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1 Introduction

The standard algorithm for computing the minimal distance of cyclic codes,
due to Chen [2], proceeds by searching for low weight codewords among the
codewords with few nonzero information symbols. We will give a more detailed
description below. We present a new algorithm that follows the same strategy,
adding a tradeoff of time for space. This a standard computational principle, but
the actual use of it requires some extra work which we will describe below. Chen
produced a table of the minimal distances of binary cyclic codes of length at most
65 which was extended to length at most 99 by Promhouse and Tavares [6].
Some improvements on Chen’s algorithm were made by Coppersmith and
Seroussi [3] who used their algorithm to compute the minimal distance of some
binary and ternary quadratic residue codes. The binary quadratic residue codes
are defined as follows. Given a pringe= +1mod 8, letz be a primitive p-
th root of unity in the algebraic closure &b, the field of two elements. The
hypothesis orp entails that the monic polynomial(x), say, whose roots are
¢", with r running over the non-zero quadratic residues mogylas defined
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overF, and the cyclic code of length whose generator polynomial &Xx) is,

by definition, the binary quadratic residue code of lengthDifferent choices

of ¢ lead to different choices ad(x) that give different but equivalent codes.
Their minimal distancel is, in general, not known although the lower bound

d > ,/p and minor improvements are known, see [5]. Prior to Coppersmith
and Seroussi, the known values for the minimal distance of the binary quadratic
residue codes were tabulated in [5]. It appears that the above mentioned lower
bound can be often improved and perhaps, at least yeheri has few factors,

is far from the truth. The largest value dealt with by Coppersmith and Seroussi
was p = 113 which hasl = 15. In 1998, Boston [1], showed that the software
package Magma could, in about ten days, compute the next value corresponding
to p = 137, namely = 21. Some of these calculations were extended by Grassl|
[4] who showed that fop = 167, the minimal distance & = 23. Magma’s

code is proprietary but, from the vague description of the algorithm in the user’s
guide, it appears that it uses an algorithm similar to Chen'’s algorithm, which is
attributed to A. Brouwer.

2 The algorithm

In this session we consider cyclic codes over an arbitrary finite Fightith g
elements. The basic fact underlying Chen’s algorithm is the following lemma.

Lemma 1. Letc be a codeword of weight in an [n, k] cyclic code and =
Lkw/n]. Then there exists a cyclic shiftofvith exactlyr nonzero coordinates
among its firsk coordinates.

See [3], Lemma 1, for a proof.

Starting with a known lower bound, for the minimal weight {9 = 1 if no
better boundis available), far = wg, wo+1, . . ., the algorithm finds a codeword
of weightw or shows that none exists. The first valueuohaving a codeword
of that weight is the minimal distance. Lemma 1 ensures that an exhaustive
search through all possibilities for codewords with exacty |kw/n| nonzero
coordinates among its firktcoordinates suffices to decide whether or not there
exists a codeword of weighi.
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Our improved algorithm is the following. We proceed as above computing
only with codewords with exactly = |kw/n] nonzero coordinates among its
first k coordinates but we do not do so exhaustively. Instead, we choose an
integerr’,0 < r’ < r and compute a table of all codewords with exactly
nonzero coordinates among its fikstoordinates. We also takeas large as
possible with (n —Kk)/t] > w—r. Form =0, ..., w —r we sort the table first
according to the value of theconsecutive coordinates beginnindgat 1 + mt
and, within this sorting we further sort according to the value of the largest
index of a nonzero coordinate. We now loop over all codewords with exactly
r’” =r —r’ nonzero coordinates among its fikstoordinates. For each such
codewordc” we compute the value of itsconsecutive coordinates beginning at
k + 1+ mt and select from the table thosewhich have thesamevalue ast”
in those coordinates and for which the smallest index with a nonzero coordinate
in ¢’ is larger than the largest index with a nonzero coordinat.inVe then
compute the weight af” 4 ¢ for the selected’.

We claim that, if a codeword of weight exists on the code, a codeword of
weight w will be found by this procedure. This will show that our algorithm
computes the minimal distance of the code. To verify this claim, it is enough to
show, by Lemma 1, that if there exists a codeworaf weight w with exactly
r nonzero coordinates among its fikstoordinates, it will be found among the
codewords whose weight are being computed. Indeed, #etc’ + ¢” where
¢’ (resp. ¢”) has exactly’ (resp. r”) nonzero coordinates among its fikst
coordinates and the indices with nonzero coordinates afe all smaller than
the ones ot”. Asc = ¢’ + ¢” has weightw and exactly nonzero coordinates
among its firsk coordinates, we have thatandc’ disagree in exactly —r
of the theirn — k last coordinates. Therefore they must agree in some block of
t consecutive coordinates beginningat 1 + mt for somem =0, ..., w —r,
since|(n — k)/t| > w —r. Thus, for this value ofn, whenc” comes up in the
loop, the codeword’ will be selected from the table and the weightctf+ ¢’
computed, as we wished to show.

We now compare the running time of our algorithm to that of Chen’s. At the
r-th step, the Chen algorithm computes the weigh('r‘Mq — 1)" codewords.
Our algorithm requires the precomputation, storage and SOI"[i(lrb)Qﬂ -1
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codewords. The sorting is negligible in relation to the other computations. The
nextstepisaloop overth{§)(q—1)"" codewords” withr” nonzero coordinates
among their firsk coordinates. We will make the following assumption and will
discussits validity later. Namely we assume that the number of codewa @

with with r nonzero coordinates among their fikstoordinates and with its
consecutive coordinates beginningatl+mtfor some fixedn € {0, ..., w—r}
beingall zerois approximate(;‘?) (g—1)"/g'. These codewordswill be exactly

the ones for which we will compute the weight. So the total number of steps is
approximately

k r k r” k r ot
(w—r—i—l)((r/)(q—l) +(r,,>(q—1) +(r>(q—1) /q)-

This is often a substantial improvement. We still can cha@dse as to minimize
the above expression for the number of steps, and the best valug'srear
r /2. However, in practice, we cannot takdoo large, as its size determines the
amount of storage required, which unlike time, is a limited resource.

It remains to discuss the assumption that the number of codewerd3 with
r nonzero coordinates among their fikstoordinates and with itsconsecutive
coordinates beginning &t 1+ mt for some fixedn € {0, ..., w —r} being all
zerois approximatel{(f) (—-21"/q". Fixme {0,...,w—r}and consider the
codeCy C C consisting of codewords @ having theitt consecutive coordinates
beginning ak+1+mtbeing all zero. Consider the co@g of lengthk consisting
of the projection ofCg to its firstk coordinates. We wish to estimate therefore
the number of codewords of weighin C;. From the results of [5], Chapter 9,
section 10, it follows that this number is approximaté',])/(q — D' /qt if the
minimal weight of the dual o€; is large.

Lemma 2. The minimal distance of the dual Gf is at leastd — t, whered*
is the minimal distance of the dual 6f

Proof. Leta(x) be the generator polynomial &f of degreen — k. Let

f(X) = o+ + b X T x¥(ho + - + hy 1 X" = £(x) + x*h(x)

be a polynomial of degree at mast— 1. In order thatf (x) belongs toC
we must havel(x) + x*h(x) = 0moda(x) which is equivalent tch(x) =
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—x"k¢(x) moda(x). If we write x"—k+ = Z?;g‘l bijx) moda(x), then f (x)
belongs toC if and only if hj = — Z'j‘;é bij ¢;. It follows that the codeC, is
given by the equationy\gbjj ¢; = O for j = k+1+mt, ..., k+ (m+ 1.
The dual ofC; is thus spanned by the vectail j, ..., k1)), ] = k+ 1+
mt, ...,k + (m+ 1t. Now consider the cod® spanned by the vectors of
lengthn of the form(bg j, ..., bk-1,0,...,=1,...,0), where the-1 occurs
atpositionj for j = k+1+mt, ..., k4 (m+1)t. Onone handD is a subcode
of the dual ofC and so its minimal distance is at least. On the other hand, the
projection ofD onto its firstk coordinates is the dual @ and in this projection
any codeword loses at mashonzero coordinates, so the minimal distance of
the dual ofC; is at leastl+ — t, as was to be shown. O

Sincet is small, we conclude that our algorithm will have the running time
discussed above i is large. This is the case for quadratic residue codes, since
a quadratic residue code is essentially self-dual, and is also the case for most
BCH codes since the minimal distance of their dual can be estimated via the
Carlitz-Uchiyama bound [5] and other techniques such as [7].

3 Computations

We used (an earlier version of) our algorithm to check that the minimal distance
of the binary quadratic residue code of length 167 is 23 before we learned of
Grassl's calculation. Our calculation took longer but was done with different
software and hardware, so the comparison doesn’'t mean much.

For comparison we checked that the quadratic residue code of length 79 has
no codeword of weight 11 both using Chen and our algorithm in similar imple-
mentations using Pari/GP and on the same computer. Chen tadbls@&onds,
while ours withr’ = 4 took 147 seconds. Apparently, fof = 5, Pari/GP needs
more RAM to store the table than what the computer had available.

Acknowledgments. The calculation was programmed using Pari/GP. | would
also like to thank N. Boston, M. Grassl and M. Zou.
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