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Abstract. In this paper, we study the nonlinear equation of the form

∂

∂t
u(x, t) − c2�ku(x, t) = f (x, t, u(x, t))

where �k is the ultra-hyperbolic operator iterated k-times, defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ ∙ ∙ ∙ +
∂2

∂x2
p

−
∂2

∂x2
p+1

−
∂2

∂x2
p+2

− ∙ ∙ ∙ −
∂2

∂x2
p+q

)k

,

p + q = n is the dimension of the Euclidean space Rn , (x, t) = (x1, x2, . . . , xn, t) ∈ Rn×

(0, ∞), k is a positive integer and c is a positive constant.

On the suitable conditions for f , u and for the spectrum of the heat kernel, we can find the

unique solution in the compact subset of Rn × (0, ∞). Moreover, if we put k = 1 and q = 0 we

obtain the solution of nonlinear equation related to the heat equation.
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1 Introduction

It is well known that for the heat equation

∂

∂t
u(x, t) = c24u(x, t) (1.1)

with the initial condition

u(x, 0) = f (x)

where 4 =
∑n

i=1
∂2

∂x2
i

is the Laplace operator and (x, t) = (x1, x2, . . . , xn, t) ∈

Rn × (0, ∞), and f is a continuous function, we obtain the solution

u(x, t) =
1

(4c2π t)n/2

∫

Rn
exp

[
−

|x − y|2

4c2t

]
f (y)dy (1.2)

as the solution of (1.1).

Now, (1.2) can be written as u(x, t) = E(x, t) ∗ f (x) where

E(x, t) =
1

(4c2π t)n/2
exp

[
−

|x |2

4c2t

]
. (1.3)

E(x, t) is called the heat kernel, where |x |2 = x2
1 + x2

2 + ∙ ∙ ∙ + x2
n and t > 0,

see [1, p. 208–209].

Moreover, we obtain E(x, t) → δ as t → 0, where δ is the Dirac-delta distri-

bution. We also have extended (1.1) to be the equation

∂

∂t
u(x, t) = c2�u(x, t) (1.4)

where � is the ultra-hyperbolic operator, defined by

� =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ ∙ ∙ ∙ +
∂2

∂x2
p

−
∂2

∂x2
p+1

−
∂2

∂x2
p+2

− ∙ ∙ ∙ −
∂2

∂x2
p+q

)

.

We obtain the ultra-hyperbolic heat kernel

E(x, t) =
(i)q

(4c2π t)n/2
exp

[∑p
i=1 x2

i −
∑p+q

j=p+1 x2
j

4c2t

]

where p + q = n is the dimension of the Euclidean space Rn and i =
√

−1.

For finding the kernel E(x, t) see [4].
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In this paper, we extend (1.4) to be the general of the nonlinear form

∂

∂t
u(x, t) − c2�ku(x, t) = f (x, t, u(x, t)) (1.5)

for (x, t) ∈ Rn ×(0, ∞) and with the following conditions on u and f as follows,

(1) u(x, t) ∈ C(2k)(Rn) for any t > 0 where C(2k)(Rn) is the space of contin-

uous function with 2k-derivatives.

(2) f satisfies the Lipchitz condition, that is

| f (x, t, u) − f (x, t, w)| ≤ A|u − w|

where A is constant and 0 < A < 1.

(3) ∫ ∞

0

∫

Rn
| f (x, t, u(x, t))| dx dt < ∞

for x = (x1, x2, . . . , xn) ∈ Rn , t ∈ (0, ∞) and u(x, t) is continuous

function on Rn × (0, ∞).

Under such conditions of f , u and for the spectrum of E(x, t), we obtain the

convolution

u(x, t) = E(x, t) ∗ f (x, t, u(x, t))

as a unique solution in the compact subset of Rn × (0, ∞) and E(x, t) is an

elementary solution defined by (2.5).

2 Preliminaries

Definition 2.1. Let f (x) ∈ L1(Rn)-the space of integrable function in Rn.

The Fourier transform of f (x) is defined by

f̂ (ξ) =
1

(2π)n/2

∫

Rn
e−i(ξ,x) f (x) dx (2.1)

where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ Rn, (ξ, x) = ξ1x1 + ξ2x2 +

∙ ∙ ∙ + ξnxn is the usual inner product in Rn and dx = dx1 dx2 . . . dxn.

Also, the inverse of Fourier transform is defined by

f (x) =
1

(2π)n/2

∫

Rn
ei(ξ,x) f̂ (ξ) dξ. (2.2)
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Definition 2.2. The spectrum of the kernel E(x, t) defined by (2.5) is the

bounded support of the Fourier transform Ê(ξ, t) for any fixed t > 0.

Definition 2.3. Let ξ = (ξ1, ξ2, . . . , ξn) be a point in Rn and we write

u = ξ 2
1 + ξ 2

2 + . . . + ξ 2
p − ξ 2

p+1 − ξ 2
p+2 − . . . − ξ 2

p+q, p + q = n.

Denote by

0+ =
{
ξ ∈ Rn : ξ1 > 0 and u > 0

}

the set of an interior of the forward cone, and 0+ denotes the closure of 0+.

Let � be spectrum of E(x, t) defined by Definition 2.2 for any fixed t > 0 and

� ⊂ 0+. Let Ê(ξ, t) be the Fourier transform of E(x, t) and define

Ê(ξ, t) =






1
(2π)n/2 exp

[
c2t

(∑p+q
j=p+1 ξ 2

j −
∑p

i=1 ξ 2
i

)k
]

for ξ ∈ 0+,

0 for ξ /∈ 0+.

(2.3)

Lemma 2.1. Let L be the operator defined by

L =
∂

∂t
− c2�k (2.4)

where �k is the ultra-hyperbolic operator iterated k-times defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ ∙ ∙ ∙ +
∂2

∂x2
p

−
∂2

∂x2
p+1

−
∂2

∂x2
p+2

− ∙ ∙ ∙ −
∂2

∂x2
p+q

)k

,

p + q = n is the dimension of Rn, (x1, x2, . . . , xn) ∈ Rn, t ∈ (0, ∞), k is a

positive integer and c is a positive constant. Then we obtain

E(x, t) =
1

(2π)n

∫

�

exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k

+ i(ξ, x)



 dξ (2.5)

as a elementary solution of (2.4) in the spectrum � ⊂ Rn for t > 0.
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Proof. Let LE(x, t) = δ(x, t) where E(x, t) is the kernel or the elementary

solution of operator L and δ is the Dirac-delta distribution. Thus

∂

∂t
E(x, t) − c2�k E(x, t) = δ(x)δ(t).

Take the Fourier transform defined by (2.1) to both sides of the equation, we

obtain

∂

∂t
Ê(ξ, t) − c2




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k

Ê(ξ, t) =
1

(2π)n/2
δ(t).

Thus

Ê(ξ, t) =
H(t)

(2π)n/2
exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k



where H(t) is the Heaviside function. Since H(t) = 1 for t > 0. Therefore,

Ê(ξ, t) =
1

(2π)n/2
exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k



which has been already defined by (2.3). Thus

E(x, t) =
1

(2π)n/2

∫

Rn
ei(ξ,x) Ê(ξ, t) dξ =

1

(2π)n/2

∫

�

ei(ξ,x) Ê(ξ, t) dξ

where � is the spectrum of E(x, t). Thus from (2.3)

E(x, t) =
1

(2π)n

∫

�

exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k

+ i(ξ, x)



 dξ for t > 0.

�

Definition 2.4. Let us extend E(x, t) to Rn × R by setting

E(x, t) =






1
(2π)n

∫
�

exp
[

c2t
(∑p+q

j=p+1 ξ2
j −

∑p
i=1 ξ2

i

)k
+ i(ξ, x)

]
dξ for t > 0,

0 for t ≤ 0,
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3 Main Results

Theorem 3.1. The kernel E(x, t) defined by (2.5) have the following proper-

ties:

(1) E(x, t) ∈ C∞-the space infinitely differentiable.

(2)
(

∂
∂t − c2�k

)
E(x, t) = 0 for t > 0.

(3)

|E(x, t)| ≤
22−n

πn/2

M(t)

0
( p

2

)
0

( q
2

) , for t > 0,

where M(t) is a function of t in the spectrum � and 0 denote the Gamma

function. Thus E(x, t) is bounded for any fixed t > 0.

(4) lim
t→0

E(x, t) = δ.

Proof.

(1) From (2.5), since

∂n

∂xn E(x, t) =
1

(2π)n

∫

�

∂n

∂xn exp




c2t




p+q∑

j=p+1

ξ2
j −

p∑

i=1

ξ2
i





k

+ i(ξ, x)




 dξ.

Thus E(x, t) ∈ C∞ for x ∈ Rn , t > 0.

(2) By computing directly, we obtain
(

∂

∂t
− c2�k

)
E(x, t) = 0.

(3) We have

E(x, t) =
1

(2π)n

∫

�

exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k

+ i(ξ, x)



 dξ.

|E(x, t)| ≤
1

(2π)n

∫

�

exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k

 dξ.
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By changing to bipolar coordinates

ξ1 = rω1, ξ2 = rω2, . . . , ξp = rωp and

ξp+1 = sωp+1, ξp+2 = sωp+2, . . . , ξp+q = sωp+q

where
∑p

i=1 ω2
i = 1 and

∑p+q
j=p+1 ω2

j = 1. Thus

|E(x, t)| ≤
1

(2π)n

∫

�

exp
[
c2t

(
s2 − r2

)k
]

r p−1sq−1 dr ds d�p d�q

where dξ = r p−1sq−1 dr ds d�p d�q , d�p and �q are the elements of

surface area of the unit sphere in Rp and Rq respectively. Since � ⊂ Rn

is the spectrum of E(x, t) and we suppose 0 ≤ r ≤ R and 0 ≤ s ≤ L

where R and L are constants. Thus we obtain

|E(x, t)| ≤
�p �q

(2π)n

∫ R

0

∫ L

0
exp

[
c2t

(
s2 − r2

)k
]

r p−1sq−1 ds dr

=
�p �q

(2π)n
M(t) for any fixed t > 0 in the spectrum �

=
22−n

πn/2

M(t)

0(
p
2 )0(

q
2 )

(3.1)

where

M(t) =
∫ R

0

∫ L

0
exp

[
c2t

(
s2 − r2

)k
]

r p−1sq−1 ds dr (3.2)

is a function of

t > 0, �p =
2π p/2

0
( p

2

) and �q =
2π p/2

0
( q

2

) .

Thus, for any fixed t > 0, E(x, t) is bounded.

(4) By (2.5), we have

E(x, t) =
1

(2π)n

∫

�

exp



c2t




p+q∑

j=p+1

ξ 2
j −

p∑

i=1

ξ 2
i





k

+ i(ξ, x)



 dξ.
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Since E(x, t) exists, then

lim
t→0

E(x, t) =
1

(2π)n

∫

�

ei(ξ,x) dξ

=
1

(2π)n

∫

Rn
ei(ξ,x) dξ

= δ(x), for x ∈ Rn.

See [3, p. 396, Eq. (10.2.19b)]. �

Theorem 3.2. Given the nonlinear equation

∂

∂t
u(x, t) − c2�ku(x, t) = f (x, t, u(x, t)) (3.3)

for (x, t) ∈ Rn × (0, ∞), k is positive number and with the following conditions

on u and f as follows,

(1) u(x, t) ∈ C(2k)(Rn) for any t > 0 where C(2k)(Rn) is the space of contin-

uous function with 2k-derivatives.

(2) f satisfies the Lipchitz condition, that is

| f (x, t, u) − f (x, t, w)| ≤ A|u − w|

where A is constant and 0 < A < 1.

(3) ∫ ∞

0

∫

Rn
| f (x, t, u(x, t))| dx dt < ∞

for x = (x1, x2, . . . , xn) ∈ Rn, t ∈ (0, ∞) and u(x, t) is continuous

function on Rn × (0, ∞).

Then, for the spectrum of E(x, t) we obtain the convolution

u(x, t) = E(x, t) ∗ f (x, t, u(x, t)) (3.4)

as a unique solution of (3.3) for x ∈ �0 where �0 is an compact subset of

Rn, 0 ≤ t ≤ T with T is constant and E(x, t) is an elementary solution defined

by (2.5) and also u(x, t) is bounded.

In particular, if we put k = 1 and q = 0 in (3.3) then (3.3) reduces to the

nonlinear heat equation.
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Proof. Convolving both sides of (3.3) with E(x, t) and then we obtain the

solution

u(x, t) = E(x, t) ∗ f (x, t, u(x, t))

or

u(x, t) =
∫ ∞

−∞

∫

Rn
E(r, s) f (x − r, t − s, u(x − r, t − s)) dr ds

where E(r, s) is given by Definition 2.4.

We next show that u(x, t) is bounded on Rn × (0, ∞). We have

|u(x, t)| ≤
∫ ∞

−∞

∫

Rn
|E(r, s)| | f (x − r, t − s, u(x − r, t − s))| dr ds

≤
22−n

πn/2

N .M(t)

0(
p
2 )0(

q
2 )

by the condition (3) and (3.1) where

N =
∫ ∞

0

∫

Rn
| f (x, t, u(x, t))| dx dt .

Thus u(x, t) is bounded on Rn × (0, ∞).

To show that u(x, t) is unique, suppose there is another solution w(x, t) of

equation (3.3). Let the operator

L =
∂

∂t
− c2�k

then (3.3) can be written in the form

L u(x, t) = f (x, t, u(x, t)).

Thus

L u(x, t) − L w(x, t) = f (x, t, u(x, t)) − f (x, t, w(x, t)).

By the condition (2) of the Theorem,

|L u(x, t) − L w(x, t)| ≤ A|u(x, t) − w(x, t)|. (3.5)

Let �0 × (0, T ] be compact subset of Rn × (0, ∞) and L : C(2k)(�0) −→

C(2k)(�0) for 0 ≤ t ≤ T .
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Now
(
C(2k)(�0), ‖ ∙ ‖

)
is a Banach space where u(x, t) ∈ C(2k)(�0) for 0 ≤

t ≤ T , ‖ ∙ ‖ given by

‖u(x, t)‖ = sup
x∈�0

|u(x, t)|.

Then, from (3.5) with 0 < A < 1, the operator L is a contraction mapping on

C(2k)(�0). Since
(
C(2k)(�0), ‖ ∙ ‖

)
is a Banach space and L : C(2k)(�0) −→

C(2k)(�0) is a contraction mapping on C(2k)(�0), by Contraction Theorem,

see [3, p. 300], we obtain the operator L has a fixed point and has unique-

ness property. Thus u(x, t) = w(x, t). It follows that the solution u(x, t) of

(3.3) is unique for (x, t) ∈ �0 × (0, T ] where u(x, t) is defined by (3.4).

In particular, if we put k = 1 and q = 0 in (3.3) then (3.3) reduces to the

nonlinear heat equation

∂

∂t
u(x, t) − c24u(x, t) = f (x, t, u(x, t))

which has solution

u(x, t) = E(x, t) ∗ f (x, t, u(x, t))

where E(x, t) is defined by (2.5) with k = 1 and q = 0. That is complete of

proof. �
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