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Abstract. We describe an algorithm that improves on the standard algorithm for computing

the minimal distance of cyclic codes.
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1 Introduction

The standard algorithm for computing the minimal distance of cyclic codes,

due to Chen [2], proceeds by searching for low weight codewords among the

codewords with few nonzero information symbols. We will give a more detailed

description below. We present a new algorithm that follows the same strategy,

adding a tradeoff of time for space. This a standard computational principle, but

the actual use of it requires some extra work which we will describe below. Chen

produced a table of the minimal distances of binary cyclic codes of length at most

65 which was extended to length at most 99 by Promhouse and Tavares [6].

Some improvements on Chen’s algorithm were made by Coppersmith and

Seroussi [3] who used their algorithm to compute the minimal distance of some

binary and ternary quadratic residue codes. The binary quadratic residue codes

are defined as follows. Given a primep ≡ ±1 mod 8, letζ be a primitivep-

th root of unity in the algebraic closure ofF2, the field of two elements. The

hypothesis onp entails that the monic polynomiala(x), say, whose roots are

ζ r , with r running over the non-zero quadratic residues modulop, is defined
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overF2 and the cyclic code of lengthp whose generator polynomial isa(x) is,

by definition, the binary quadratic residue code of lengthp. Different choices

of ζ lead to different choices ofa(x) that give different but equivalent codes.

Their minimal distanced is, in general, not known although the lower bound

d ≥
√

p and minor improvements are known, see [5]. Prior to Coppersmith

and Seroussi, the known values for the minimal distance of the binary quadratic

residue codes were tabulated in [5]. It appears that the above mentioned lower

bound can be often improved and perhaps, at least whenp − 1 has few factors,

is far from the truth. The largest value dealt with by Coppersmith and Seroussi

was p = 113 which hasd = 15. In 1998, Boston [1], showed that the software

package Magma could, in about ten days, compute the next value corresponding

to p = 137, namelyd = 21. Some of these calculations were extended by Grassl

[4] who showed that forp = 167, the minimal distance isd = 23. Magma’s

code is proprietary but, from the vague description of the algorithm in the user’s

guide, it appears that it uses an algorithm similar to Chen’s algorithm, which is

attributed to A. Brouwer.

2 The algorithm

In this session we consider cyclic codes over an arbitrary finite fieldFq with q

elements. The basic fact underlying Chen’s algorithm is the following lemma.

Lemma 1. Let c be a codeword of weightw in an [n, k] cyclic code andr =

bkw/nc. Then there exists a cyclic shift ofc with exactlyr nonzero coordinates

among its firstk coordinates.

See [3], Lemma 1, for a proof.

Starting with a known lower boundw0 for the minimal weight (w0 = 1 if no

better bound is available), forw = w0, w0+1, . . ., the algorithm finds a codeword

of weightw or shows that none exists. The first value ofw having a codeword

of that weight is the minimal distance. Lemma 1 ensures that an exhaustive

search through all possibilities for codewords with exactlyr = bkw/nc nonzero

coordinates among its firstk coordinates suffices to decide whether or not there

exists a codeword of weightw.
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Our improved algorithm is the following. We proceed as above computing

only with codewords with exactlyr = bkw/nc nonzero coordinates among its

first k coordinates but we do not do so exhaustively. Instead, we choose an

integerr ′, 0 ≤ r ′ ≤ r and compute a table of all codewords with exactlyr ′

nonzero coordinates among its firstk coordinates. We also taket as large as

possible withb(n− k)/tc > w − r . Form = 0, . . . , w − r we sort the table first

according to the value of thet consecutive coordinates beginning atk + 1+ mt

and, within this sorting we further sort according to the value of the largest

index of a nonzero coordinate. We now loop over all codewords with exactly

r ′′ = r − r ′ nonzero coordinates among its firstk coordinates. For each such

codewordc′′ we compute the value of itst consecutive coordinates beginning at

k + 1 + mt and select from the table thosec′ which have thesamevalue asc′′

in those coordinates and for which the smallest index with a nonzero coordinate

in c′′ is larger than the largest index with a nonzero coordinate inc′. We then

compute the weight ofc′′ + c′ for the selectedc′.

We claim that, if a codeword of weightw exists on the code, a codeword of

weight w will be found by this procedure. This will show that our algorithm

computes the minimal distance of the code. To verify this claim, it is enough to

show, by Lemma 1, that if there exists a codewordc of weightw with exactly

r nonzero coordinates among its firstk coordinates, it will be found among the

codewords whose weight are being computed. Indeed, letc = c′ + c′′ where

c′ (resp. c′′) has exactlyr ′ (resp. r ′′) nonzero coordinates among its firstk

coordinates and the indices with nonzero coordinates ofc′ are all smaller than

the ones ofc′′. As c = c′ + c′′ has weightw and exactlyr nonzero coordinates

among its firstk coordinates, we have thatc′ andc′′ disagree in exactlyw − r

of the theirn − k last coordinates. Therefore they must agree in some block of

t consecutive coordinates beginning atk + 1+ mt for somem = 0, . . . , w − r ,

sinceb(n − k)/tc > w − r . Thus, for this value ofm, whenc′′ comes up in the

loop, the codewordc′ will be selected from the table and the weight ofc′′ + c′

computed, as we wished to show.

We now compare the running time of our algorithm to that of Chen’s. At the

r -th step, the Chen algorithm computes the weight of
(k

r

)
(q − 1)r codewords.

Our algorithm requires the precomputation, storage and sorting of
(k

r ′

)
(q − 1)r ′
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codewords. The sorting is negligible in relation to the other computations. The

next step is a loop over the
( k

r ′′

)
(q−1)r ′′

codewordsc′′ with r ′′ nonzero coordinates

among their firstk coordinates. We will make the following assumption and will

discuss its validity later. Namely we assume that the number of codewordsc ∈ C

with with r nonzero coordinates among their firstk coordinates and with itst

consecutive coordinates beginning atk+1+mt for some fixedm ∈ {0, . . . , w−r }

being all zero is approximately
(k

r

)
(q−1)r /qt . These codewordscwill be exactly

the ones for which we will compute the weight. So the total number of steps is

approximately

(w − r + 1)

((
k

r ′

)
(q − 1)r ′

+
(

k

r ′′

)
(q − 1)r ′′

+
(

k

r

)
(q − 1)r /qt

)
.

This is often a substantial improvement. We still can chooser ′ so as to minimize

the above expression for the number of steps, and the best values arer ′ near

r/2. However, in practice, we cannot taker ′ too large, as its size determines the

amount of storage required, which unlike time, is a limited resource.

It remains to discuss the assumption that the number of codewordsc ∈ C with

r nonzero coordinates among their firstk coordinates and with itst consecutive

coordinates beginning atk+1+mt for some fixedm ∈ {0, . . . , w − r } being all

zero is approximately
(k

r

)
(q − 1)r /qt . Fix m ∈ {0, . . . , w − r } and consider the

codeC0 ⊂ C consisting of codewords ofC having theirt consecutive coordinates

beginning atk+1+mtbeing all zero. Consider the codeC1 of lengthk consisting

of the projection ofC0 to its firstk coordinates. We wish to estimate therefore

the number of codewords of weightr in C1. From the results of [5], Chapter 9,

section 10, it follows that this number is approximately
(k

r

)
(q − 1)r /qt if the

minimal weight of the dual ofC1 is large.

Lemma 2. The minimal distance of the dual ofC1 is at leastd⊥ − t , whered⊥

is the minimal distance of the dual ofC.

Proof. Let a(x) be the generator polynomial ofC of degreen − k. Let

f (x) = `0 + ∙ ∙ ∙ + `k−1xk−1 + xk(h0 + ∙ ∙ ∙ + hn−k−1xn−k−1) = `(x) + xkh(x)

be a polynomial of degree at mostn − 1. In order that f (x) belongs toC

we must havè (x) + xkh(x) ≡ 0 moda(x) which is equivalent toh(x) ≡
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−xn−k`(x) moda(x). If we write xn−k+i ≡
∑n−k−1

j =0 bi j x j moda(x), then f (x)

belongs toC if and only if h j = −
∑k−1

j =0 bi j `i . It follows that the codeC1 is

given by the equations
∑k−1

j =0 bi j `i = 0 for j = k + 1 + mt, . . . , k + (m + 1)t .

The dual ofC1 is thus spanned by the vectors(b0, j , . . . , bk−1, j ), j = k + 1 +

mt, . . . , k + (m + 1)t . Now consider the codeD spanned by the vectors of

lengthn of the form(b0, j , . . . , bk−1, j , 0, . . . , −1, . . . , 0), where the−1 occurs

at positionj for j = k+1+mt, . . . , k+ (m+1)t . On one hand,D is a subcode

of the dual ofC and so its minimal distance is at leastd⊥. On the other hand, the

projection ofD onto its firstk coordinates is the dual ofC1 and in this projection

any codeword loses at mostt nonzero coordinates, so the minimal distance of

the dual ofC1 is at leastd⊥ − t , as was to be shown. �

Sincet is small, we conclude that our algorithm will have the running time

discussed above ifd⊥ is large. This is the case for quadratic residue codes, since

a quadratic residue code is essentially self-dual, and is also the case for most

BCH codes since the minimal distance of their dual can be estimated via the

Carlitz-Uchiyama bound [5] and other techniques such as [7].

3 Computations

We used (an earlier version of) our algorithm to check that the minimal distance

of the binary quadratic residue code of length 167 is 23 before we learned of

Grassl’s calculation. Our calculation took longer but was done with different

software and hardware, so the comparison doesn’t mean much.

For comparison we checked that the quadratic residue code of length 79 has

no codeword of weight 11 both using Chen and our algorithm in similar imple-

mentations using Pari/GP and on the same computer. Chen took 22.5 seconds,

while ours withr ′ = 4 took 14.7 seconds. Apparently, forr ′ = 5, Pari/GP needs

more RAM to store the table than what the computer had available.
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