DG(x)q)− ε

(
ρ − φ

η

)

≤ (1+ C)θ(x)+
ε

η
φ −

ε

η
ρ ≤

(
1+ C +

ε

η
C

)
θ(x)−

ε

η
ρ

≤
ε

η
μθ(x)−

ε

η
ρ ≤ 0.

The last two inequalities follow directly from (26) and (21), respectively. We

thus conclude that d1 is feasible for problem Q P(x, ρ).
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It is left to prove that inequalities (22) hold at d = d1. Let us start by showing

(22c). By definition of d1 we have

∇ f (x)>d1 +
1

2
d>1 Bd1 = ∇ f (x)>q + (ρ − φ)∇ f (x)>s +

1

2
q>Bq

+ (ρ − φ)q>Bs +
1

2
(ρ − φ)2s>Bs.

Thanks to the upper bounds given in (H), and inequalities (23) and (27), it

follows that

∇ f (x)>d1 +
1

2
d>1 Bd1 < ‖∇ f (x)‖2φ − (ρ − φ)ε +

1

2
Mφ2 + ρMφ +

1

2
ρ2 M.

Using (21), (24), (25) and (26) leads then to

∇ f (x)d1 +
1

2
d>1 Bd1 < ‖∇ f (x)‖2φ − ρε + φε +

1

2
Mφ2 + κ Mφ +

1

2
ρε

≤ −
1

2
ρε + Cθ(x)

≤ −
1

2
ρε +

1

6
ερ = −

1

3
ρε.

The relation (22c) is then proved. Let us finally show (22a) and (22b) for any

feasible point d of Q P(x, ρ) satisfying the inequalities

∇ f (x)>d +
1

2
d>Bd ≤ ∇ f (x)>d1 +

1

2
d>1 Bd1 < −

1

3
ρε, (28)

which in particular implies (22c) for d . This analysis obviously includes the

point d1 and any optimal solution of Q P(x, ρ).

The relation (28) together with inequality (19a) of Lemma 11 provides

f (x + d)− f (x)− σ

(
∇ f (x)>d +

1

2
d>Bd

)

≤ nρ2 M + (1− σ)

(
∇ f (x)>d1 +

1

2
d>1 Bd1

)

≤ nρ2 M − (1− σ)
1

3
ρε.

Applying (21) and (24) to the right hand side of the above inequality leads easily

to (22b).
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In order to prove (22a) note that the already proved relations (22b) and (28)

imply

f (x + d)− f (x) ≤ −σ
1

3
ρε.

On the other hand, due to (19b) and (19c) of Lemma 11 we have

γ θ(x + d) ≤ γ (p + 1)
1

2
nρ2 M.

Adding up both inequalities, it is obtained

f (x + d)− f (x)+ γ θ(x + d) ≤ ρ

(
−σ

1

3
ε + ργ (p + 1)

1

2
nM

)
.

Then (22a) follows easily from (21) and (24). �

Corollary 14. Let us consider an iteration point xk of the algorithm lying in

the neighborhood N defined in Lemma 13 above. If the inequality

μθ(xk) <
1

2
min






√
2βτ k−1

(p + 1)nM
, ρ̄, κ





(29)

is satisfied, then xk is an iteration of f -type satisfying

ρk ≥
1

2
min






√
2βτ k−1

(p + 1)nM
, ρ̄, κ





.

Proof. In the algorithm a sequence of auxiliary problem Q P(xk, ρl) is solved

for the decreasing values ρl =
ρ0
2l , where ρ0 > ρ̄. By inequality (29) there must

be an index l̄ such that

μθ(xk) <
1

2
min






√
2βτ k−1

(p + 1)nM
, ρ̄, κ





≤ ρl̄ < min






√
2βτ k−1

(p + 1)nM
, ρ̄, κ





. (30)

By definition, xk is a θ -type iteration if the inner loop ends adding a new point

to the filter at Steps 2 or 6. Otherwise, the inner loop terminates at Step 7 with

the same filter and xk is of f -type. It suffices to show twofold. 1) First, that for
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the values ρl > ρl̄ the loop cannot end defining xk as of θ -type. 2) Second, if

the value ρl̄ is achieved, then the inner loop ends with xk as f -type iteration.

1) We proceed to prove the first case. From the definition of Q P(xk, ρ), it

is obvious that, when ρ decreases to ρl̄ , the feasible set of Q P(xk, ρ) shrinks

and its optimal value (denoted by val(Q P(xk, ρ))) increases. Since Q P(xk, ρl̄)

is feasible (which is a consequence of Lemma 13 and (30)), it follows that the

inner loop will not stop at Step 2 for any ρl > ρl̄ .

Note that the solution selected at Step 3, denoted by dl , provides also the

optimal value val(Q P(xk, ρl)) = ∇ f (xk)
>dl + 1

2 dl>Bdl .

As mentioned before, the sequence val(Q P(xk, ρl)) increases when ρl de-

creases to ρl̄ . Taking now into account (30) we can conclude from (22c) in

Lemma 13, that val(Q P(xk, ρl)) < 0. Consequently the filter will not be en-

larged at Step 6 for any ρl > ρl̄ , since in fact this happens only for nonnegative

optimal values.

2) Let us finally see that when ρl̄ is achieved the inner loop stops without

enlarging the filter. Since dl̄ is an optimal solution of Q P(xk, ρl̄), Lemma 12

together with (22a) and the third inequality in (30) implies the acceptability of

(θ(xk + dl̄), f (xk + dl̄)) to the filter F k−1 ∪ {(θ(xk), f (xk))} at Step 4. Note

also that the inner loop is not restarted at Step 5, due to the condition (22b).

Furthermore, (22c) ensures that (θ(xk), f (xk)) does not enter to the filter F k−1

at Step 6.

Finally, cases 1) and 2) imply that ρk ≥ ρl̄ ≥
1
2 min

{√
2βτ k−1

(p+1)nM , ρ̄, κ

}
. �

Let us study in the last partial result the finite termination of the inner loop.

Lemma 15. Let the assumptions (H) be satisfied. Given a fixed iterate xk, the

inner loop generated between Steps 2 and 5 finishes after finitely many steps.

Proof. If xk is a critical point of (P), then d = 0 is also a critical point for

Q P(xk, ρ) and the inner loop stops at Step 3. We argue by contraction, that is,

we suppose that xk is not a critical point and that the loop is executed infinitely

many times. In this case ρ converges to zero, because it is divided by two at

those Steps (4 and 5) where the inner loop restarts.
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In the case when xk is not feasible, one of the following two inequalities

occurs: either λ1(G(xk)) > 0 or ‖h(xk)‖2 > 0. The second one implies that

there exists some i ∈ {1, . . . , p} with |hi (xk)| > 0. Thus, in virtue of the

inequality

|hi (xk)+ ∇hi (xk)d| ≥ |hi (xk)| − ρ‖∇hi (xk)‖2,

it follows that Q P(xk, ρ) becomes infeasible when ρ is sufficiently close to zero.

In this case the inner loop is finished at Step 2.

On the other hand, by using Weyl’s theorem [18], and inequalities (7) and (8),

it is obtained

λ1(G(xk)+ DG(xk)d) ≥ λ1(G(xk))+ λn(DG(xk)d)

≥ λ1(G(xk))− ‖DG(xk)d‖Fr

≥ λ1(G(xk))− nρ‖DG(xk)‖Fr .

Therefore also in the case when λ1(G(xk)) > 0, the problem Q P(xk, ρ) be-

comes infeasible for any sufficiently small ρ.

It remains to consider the case of a feasible xk . Due to assumptions (H), the

MFCQ condition holds at xk . From Lemma 3 we obtain the existence of a uni-

tary vector s̄ and a positive number η̄ such that the following conditions are

satisfied for all η ∈ (0, η̄]

∇ f (xk)
>s̄ < 0, (31a)

Dh(xk)s̄ = 0, (31b)

G(xk)+ ηDG(xk)s̄ ≺ 0. (31c)

Let us denote δ = −∇ f (xk)s̄. We now proceed to show that the inner loop

finishes for any ρ > 0 satisfying the following relation

ρ ≤ min





η̄,

δ

M
,
(1− σ)δ

2nM
,

σ δ

γ (p + 1)nM
,

√
2βτ k−1

(p + 1)nM





. (32)

Recall that Lemma 6 provides the positivity of τ k−1.

Let us define d̄ = ρ s̄. Since xk is feasible, it follows from (31b), (31c) and

(32) that d̄ is a feasible point of Q P(xk, ρ). Let us now estimate the value
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of the objective function of the auxiliary problem Q P(xk, ρ) at d̄. From the

assumption (H) we obtain

∇ f (xk)
>d̄ +

1

2
d̄>Bd̄ = −ρδ +

1

2
ρ2s̄>Bs̄ ≤ −ρδ +

1

2
ρ2 M.

It follows from (32) that

∇ f (xk)
>d̄ +

1

2
d̄>Bd̄ ≤ −

1

2
ρδ.

Now let us suppose that d is the solution of Q P(xk, ρ) selected at Step 3. Due

to the feasibility of d̄ we get

∇ f (xk)
>d +

1

2
d>Bd ≤ −

1

2
ρδ < 0. (33)

According to Lemma 11, the following inequality holds

f (xk)− f (xk + d) ≥ −
(
∇ f (xk)

>d +
1

2
d>Bd

)
− nρ2 M.

Then, relations (32) and (33) yield to the following inequalities

f (xk)− f (xk + d) ≥ −σ

(
∇ f (xk)

>d +
1

2
d>Bd

)
+

1

2
(1− σ)ρδ − nρ2 M

≥ −σ

(
∇ f (xk)

>d +
1

2
d>Bd

)
,

where the parameter σ ∈ (0, 1) was used in Step 5 of the algorithm. Therefore,

we have already deduced that

f (xk)+ σ

(
∇ f (xk)

>d +
1

2
d>Bd

)
≥ f (xk + d), (34a)

f (xk)− f (xk + d) ≥ σ
1

2
ρδ. (34b)

Consequently, (34a) implies that the inner loop is not restarted at Step 5.

It remains only to prove that the algorithm goes from Step 4 to Step 5 (i.e.

the inner loop does not restart at Step 4). This situation happens when (θ(xk +

d), f (xk+d)) is acceptable to the filter F k−1∪{(θ(xk), f (xk))}. By Lemma 12

Comp. Appl. Math., Vol. 29, N. 2, 2010



“main” — 2010/7/5 — 11:59 — page 319 — #23
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and condition (32), it follows that (θ(xk+d), f (xk+d)) is acceptable forF k−1.

On the other hand, it can be seen from Lemma 11 that

θ(xk + d) ≤ p
(

1

2
nρ2 M

)
+

1

2
nρ2 M =

1

2
(p + 1)nρ2 M.

This together with (34b) leads to

f (xk)− f (xk + d)− γ θ(xk + d) ≥ σ
1

2
ρδ − γ

1

2
(p + 1)nρ2 M.

The right hand side of the last expression is positive due to the definition of ρ

in (32), obtaining that f (xk + d) + γ θ(xk + d) ≤ f (xk). This actually means

that (θ(xk + d), f (xk + d)) is also acceptable for {(θ(xk), f (xk))}, which com-

pletes the proof. �

We can now state and prove the global convergence theorem for the algo-

rithm proposed.

Theorem 16. Suppose that assumptions (H) holds true. Consider the sequence

{xk} generated by the Filter-SDP algorithm defined above. Then one of the

following situations occurs:

1. The restoration phase (Step 1 ) fails to find a vector xk satisfying (A1)

and (B1).

2. A critical point of (P) is found, that is, d = 0 solves the auxiliary prob-

lem Q P(xk, ρ) for some iteration k.

3. There exists an accumulation point of {xk} that is a critical point of (P).

Proof. We suppose that situations 1. and 2. do not happen, and proceed to

prove that situation 3. occurs.

Due to hypothesis (i) in (H) the sequence {xk}∞k=1 sampled by the algorithm

lies in a compact set X ⊂ Rn and has therefore at least one accumulation point.

Firstly, consider the case when the algorithm generates infinitely many θ -

type iterations. Let us denote by
{

xθ
k( j)

}∞
j=1 the respective subsequence of θ -type

iterates. From Lemma 9 it follows θ
(
xθ

k( j)

)
→ 0, and consequently τ k → 0.
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Since the decreasing sequence τ k changes only at iterations of θ -type, we can

suppose passing to a subsequence if necessary that for all j

θ
(
xθ

k( j)

)
= τ k( j) < τ k( j)−1, (35)

and that {xθ
k( j)} converges to a feasible point x̄ . Let us argue by contradiction

and assume that x̄ is not a critical point of (P).

From hypothesis (ii) in (H) we know that MFCQ is satisfied at x̄ . Hence,

Lemma 13 can be applied, obtaining the existence of the corresponding neigh-

borhoodN of x̄ , and of the strictly positive constants ε, μ, and κ . Note that the

iterate xθ
k( j) will belong to N for sufficiently large j . It suffices then to show

that the condition

μθ
(
xθ

k( j)

)
<

1

2
min






√
2βτ k( j)−1

(p + 1)nM
, ρ̄, κ





(36)

is also satisfied for sufficiently large j . Indeed, condition (36) and Corollary 14

imply that xθ
k( j) is an iteration of f -type, which is a contradiction.

Since θ(xθ
k( j)) and τ k( j)−1 converge both to zero, for all j large enough, con-

dition (36) actually reduces to the following one

θ
(
xθ

k( j)

)
<

1

2μ

√
2βτ k( j)−1

(p + 1)nM
. (37)

We thus conclude by noting that (37) is obtained from (35) when j is taken large

enough such that

τ k( j)−1 ≤
β

2μ2(p + 1)nM
.

This proves the desired result for the first case.

Now, consider the case when only a finite number of θ -type iterations happen.

Therefore, there exists an index K so that all iterations k ≥ K are of f -type.

In particular, it follows from (15) that { f (xk)}k≥K is strictly decreasing. This

together with the fact that (θ(xk+1), f (xk+1)) is acceptable to (θ(xk), f (xk)) (cf.

Step 4) implies, via Lemma 8, that θ(xk)→ 0. Let us suppose, without loss of

generality and arguing by contradiction, that {xk} converges to a feasible vector

x̄ , which is not a critical point of (P).
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Analogously to the first case, hypotheses of Lemma 13 hold, providing the

existence of the corresponding neighborhood N of x̄ , and suitable constants ε,

μ, and κ . Since xk → x̄ , it can be assumed that xk ∈N for all k ≥ K .

By definition of an f -type iteration, no filter updates are made for k ≥ K .

Consequently, τ k = τ K is constant, for all k ≥ K . Notice also that condition

(29) is satisfied for sufficiently large k, since its right hand side is constant and

θ(xk) converges to zero. Then, due to Corollary 14, it holds that

ρk ≥ ρ̂ =
1

2
min






√
2βτ K

(p + 1)nM
, ρ̄, κ





,

for all k ≥ K .

By using (15) and the decreasing monotonicity on ρ of val(Q P(x, ρ)), it

yields to

f (xk)− f (xk+1) ≥ −σ

(
∇ f (xk)

>dk +
1

2
d>k Bdk

)

= −σ val(Q P(xk, ρk))

≥ −σ val(Q P(xk, ρ̂)).

(38)

Taking now into account that ρ̂ satisfies (21) and using (22c) of Lemma 13,

we obtain for all k large enough,

f (xk)− f (xk+1) ≥ −σ val(Q P(xk, ρ̂))

= −σ

(
∇ f (xk)

>d̂ +
1

2
d̂>Bd̂

)

≥
1

3
σερ̂,

(39)

where d̂ is some optimal solution of Q P(xk, ρ̂).

On the other hand, since { f (xk)}k≥K is strictly decreasing, and since {xk} lies

in a compact X , it follows that f (xk) converges. This is a contradiction be-

cause the right hand side of (39) is a strictly positive constant. The theorem is

concluded. �

Remark 17. At Step 3 it is supposed that the auxiliary problem Q P(xk, ρ)

can solve exactly. When B is positive semidefinite, this assumption is theoreti-

cally not strong due to the convexity of Q P(xk, ρ) and its equivalence to a linear
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SDP problem. If the matrix B is not positive semidefinite, there is no theoretical

or practical approach to identify global optimizers of the auxiliary problem.

In practice, the solution of Q P(xk, ρ) can be obtained, even in the convex case,

only up to certain degree of exactness. This fact can be taked into account just

reformulating the algorithm such that only an inexact solution of the auxiliary

problems is required in Step 3. The proof of convergence can be adapted as long

as the suboptimal solution d provided in Step 3 satisfy, when the optimal value

val(Q P(xk, ρ)) is negative, a uniform degree of exactness like

∇ f (xk)
>d +

1

2
d>Bd ≤ γ val(Q P(xk, ρ)),

for a sufficient small γ ∈ (0, 1).

5 Numerical Experiments

A MATLABr code (version 6.0) was written for the filter algorithm presented

in Section 3. We used Jos Sturm’ SeDuMi code (cf. [46]) for testing the feasi-

bility of problem QP and for solving it at Steps 1 and 3 of the algorithm. The

link between the MATLABr code and the SeDuMi was provided by the parser

YALMIP (see [36]).

The restoration phase described at Step 1 has been implemented in a very

simple way. It is just tried to obtain an (almost) feasible point by minimizing

the nondifferentiable merit function θ . The routine employed for this purpose

neither uses derivative information nor exploits in any way the structure of the

problems solved. Consequently in this implementation the restoration step is not

efficient. We expect to improve this issue in future works.

In order to make a preliminary test of the algorithm we selected a set of twenty

small scale examples of the publicly available benchmark collection COMPleib

[32]. For details about the library and a quick introduction see also [33], and the

references therein.

With the data contained in COMPleib it is possible to construct particular

nonlinear semidefinite optimization problems arising in feedback control design

(see [32]). We considered in our numerical tests only the basic Static (or reduced

order) Output Feedback, SOF-H2 problem. The reader can find more details on

the motivation of this problem, for instance, in [22, 32, 34, 35].
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The following NLSDP formulation of the SOF-H2 problem was used (see,

for instance, [32, 33]).

min
F,L

{
T r(L QF) ; AF L + L A>F + P = 0, AF L + L A>F ≺ 0, L � 0

}
(SOFP)

Here

AF = A + B FC, QF = C>F>RFC + Q and CF = C1 + D12 FC

and all the matrices involved are real with the appropriate dimension. The data

A, B1, B, C1, C and D12 were extracted from COMPleib. For P, Q, R we took

always the identity matrix. In the problem SOFP the variables are the matrices

L and F . The L is symmetric and real, but the F , associated with SOF control

law, is in general not square.

For all these numerical tests, we employed a common tolerance value of

εtol = 10−3. At each iteration the matrix B was selected as the identity in

the trust region problem (11). This implies that the algorithm is not using second

order information in this implementation. Thus, a linear convergence behavior

can be expected.

In order to calculate a start point x0 we implemented and run algorithm

(SLPMM) stated in [30, 31]. The initial matrices used therefore satisfy the

SDP-inequalities of (SOFP). We observed that this kind of interior property was

not preserved along the whole optimization process, i.e. some iterates not satis-

fying the SDP-inequalities were obtained.

Each example was run twice: First using the infinity norm in (11) and, then

using the euclidean norm. In the next table the numerical results with better

cpu-time are given. In particular, the fifth column provides information about,

which norm resulted with the better performance for each example (the rows).

In some of the examples, runing the algorithm with a different norm than the

given on the fifth column caused not only a larger cpu time, but also a failure

of the restoration step. As can be seen, the euclidean norm performed better in

more examples than the infinity norm, but in most of the cases the difference in

cpu time was not very significant.
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Data set n p m TR norm f -iter θ -iter Rest. Filter cpu time f (x∗) f (x0) θ(x0)

AC1 24 15 5 Eucl. 359 43 14 20 224.56 20.03 1768.36 282.51

AC2 24 15 5 Eucl. 42 49 9 22 97.68 20.03 5.56 1.06

AC3 23 15 5 Eucl. 10 42 1 31 36.37 21.84 18.45 1.01

AC4 12 10 4 Eucl. 60 10 6 6 32.90 11.99 10.31 3.45

AC15 16 10 4 Inf. 226 144 13 7 561.89 159.07 159.69 0.73

AC17 12 10 4 Eucl. 9 40 5 5 19.52 14.63 9.31 0.75

DIS1 52 36 8 Eucl. 46 2 0 2 56.20 15.36 337.65 61.25

DIS2 10 6 3 Eucl. 26 4 0 2 8.03 8.60 16.89 0.66

DIS3 37 21 6 Eucl. 26 2 0 3 10.76 5.99 9.98 1.22

HE1 12 10 4 Eucl. 281 1 0 2 74.43 13.31 4.52 0.99

HF2D13 23 15 5 Eucl. 630 5 0 3 194.59 0.51 1.39 1.01

HF2D15 23 15 5 Inf. 770 6 4 3 302.16 1.49 2.32 0.63

HF2D17 23 15 5 Eucl. 122 4 0 3 39.27 0.76 1.49 1.04

HF2D_CD4 32 28 7 Inf. 5 10 2 11 36.61 0.80 1.19 0.86

HF2D_CD5 32 28 7 Inf. 14 18 5 14 334.93 2.31 3.19 0.77

HF2D_IS7 19 15 5 Eucl. 4 3 0 4 9.21 0.37 0.69 0.63

IH 320 210 21 Inf. 15 11 0 10 52.11 42.30 80.46 1.76

NN2 4 3 2 Inf. 126 5 0 4 26.89 3.46 136.97 33.72

NN4 16 10 4 Eucl. 32 3 0 4 11.69 5.41 5.11 0.84

NN8 16 6 3 Eucl. 37 1 0 2 11.54 4.44 173.34 78.14

where

Data set = name of the example in COMPleib

n = dimension of the variable x = (F, L), (symmetry of L considered!)

p = number of equality constraints

m = dimension of the matrices involved into the SDP constraints

TR norm = norm (Euclidean or Infinity) used in the subproblems (11).

f -iter = number of f -iterations

θ -iter = number of θ -iterations

Rest. = number of times the restoration phase was used

Filter = final number of vectors in the Filter

cpu time = total cpu time (sec.) including restoration and the inner loops

f (x∗) = value of f at the optimum

f (x0) = value of f at the initial point (F0, L0)

θ(x0) = value of θ at the initial point

6 Conclusions

The filter SQP algorithm has been extended from [15] to the case of nonlinear

semidefinite constraints. The global convergence of the filter method proposed

was obtained under quite mild assumptions, like MFCQ, boundedness, etc.
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The trust region subproblems at each step of the algorithm are actually linear

semidefinite programming problems. In this sense the approach selected is also

related to the SSDP algorithm presented in [12].

We have performed some numerical experiments applied to optimal SOF

problems. In a future work we plane to study local convergence properties

and to report new numerical results.
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[20] W. Gómez and J.A. Gómez, Cutting plane algorithms for robust conic convex optimiza-

tion problems. Optimization Methods and Software, 21(5) (2006), 779–803.

[21] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming. SIAM

J. Optimization, 10(3) (2000), 673–696.

[22] Y.S. Hung and A.G.J. MacFralane, Multivariable Feedback: A quasi-classical approach.

Lectures Notes in Control and Inform., Sci. 40, Springer-Verlag, Berlin, Heidelberg, New

York (1982).

[23] F. Jarre, An interior method for nonconvex semidefinite programs. Optimization and En-

gineering, 1(4) (2000), 347–372.

[24] Y. Kanno and I. Takewaki, Sequential semidefinite program for maximum robustness design

of structures under load uncertainty. Journal of Optimization Theory and Applications,

130(2) (2006), 265–287.
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