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Abstract. A sequential quadratic programming algorithm for solving nonlinear programming

problems is presented. The new feature of the algorithm is related to the definition of the merit

function. Instead of using one penalty parameter per iteration and increasing it as the algorithm

progresses, we suggest that a new point is to be accepted if it stays sufficiently below the piecewise

linear function defined by some previous iterates on the ( f, ‖C‖2
2
)-space. Therefore, the penalty

parameter is allowed to decrease between successive iterations. Besides, one need not to decide

how to update the penalty parameter. This approach resembles the filter method introduced by

Fletcher and Leyffer [Math. Program., 91 (2001), pp. 239–269], but it is less tolerant since a

merit function is still used. Numerical comparison with standard methods shows that this strategy

is promising.
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1 Introduction

In this paper we are concerned with the problem

minimize f (x)

subject to C(x) = 0 (1)

l ≤ x ≤ u
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338 MIXING MERIT FUNCTION AND FILTER IDEAS

where f : Rn → R is a C2 nonlinear function, C : Rn → R
m represents a set

of C2 nonlinear constraints and we suppose that

−∞ ≤ li ≤ ui ≤ ∞, for i = 1, . . . , n.

Naturally, some of the components of x in (1) may be slack variables generated
when converting inequality constraints to this form.

Algorithms based on the sequential quadratic programming (SQP) approach

are among the most effective methods for solving (1). Some interesting algo-

rithms of this class are given, for example, in [3, 4, 10, 21]. A complete coverage

of such methods can be found in [6, 20].

Since SQP algorithms do not require the iterates to be feasible, they have to

concern with two conflicting objectives at each iteration: the reduction of the

infeasibility and the reduction of function f . Both objectives must be taken in
account when deciding if the new iterate is to be accepted or rejected. To make

this choice, most algorithms combine optimality and feasibility into one single

merit function. Filter methods, on the other hand, usually require only one of
these two goals to be satisfied, avoiding the necessity of defining a weighted sum

of them. Both approaches have advantages and drawbacks. In this paper, these

approaches are mixed with the objective of reducing their disadvantages while

keeping their best features. To motivate the new algorithm, both methods are

briefly introduced below.

1.1 A prototypical SQP algorithm

The algorithm presented in this paper will inherit the structure of the merit func-

tion based SQP method proposed in [10], hereafter called the GMM algorithm.
This method divides each iteration into two components, a normal and a tan-

gential step. The first of these components is used to reduce the infeasibility,
while the aim of the second is to improve the objective function. A trust region

approach is used as the globalization strategy. All of the iterates are required to

satisfy the bound constraints l ≤ x ≤ u, so the merit function chosen was the
augmented Lagrangian, written here (and in [10]) in an unusual way as

L(x, λ, θ) = θ[ f (x)+ C(x)Tλ]+ (1− θ)
2
‖C(x)‖22. (2)
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In (2), θ ∈ [0, 1] is a “penalty parameter” used as a weight to balance the
Lagrangian function (for the equality constrained subproblem), defined as

�(x, λ) = f (x)+ C(x)Tλ,

with a measure of the infeasibility, given by

ϕ(x) = 1
2
‖C(x)‖22.

At iteration k, a new point x+ = xk + s is accepted if the ratio between the
actual and the predicted reduction of the merit function (when moving from xk
to x+) is greater than a positive constant.
The actual reduction of the augmented Lagrangian at the candidate point x+

is defined as

Ared(xk, s, θ) = L(xk, θ)− L(xk + s, θ).
The predicted reduction of the merit function depends on the strategy used to

approximately solve (1). The GMMalgorithm approximates (1) by the quadratic

programming problem

minimize Q(H, x, λ, s) = 1
2
sT Hs +∇�(x, λ)T s + �(x, λ)

subject to A(x)s + C(x) = 0
l ≤ x + s ≤ u

where H is a symmetric n × n matrix and A(x) = (∇C1(x), . . . ,∇Cm(x))T is
the Jacobian of the constraints.

In this case, denoting

M(x, s) = 1
2
‖A(x)s + C(x)‖22,

as the approximation of ϕ(x), the predicted reduction of the augmented La-
grangian merit function is given by

Pred(H, x, s, θ) = θ Poptred (H, x, s)+ (1− θ)P f sbred (x, s), (3)

where

P f sbred (x, s) = M(x, 0)− M(x, s) (4)
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340 MIXING MERIT FUNCTION AND FILTER IDEAS

is the predicted reduction of the infeasibility and

Poptred (H, x, λ, s) = Q(H, x, λ, 0)− Q(H, x, λ, s) (5)

is the predicted reduction of the Lagrangian.

The penalty parameter θ plays a crucial role in the acceptance of the step.

For a augmented Lagrangian of the form (2), (θ − 1)/θ can be viewed as the
slope of the line that defines the forbidden region in the (ϕ, �)-plane, that is, the
semi-space that contains all of the points that are not acceptable at the current

iteration. This is illustrated in Figure 1, where the forbidden region is highlighted

for different values of θ .

Figure 1 – Threemerit functions on the (ϕ, �)-plane, showing the influence of the penalty

parameter θ . On the left, θ = 1/50. In the middle, θ = 1/2. On the right, θ = 49/50.

Merit functions have been criticized for many reasons. First, it is not so easy

to choose an initial value for θ , since �(x, λ) and ϕ(x) usually have very differ-
ent meanings and units. Besides, it is necessary to decrease θ as the algorithm

progresses to force it to find a feasible solution. If the initial penalty parameter

used is near to 1 and θ is decreased slowly, the algorithm may take too many

iterations to reach a feasible point. On the other hand, starting from a small θ

or decreasing this factor too quickly may force iterates to stay almost feasible,

shortening the steps even when we are far from the optimal solution.

As shown in [10], the adoption of a non-monotone strategy for the reduc-

tion of θ is very effective to avoid this premature step shortening. However, it

also allows the algorithm to cycle between small and large penalty parameters,
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inducing some zigzagging in many cases. This undesired behavior can be con-

trolled if an efficient choice of the non-monotonicity parameter is adopted, but

this choice is also very problem dependent, so the criticism of the method still

applies.

1.2 The filter method

To overcome some of the difficulties inherent to merit functions, Fletcher and

Leyffer [8] introduced the idea of using a filter. Instead of combining infeasibility

and optimality in one single function, the filter method borrows the idea of

nondominance from multi-criteria optimization theory. Thus, a trial point is

refused only if it is dominated by some other point, generated in a previous

iteration.

This approach was promptly followed by many authors, mainly in conjunction

with SLP (sequential linear programming), SQP and interior-point type methods

(see, for instance, [1, 5, 6, 7, 9, 11, 12, 15, 16, 17, 22, 23, 24, 25]).

The SQP-filter algorithm presented in [6] illustrates how this nondominance

criterion works. In this method, the objective function f is used to measure
optimality, while infeasibility is measured by

φ(x) = max
{
0, max

i=1,··· ,m
|Ci (x)|, max

i=1,··· ,n
[xi − ui ], max

i=1,··· ,n
[li − xi ]

}
.

Function φ(x) differs from ϕ(x) in the norm used. Besides, the violation of
the bound constraints is also taken in account here, since the filter method do not

require the iterates to satisfy these constraints.

For each approximate solution x , we can plot a point (φ(x), f (x)) in the
(φ, f )-plane, just as we did with (ϕ(x), �(x)) in Figure 1. A third equivalent
plane will be introduced in next section, as the algorithm presented in this paper

works with (ϕ, f ) pairs.
Let F be a set of previously generated pairs in the form (φ j , f j ). An iterate

xk is accepted by the filter whenever it satisfies

φ(xk) < (1− γ )φ j or f (xk) < f j − γφ(xk) for all (φ j , f j ) ∈ F, (6)

where γ ∈ (0, 1) is a constant.
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One advantage of this type of Pareto dominance criterion is that it does no

require the redefinitionof a penalty parameter at each iteration. However, to avoid

the acceptance of iterates that are too close to the points in F , it was necessary
to add to the last inequality of (6) a term that depends on the infeasibility, giving

a merit function flavor to this specific filter.

The main disadvantage of the SQP-filter based on (6) is that this acceptance

criterion is too tolerant. In fact, requiring only the infeasibility or the optimality
to be improved makes possible the acceptance of points that are only marginally

less infeasible but have a large increase in f (x) over the current iterate, or vice-
versa.

Even though, the SQP-filter method can give us some good hints on how to

improve the algorithms based on merit functions.

The first hint is that the same merit function that is reliable for points in the

(ϕ, f )-plane that are near to (ϕ(xk), f (xk)) may be not so useful when the step
is large, so the trial point is far from the current iterate. As illustrated in Figure 1,

for values of θ near to 1, the acceptance criterion based on a merit function cuts

off a significant portion of the feasible region, including, in many cases, the

optimal solution of the problem.

The second good idea behind the SQP-filter method is that a restoration step

should be used sometimes. The objective of a restoration is to obtain a point that

is less infeasible than the current one and is also acceptable for thefilter. In [6, sec.

15.5], a restoration step is computed when the trust region quadratic subproblem

is incompatible (i.e. has an empty feasible set). In our method, this strategy will

be used whenever staying away from feasibility seems not worthwhile. In other

words, infeasible iterates are welcome only if they generate large reductions of

the objective function. If the decrease in f is small and the current point is very
infeasible, it is better to move off and find a more feasible point.

The last lesson we can take from the SQP-filter method is that feasible points

could never be refused. In [6, sec. 15.5], feasible points are never added toF , so
a feasible iterate will always satisfy the first inequality of (6). This assures that

the optimal solution will always be accepted by the algorithm and a restoration

will always succeed.
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1.3 Motivation and structure of the paper

The objective of this paper is to present an algorithm that takes advantages from

both the merit function and the filter ideas. The algorithm introduced here is

a merit function SQP method, in the sense that it still combines feasibility and

optimality in one single function and it still uses penalty parameters. However,

not one but several penalty parameters are defined per iteration, each one re-

lated to a portion of the ( f, ϕ)-space. These parameters are also automatically
computed from some ( f, ϕ)-pairs collected at previous iterations, so no update
scheme need to be defined for θ .

This paper is organized as follows. In the next section, we present the piece-

wise linear function we use to accept or reject points. Section 3 introduces the

proposed algorithm. In section 4, we prove that the algorithm is well defined.

Sections 5 and 6 contain the main convergence results. Finally, in section 7 some

conclusions are presented, along with lines for future work.

Through the paper, we will omit some (or even all) of the arguments of a

function, if this does not lead to confusion. Therefore, sometimes Q(H, x, s)
will be expressed as Q(s), for example, if there is no ambiguity on H and x .

2 A merit function that uses several penalty parameters per iteration

As we have seen, a merit function deals with two different concepts: the infea-

sibility and the optimality of the current point.

In this paper, we will introduce a new merit function that uses information

collected at previous iterations to accept new points. Since we compare points

generated at different stages of the algorithm, this function cannot be based on

the augmented Lagrangian, like in [10], as it would depend on the Lagrange

multiplier estimates used and, obviously, these estimates change from one iter-

ation to another. Therefore, we decided to adopt the so called smooth �2 merit
function, defined as:

ψ(x, θ) = θ f (x)+ (1− θ)ϕ(x). (7)

The actual reduction of the �2 merit function will be given by

Ared(x, s, θ) = θ Aoptred(x, s)+ (1− θ)A f sbred (x, s),
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where

Aoptred(x, s) = f (x)− f (x + s) and A f sbred (x, s) = ϕ(x)− ϕ(x + s).

Similarly, the predicted reduction of the merit function will be defined as

in (3), replacing (5) by

Poptred (H, x, s) = Q(H, x, 0)− Q(H, x, s),

where

Q(H, x, s) = 1
2
sT Hs +∇ f (x)T s + f (x). (8)

Generally, for a trial point to be accepted, it is necessary that the actual reduc-

tion of the merit function satisfies

Ared(x, s, θ) ≥ ηPred(H, x, s, θ),

where η ∈ (0, 1) is a given parameter.
However, this scheme based on a linear merit function is usually unreliable for

trial points that are far from the current iterate. Therefore, we suggest the use of

a piecewise linear function to accept or reject new points, which correspond to

use several merit functions per iteration.

In order to define the newmerit function, let F be a set of p points (ϕi , fi ) in the
(ϕ, f )-plane. Suppose that these pairs are ordered so that ϕ1 < ϕ2 < · · · < ϕ p.

Suppose also that each point (ϕi , fi ) in F is below the line segment joining
(ϕi−1, fi−1) and (ϕi+1, fi+1), for i = 2, . . . , p − 1. Thus the piecewise linear
function that passes through all of the points in F is convex.
For each point (ϕi , fi ) in F , define another point (ϕi , f i ) by moving a little

towards the southwest (a precise definition of ϕi and f i is given in (10) and
(11) below). Let F be the set of points (ϕi , f i ). The convex piecewise linear
function that connects the points in F is defined by

P(F, ϕ) =




∞, if ϕ < ϕ1;
( f i − f i−1)
(ϕi − ϕi−1)

ϕ + ( f i−1ϕi − f iϕi−1)
(ϕi − ϕi−1)

, if ϕi−1 ≤ ϕ < ϕi ;

f p − γs(ϕ − ϕ p), if ϕ ≥ ϕ p.
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Figure 2 – The set F and the piecewise linear function P(F, ϕ).

where γs is a small positive constant, such as 10
−4.

This new function, illustrated in Figure 2, is formed by p + 1 line segments
that can be viewed as merit functions in the form (7). The i-th of these functions
is defined by the penalty parameter

θ i =



0, if i = 0;

ϕi+1−ϕi
f i− f i+1+ϕi+1−ϕi

, if i < p;
1/(1+ γs), if i = p.

(9)

and a particular choice of η that will be defined below.

The region between the piecewise linear function that passes through the points

in F and the function defined by F acts as a margin that prevents the acceptance
of iterates that are not “sufficiently” better than the pairs in F .
At each iteration k, Fk is generated defining, for each point (ϕi , fi ) ∈ Fk ,

another point (ϕi , f i ) such that,

ϕi = min
{
ϕi − γc P f sbred (xk, sc), (1− γ f )ϕi

}
, (10)

and

f i = min
{
fi − γ f Poptred (Hk, xk, sc), fi − (ϕi − ϕi )

}
, (11)

for some 0 < γ f < γc < 1. Reasonable values for these constants are γ f = 10−4
and γc = 10−3.
Comp. Appl. Math., Vol. 26, N. 3, 2007
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Our algorithm starts with F0 = ∅. At the beginning of an iteration, say k, we
define the temporary set F k as

F k = Fk
⋃ {

( f (xk), ϕ(xk))
}
.

As it will become clear in the next section, depending on the behavior of the

algorithm, the pair ( f (xk), ϕ(xk)) may be permanently added to Fk+1 at the
end of the iteration. In this case, each pair ( f (xi ), ϕ(xi )) that is not below the
line segment that joins ( f (xi−1), ϕ(xi−1)) to ( f (xi+1), ϕ(xi+1)) is removed from
Fk+1, to keep the P(F, ϕ) function convex.
A new iterate x+ = xk + sc is rejected if f (xk + sc) is above the piecewise-

linear function P(F k, ϕ(xk + sc)) or if we predict a good reduction for the merit
function, but the real reduction is deceiving (in the sense that (14) occurs).

To express the first of these conditions in the SQP jargon, we say that x+ is not
accepted if

Ared(xk, sc, θ k) ≤ ηPred(Hk, xk, sc, θ k), (12)

where

θ k =



θ0, if ϕ(x+) < ϕ1;
θ i , if ϕi ≤ ϕ(x+) < ϕi+1;
θ p, if ϕ(x+) ≥ ϕ p.

(13)

The η parameter is used in (12) to define the region between Fk and Fk .
However, a formula for η cannot be written explicitly since we do not know in

advance which of the terms in (10) and (11) will be used to define ϕi and f i .
Fortunately, this formula will only be used in the proof of Lemma 15 and, in this

case, a simple expression is known.

Some agreement between the model function and the objective function of (1)

is an usual second requirement for accepting the step in filter methods. In the

SQP-filter method presented in [6], for example, this extra condition is used

whenever Poptred is sufficiently greater than a small fraction of the infeasibility at

xk . In this case, sc is only accepted if A
opt
red/P

opt
red > γg is satisfied. Most filter

algorithms, such as those presented in [5, 7, 9, 16, 17, 22, 23] include similar

tests.
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The combination of infeasibility and optimality into a single merit function

allow us to adopt a less stringent condition, rejecting x+ only if

Poptred (Hk, xk, sc) ≥ κϕ(xk) and θ supk < γm, (14)

where

θ
sup

k = sup
{
θ ∈ R | Ared(xk, sc, θ) ≥ γg Pred(Hk, xk, sc, θ)

}
, (15)

κ > 0, γm ∈ (0, 1) and γg ∈ (0, 1).
In words, (14) states that when we predict a good reduction for the optimality

part of the merit function, the step is only accepted if there exists a penalty

parameter θ
sup

k ∈ [γm, 1] such that Ared/Pred ≥ γg.
This condition seems to be somewhat inelegant, since one should expect that

all of the iterates that do not belong to the forbidden region shown in Figure 2

are to be accepted. However, if we choose a small γm , say 10
−4, (14) becomes

less stringent than (12) in most cases, so it is seldom used. In fact, we generally

have θ0(≡ 0) < γm < θ1, so this condition only applies when xk is the leftmost
point inF . And even in this case, the forbidden region is only slightly enlarged.
Finishing this section, Figure 3 illustrates how the new merit function reduces

the region of acceptable points in comparisonwith the filter. The comparisonwas

made for problem 7 from the Hock and Schittkowski test collection [18]. In the

figure, the current iterate, xk = (−0.25, 2.27) is shown as a black dot. The points
in the (ϕ, f )-space used to define the F set were (0.01,−1.5), (2.28,−2.21)
and (20,−2.7). The forbidden region for the filter method, as defined in (6), is
given in dark gray. The points that are acceptable for the filter but not for the new

merit function are shown in light gray. The white region contains the points that

are acceptable by both criteria. The contour lines of f (x) = log(1 + x21) − x2
are concave up, while concave down contour lines are related to the constraint

C(x) = (1 + x21)2 + x22 − 4. The white concave down narrow region in the
bottom of the graph corresponds to points that are almost feasible, i.e., points

that satisfy ϕ(x) < 0.01.

3 An SQP algorithm

In the general framework of a trust region sequential quadratic programming

algorithm, a step sc is obtained approximating problem (1), in a neighborhood
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Figure 3 – The difference between forbidden regions. Light gray points are accepted by

the filter but not by the new merit function.

of an iterate xk , by a quadratic programming (QP) problem.
In our case, this QP problem has the form

minimize Q(Hk, xk, s)

subject to A(xk)s + C(xk) = 0 (16)

l ≤ xk + s ≤ u
‖s‖∞ ≤ 
,

where Q(H, x, s) is defined by (8), xk is supposed to belong to

� = {
x ∈ Rn | l ≤ x ≤ u}

and Hk is an approximation of the Hessian of the Lagrangian at xk . It should be
noticed that Hk does not need to be positive definite, so this problem must be
carefully handled. The infinity norm was chosen here so the bound constraints

and the trust region constraint of (16) can be grouped.
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We will use the term ϕ-stationary to say that a point x̂ satisfies the first order
optimality conditions of

minimize ϕ(x) (17)

subject to x ∈ �.

Unfortunately, if xk is not ϕ-stationary, the constraints of (16) may be incon-
sistent, so this problem may not have a solution. Some algorithms, such as the

SQP-filter method presented in [6], include a restoration step, called to find a
new point that makes (16) compatible. Another common practice to overcome

this difficulty is to directly divide the step sc into two components. The first of
these components, called normal step, or simply sn , is obtained as the solution
of the feasibility problem

reduce M(xk, s)

subject to l ≤ xk + s ≤ u (18)

‖s‖∞ ≤ βd
.

where βd ∈ (0, 1] is a given constant. If M(xk, sn) = 0, then xk can be substi-
tuted by xk + sn in (16) to make this problem feasible, so it can be solved by
any QP algorithm. Otherwise, the second component of sc, called the tangential
step, or st , is computed so Q is reduced but the predicted reduction of the infea-
sibility obtained so far is retained. In other words, sc is the solution of the (now
consistent) problem

reduce Q(Hk, xk, s)

subject to A(xk)s = A(xk)sn (19)

l ≤ xk + s ≤ u
‖s‖∞ ≤ 
.

Usually, βd is set to some value around 0.8 so the trust region is enlarged

from (18) to (19). This is done to prevent sn from being the the only solution of
(19) when this point is in the border of the trust region of (18).

To insure a sufficient decrease of M , a Cauchy point, sdecn , is computed. This

Cauchy point is based on a decent direction for ϕ(x) given by Pω(xk−∇ϕ(xk)),
Comp. Appl. Math., Vol. 26, N. 3, 2007
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the orthogonal projection of xk −∇ϕ(xk) on�. The solution of (18) is required
to keep at least ninety percent of the reduction obtained by sdecn .

A similar procedure is adopted for (19). In this case, sdect , the Cauchy point,

is obtained from a descent direction for f (x) on the tangent space, given by
Px(−∇Q(sn)), the orthogonal projection of −∇Q(sn) on the set

T = {
y ∈N (A(xk)) | (xk + sn + y) ∈ �

}
.

Again, the decrease on Q obtained by the solution of (19) must not be less
than a fixed percentage of the reduction supplied by the Cauchy point.

Besides using this two-step scheme, the algorithmpresented here also performs

a restoration whenever the step becomes too small and the current point is very

infeasible. Although this feasibility reinforcement seems to be unnecessary, the

restoration plays a very important role in accelerating the method and keeping

the trust region radius sufficiently large.

This role is better explained by an example. Going back to Figure 2, let’s

suppose that the current iterate xk is represented by (ϕ4, f 4) and that the optimal
point has a function value greater than f 1. In this case, unless the trust region
radius is sufficiently large andour quadraticmodel is really good (so the algorithm

can jump over a large portion of the forbidden region), it will be necessary

to perform a considerable number of short-step iterations to traverse from the

southeast to the northwest part of the figure. To shorten the path between the

current point and the desired solution, it is necessary to focus only on reducing

the infeasibility, and this is exactly what the restoration step does.

One may notice that the use of a standard filter is not useful for circumventing

this difficulty. In fact, the problem is aggravated in the presence of (almost)

right angles in the frontier of the forbidden region. To see why this happens,

let’s suppose now that the restoration is used only to ensure that problem (16) is

compatible and that xk is in the vicinity of an almost horizontal segment of the
filter envelope. In this case, to escape from this region, it may be necessary to

severely reduce the trust region radius before (16) becomes inconsistent, so the

restoration is called.

The main steps of the algorithm are given below. We start from k = 0 and take
F0 = ∅ as the initial set of points used to define the piecewise linear function

Comp. Appl. Math., Vol. 26, N. 3, 2007
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P(F). An initial point x0 ∈ �, an initial trust-region radius 
0 ≥ 
min and an
initial symmetric matrix H0 need also to be given.

Algorithm 1. A new SQP algorithm

1. WHILE the stopping criteria are not satisfied

1.1. F k← Fk
⋃{( f (xk), ϕ(xk))};

1.2. IF ‖C(xk)‖ = 0 (xk is feasible),
1.2.1. sn← 0;

1.3. ELSE

1.3.1. Compute dn (a descent direction for ϕ(x)):
dn← Pω(xk − γn∇ϕ(xk))− xk ;

1.3.2. Determine sdecn (the decrease step for ϕ(x)), the solution of
minimize M(xk, s)
subject to l ≤ xk + s ≤ u

‖s‖∞ ≤ βd
k
s = tdn, t ≥ 0;

1.3.3. Compute sn (the normal step) such that
l ≤ xk + sn ≤ u,
‖sn‖∞ ≤ βd
k , and
M(xk, 0)− M(xk, sn) ≥ βm[M(xk, 0)− M(xk, sdecn )];

1.4. Compute dt (a descent direction for f (x) on the tangent space):
dt ← Px(−γt∇Q(sn));

1.5. Determine sdect (the decrease step for f (x)), the solution of
minimize Q(s)
subject to l ≤ xk + s ≤ u

‖s‖∞ ≤ 
k
s = sn + tdt , t ≥ 0;

1.6. Compute a trial step sc such that
A(xk)sc = A(xk)sn,
l ≤ xk + sc ≤ u,
‖sc‖∞ ≤ 
k , and
Q(sn)− Q(sc) ≥ βq[Q(sn)− Q(sdect )];
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1.7. IF ( f (xk + sc) ≥ P(F k, ϕ(xk + sc))) OR
(Poptred (Hk, xk, sc) ≥ κϕ(xk) AND θ supk < γm),

1.7.1. 
k← αR min{
k, ‖sc‖∞}; (reduce 
)
1.8. ELSE

1.8.1. ρk← Aoptred(xk, sc)/P
opt
red (Hk, xk, sc);

1.8.2. IF Poptred (Hk, xk, sc) < κϕ(xk) OR ρk < γr ,

1.8.2.1. Fk+1←F k ; (include ( f (xk), ϕ(xk)) in F)
1.8.3. ELSE Fk+1← Fk ;
1.8.4. Accept the trial point:

xk+1← xk + sc;
ρ̃k← Ared(xk, sc, θ

sup

k )/Pred(Hk, xk, sc, θ
sup

k );


k+1←
{
max{αR min{
k, ‖sc‖∞},
min}, if ρ̃k < γg,

max{αA
k,
min}, if ρ̃k ≥ η;
Determine Hk+1;
k← k + 1;

1.9. IF 
k < 
rest AND ϕ(xk) > εh

2
k ,

1.9.1. Compute a restoration step sr so that
(ϕ(xk + sr ) < εh
2k AND f (xk + sr ) < P(F k, ϕ(xk + sr )))
OR xk + sr is ϕ-stationary but infeasible;

1.9.2. Fk+1←F k ; (include ( f (xk), ϕ(xk)) in F)
1.9.3. Accept the new point:

xk+1← xk + sr ;

k+1← max{βr
rest ,
min};
Determine Hk+1;
k← k + 1;

The constants used here must satisfy 0 < βd ≤ 1, 0 < βm < 1, 0 < βq < 1,

κ > 0, 0 < γr < γg < η < 1, γn > 0, γt > 0, 0 < 
min < 
rest ,

0 < αR < 1, αA ≥ 1, εh > 0 and βr > 0. Parameters κ , γn , γt , 
min, 
rest , εh
and βr are problem dependent and must be chosen according with some measure

of problem data. Reasonable values for the remaining parameters might be

βd = 0.8, βm = 0.9, βq = 0.9, γr = 0.01, γg = 0.05, η = 0.9, αR = 0.25 and
αA = 2.5. The constant η should not be confused with the parameter η defined
in (12).

Comp. Appl. Math., Vol. 26, N. 3, 2007



FRANCISCO A.M. GOMES 353

Algorithm 1 seems to be somewhat inefficient, since it requires the solution

of several quadratic programming problems per iteration. However, as it will

become clear at section 7, only steps 1.3.3 and 1.6 usually require the solution of

a quadratic problem. Besides, we do not need to solve these problems exactly,

so the algorithm is competitive with modern nonlinear programming codes.

The restoration step is called whenever the trust region radius becomes too

small compared toϕ(xk). In this case, we need to find a point that is less infeasible
than xk and that is also acceptable for the piecewise linear merit function. To
ensure that such a point can always be obtained, it would be necessary to use an

algorithm for global minimization. Of course, this alternative is unaffordable,

so the restoration is computed in practice by an algorithm for solving the box

constrained problem (17). The only drawback of this approach is that we cannot

guarantee that a stationary but infeasible point would not be reached. Therefore,

we say that the main algorithm fails if this happens.

If xk is feasible, then the condition P
opt
red < κϕ(xk) is never satisfied, since

Poptred is always greater or equal to zero. Besides, the condition A
opt
red < γr P

opt
red

is also never satisfied when xk is feasible and f (xk + sc) < P(F k, ϕ(xk + sc)).
Therefore, all of the points in Fk are infeasible, although F k may contain a
feasible point. This result is very important for two reasons. First, it prevents the

optimal solution of problem 1 from being refused by the algorithm. Moreover,

it also assures that the algorithm is well defined, as stated in the next section.

4 The algorithm is well defined

An iteration of algorithm 1 ends only when a new point xk+s is below the piece-
wise linear function P(F k, ϕ(xk + s)), besides satisfying some other conditions
stated at steps 1.7 or 1.9.1. While such a point is not found, the trust region ra-

dius is reduced and the iteration is repeated. It is not obvious that an acceptable

point will be obtained, as we may generate a sequence of points that are always

rejected by the algorithm. In this section, we prove that the algorithm is well

defined, i.e. a new iterate xk+1 can always be obtained unless the algorithm stops
by finding a ϕ-stationary but infeasible point or a feasible but not regular point.1

In the following lemma, we consider the case where xk is infeasible.
1We say that a point is regular if the linear independence constraint qualification (LICQ) holds.
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Lemma 1. If xk is not ϕ-stationary, then after a finite number of repetitions of
steps 1.1 to 1.9, a new iterate xk+1 is obtained by the algorithm.

Proof. At each iteration k, if f (xk + sc) < P(F k, ϕ(xk + sc)) and one of the
conditions

Poptred (Hk, xk, sc) ≤ κϕ(xk) or Ared(xk, sc, θ
sup

k ) ≥ γg Pred(Hk, xk, sc, θ supk )

(for some θ
sup

k ≥ γm) is satisfied, then xk + sc is accepted and we move to
iteration k + 1. Otherwise, 
k is reduced and after some unfruitful steps, 
k <

rest and ϕ(xk) > εh


2
k , so a restoration is called.

Suppose that a ϕ-stationary but infeasible point is never reached (otherwise

the algorithm fails). As the restoration generates a sequence of steps {s j } con-
verging to feasibility, and since F k does not include feasible points (because xk
is infeasible and no feasible point is included in Fk), there must exist an iterate
xk + sr that satisfies ϕ(xk + sr ) < min{ϕ1, εh
2k}, so we can proceed to the next
iteration. �

Now, in order to prove that the algorithm is also well defined when xk is
feasible, we need to make the following assumptions.

A1. f (x) and Ci (x) are twice-continuously differentiable functions of x .

A2. The sequence of Hessian approximations {Hk} is bounded.

As a consequence of A1 and A2, the difference between the actual and the

predicted reduction of the merit function is proportional to 
2, so the step is

accepted for a sufficiently small trust region radius, as stated in the following

lemma.

Lemma 2. Suppose that A1 and A2 hold and that xk is feasible and regular
for problem 1 but the KKT conditions do not hold. Then, after a finite number
of trust region reductions, the algorithm finds a new point xk + sc that satisfies
f (xk+sc) < P(F k, ϕ(xk+sc)) and Ared(xk, sc, θ supk ) ≥ γg Pred(Hk, xk, sc, θ supk )
for some θ supk ≥ γm .
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Proof. Since xk is feasible, sn = 0. Supposing that xk is regular and non-
stationary, there must exist a vector dt �= 0 satisfying

l ≤ xk + dt ≤ u, A(xk)dt = 0, and dTt ∇ f (xk) < 0.
Let us define, for all 
 > 0,

p(
) = t (
)dt ,
where

t (
) = max{t > 0 | [xk, xk + tdt ] ⊂ �, and ‖tdt‖∞ ≤ 
}. (20)

Clearly, x + dt ∈ �, so we have that ‖t (
)dt‖∞ = 
 whenever 
 ≤ ‖dt‖∞.
Define, in this case,

c = −1
2
dTt ∇ f (xk)/‖dt‖∞ = −

1

2
dTt ∇Q(0)/‖dt‖∞ > 0.

Since Q(sdect ) ≤ Q(p(
)), by elementary properties of one-dimensional
quadratics, there exists 
1 ∈ (0, ‖dt‖∞] such that, for all 
 ∈ (0,
1),

Q(0)− Q(sdect ) ≥ −1
2
dTt ∇Q(0)t (
) = −

1

2

dTt ∇Q(0)
‖dt‖∞ 
 = c
.

Moreover, since xk is feasible and Asn = 0, we have that M(xk, 0) =
M(xk, sc) = 0, so

P f sbred (xk, sc) = 0, and

Poptred (Hk, xk, sc(
)) = Q(0)− Q(sc(
))
≥ βq

[
Q(0)− Q(sdect )

] ≥ βqc
.
(21)

Once xk is feasible, (ϕ(xk), f (xk)) is the first pair in F k . Thus, there exists

2 ∈ (0,
1] such that, for 
 < 
2, we need to consider only the portion of

P(F k, ϕ) defined on the interval [0, ϕ2]. This linear function may be rewritten
so the condition

f (xk + sc) < P(F k, ϕ(xk + sc))
is equivalent to

Ared(xk, sc(
), θ 1) ≥ η1Pred(Hk, xk, sc(
), θ1), (22)
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where,

Pred(Hk, xk, sc(
), θ1) = θ1Poptred (Hk, xk, sc(
)) ≥ βqc
θ1, (23)

Ared(xk, sc(
), θ 1) = θ1
[
f (xk)− f (xk + sc(
))

]+ (1− θ1)ϕ(xk + sc(
))
and θ1 > 0 is given by (9).

Now, by A1, A2 and the definition of Pred , we have

Ared(xk, sc, θ) = Pred(Hk, sk, sc, θ)+ c1‖sc‖2. (24)

So, using (23) and (24) we deduce that∣∣∣∣ Ared(
)Pred(
)
− 1

∣∣∣∣ ≤ |c1|

βqcθ1

. (25)

Thus, for 
 < min
{
(1 − η1)βqcθ1/|c1|,
2

} = 
3, the inequality (22) nec-
essarily takes place.

Now, using the fact that θ
sup

k = 1 for xk feasible and replacing θ1 by 1 in (25),
we can conclude that, for


 < min
{
(1− γg)βqc/|c1|,
3

} = 
4, (26)

the condition Ared(xk, sc(
), θ
sup

k ) ≥ γg Pred(Hk, xk, sc(
), θ
sup

k ) is also satis-

fied and the step is accepted. �

5 The algorithm converges to a feasible point

As mentioned in the last section, our algorithm can stop if a ϕ-stationary but

infeasible point is found. Naturally, this unexpected behavior of the algorithm

makes somewhat pretentious the title of this section.

Formally, what we will prove is that, supposing that a ϕ-stationary but infea-

sible point is never reached and that the restoration always succeeds, an infinite

sequence of iterates converges to feasibility.

In the proofs of the lemmas presented here, we will suppose that A1 and the

following assumption are satisfied.

A3. The sequence of iterates {xk} lies within a closed and bounded domain �0.
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This requirement is easy to fulfill, as we usually can define finite lower and

upper limits for the variables. Besides, as mentioned in [6, p. 730], assumptions

A1 and A3 together ensure that, for all k,

f min ≤ f (xk) ≤ f max and 0 ≤ ϕ(xk) ≤ ϕmax

for some constants f min, f max and ϕmax > 0. Our analysis will be based on

the fact that the rectangle A0 = [0, ϕmax] × [ f min, f max] is covered by a finite
number of rectangles with area greater than a small constant. Therefore, each

timewe expand the forbidden region (see fig. 2) by adding to it a small rectangle,

we drive the iterates towards feasibility.

Let us start investigating what happens to ϕ(x) when an infinite sequence of
iterates is added to F , following the skeleton of Lemma 15.5.2 of [6].

Lemma 3. Suppose that A1 and A3 hold and that {ki } is any infinite subse-
quence at which the iterate xki is added to F . Then

lim
i→∞ϕ(xki ) = 0.

Proof. Let us suppose, for the purpose of obtaining a contradiction, that there

exists an infinite subsequence {k j } ⊆ {ki } for which
ϕ(xk j ) ≥ ε, (27)

where ε > 0.

At iteration k j , the (ϕ, f )-pair associate with xk j is included in F at positionm,
which means that ϕm−1 ≤ ϕk j (≡ ϕm) ≤ ϕm+1 and fm−1 ≥ fk j (≡ fm) ≥ fm+1.
Thus, as long as the pair (ϕk j , fk j ) remains in F , no other (ϕ, f )-pair is accepted
within the rectangle

rm =
{
(ϕ, f ) | ϕm ≤ ϕ ≤ ϕm, f m ≤ f ≤ fm

}
.

Notice that, by (10), (11) and (27), the area of this rectangle is, at least,

(ϕm − ϕm)( fm − f m) ≥ (ϕm − ϕm)2 ≥ (γ f ϕk j )2 ≥ γ 2f ε2.
Assume now that (ϕk j , fk j ) is excluded from F by another pair (ϕkl , fkl ),

included in F at an iteration kl > k j . This case is illustrated in Fig. 4. Notice
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that (ϕkl , fkl ) cannot fall in regions I and V since, in this case, (ϕk j , fk j ) will not
be excluded from F . It can be easily verified that the worst case occurs when
(ϕkl , fkl ) lies on p1(ϕ) or p2(ϕ).
Suppose (ϕkl , fkl ) lies on p2(ϕ), as depicted inFig. 4. In this case, the rectangle

rm will be entirely above p2, the line that connects (ϕkl , f kl ) to (ϕm+1, f m+1).
Since p2 will be included in the new piecewise linear function P(F), no point
within rm can ever be reached by a new iterate.
The same idea can be applied in the case (ϕkl , fkl ) lies on p1(ϕ). Therefore,

once (ϕk j , fk j ) is included in F , rm will always be above P(F). Since the area
of this rectangle is at least γ 2f ε

2 and the set A0 is completely covered by at most
Surf(A0)/[γ 2f ε2] of such rectangles, it is impossible for an infinite subsequence
of {ki } to satisfy (27), and the conclusion follows. �

Figure 4 – Adding a new iterate that excludes (ϕk j , fk j ) from F .

Finally, we are going to consider the case where no point is added to Fk for k
sufficiently large.

Lemma 4. Suppose that assumptions A1 and A3 hold. Suppose also that, for
all k > k0, xk is never included in Fk . Then,

lim
k→∞ ϕ(xk) = 0. (28)
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Proof. Since xk is not included in Fk , no restorations are made and both condi-
tions stated at step 1.8.2 of algorithm 1 are never satisfied for k > k0. Therefore,
we have

f (xk)− f (xk+1) ≥ γr Poptred ≥ γrκϕ(xk) > 0, (29)

for all k > k0, which means that the objective function always decrease between
infeasible iterations. Since A1 and A3 imply f min ≤ f (xk) ≤ f max, we must
have

lim
k→∞

f (xk)− f (xk+1) = 0. (30)

Then, (28) follows from (29) and (30). �

6 The algorithm finds a critical point

Finally, we are able to prove the convergence of the algorithm to a stationary

point for (1). In order to do that, we will need to make one additional assumption

on the choice of the normal step sn .

A4. There exist κn, kN > 0 such that, if {xki } is a subsequence of iterates that
converges to a feasible point, the choice of sn at step 1.3.3 of algorithm 1
satisfies

‖sn(xk,
k)‖ ≤ κn‖C(xk)‖2
for ki > kN .

This requirement is also easy to fulfill since it only applies when the infeasi-

bility is small and, in this case, it is reasonable to suppose that the normal step

will also be small.

In the following lemma, derived from Lemma 6.1 of [10], we show that in

the neighborhood of a feasible, regular and non-stationary point, the directional

derivative of the quadratic model (8) along dt is bounded away from zero.

Lemma 5. Suppose that A2 and A4 hold and that {xki } is an infinite subse-
quence that converges to the feasible and regular point x∗ ∈ �, which is not
stationary for (1). Then there exists k1, c1 > 0 such that

−∇Q(sn(x,
))T dt(H, x,
) ≥ c1 (31)
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for all x ∈ {xki | k ≥ k1}. Moreover, ‖dt(H, x,
)‖ is bounded and bounded
away from zero for all x ∈ {xki | k ≥ k1}.

Proof. For all x ∈ {xki }, we have that

dt(H, x,
) = Px(−γt∇Q(sn(x,
))) = Px(−γt [Hsn(x,
)+∇ f (x)]).

By the contractive property of the orthogonal projections,

‖Px(−γt [Hsn(x,
)+∇ f (x)])− Px(−γt∇ f (x))‖2 ≤ γt‖H‖2‖sn(x,
)‖2.

So, by A2 and A4, we have that

‖dt(H, x,
)− Px(−γt∇ f (x))‖2 ≤ γ1‖C(x)‖ (32)

for k > kN . By the continuity of ∇ f (x) and the fact that {xki } converges, we
deduce that

‖∇ f (xki )T Px (−γt∇ f (xki ))−∇ f (xki )T dt (Hki , xki ,
ki )‖2 ≤ γ2‖C(xki )‖. (33)

Notice that Px(−γt∇ f (xki )) is the solution of

minimize ‖ − γt∇ f (xki )− z‖22
subject to A(xki )z = 0

l ≤ xki + sn + z ≤ u.

Now, define Px∗(−γt∇ f (x∗)) as the solution of

minimize ‖ − γt∇ f (x∗)− z‖22
subject to A(x∗)z = 0 (34)

l ≤ x∗ + z ≤ u.

Since x∗ is regular but is not a stationary point for (1), it follows that z = 0
is not a solution for (34). So, Px∗(−γt∇ f (x∗)) �= 0. Moreover, since z = 0 is
feasible for (34), we have that

‖ − γt∇ f (x∗)− Px∗(−γt∇ f (x∗))‖22 < ‖ − γt∇ f (x∗)‖22,
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which implies that ∇ f (x∗)T Px∗(−γt∇ f (x∗)) < 0.
Using the fact that Px(−γt∇ f (x)) is a continuous function of x and sn for all

regular x (see [10]), we can define c2, c3, c4 > 0 and k2 ∈ N such that, for all
x ∈ {xki | k ≥ k2}, we have

c2 ≤ ‖Px(−γt∇ f (x))‖ ≤ c3 and ∇ f (x)T Px(−γt∇ f (x)) ≤ −c4. (35)

Now, from (32), (33) and (35), the continuity of C(x) and the feasibility of
x∗, there exists k3 ≥ max{k2, kN } such that, whenever x ∈ {xki | k ≥ k3},

c2
2
≤ ‖dt(H, x,
)‖ ≤ 2c3 and ∇ f (x)T dt(H, x,
) ≤ −c4

2
.

Therefore, ‖dt(H, x,
)‖ is bounded and bounded away from zero for all

x ∈ {xki | k ≥ k3}.
Finally, since dt ∈ N (A(x)), assumptions A2 and A4 hold, and ‖dt‖ is

bounded, we have that, for all x ∈ {xki | k ≥ k3},

∇Q(sn)T dt = ∇ f (x)T dt + dTt Hsn ≤ −
c4
2
+ γ3‖C(x)‖,

where γ3 > 0. Then, (31) follows defining c1 = c4/4 and choosing k1 > k3
such that ‖C(x)‖ ≤ c4/(4γ3). �

Using Lemma 5, we state in the next lemma that, in the neighborhood of a

feasible, regular and non-stationary point, the decrease of the quadratic model

(8) is proportional to the trust region radius 
.

Lemma 6. Suppose that A2 and A4 hold and that {xki } is an infinite subse-
quence that converges to the feasible and regular point x∗ ∈ �, which is not
stationary for (1). Then there exists c2, k2 > 0 and 
1 ∈ (0,
min) such that

Q(x, sn(x,
))− Q(x, sc)) ≥ c2 min{
,
1} (36)

for all x ∈ {xki | k ≥ k2}.

Proof. See Lemma 6.2 of [10]. �

Now, we are able to present a crucial lemma, derived from Lemma 6.3 of [10],

that relates Poptred to the trust region radius in the neighborhood of a feasible point.
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Lemma 7. Suppose that A1, A2 and A4 hold and that {xki } is an infinite
subsequence that converges to the feasible and regular point x∗ ∈ �, which is
not stationary for (1). Then there exists ε, c3, k3 > 0 and 
1 ∈ (0,
min) such
that, for ki > k3, if

ϕ(xki ) ≤ ε
2, (37)

we have that

Poptred (xki , sc) = Q(xki , 0)− Q(xki , sc) ≥ c3 min{
,
1}. (38)

Proof. By Lemma 6, assumptions A1 and A4 and the convergence of {xki }, we
have that

Q(0)−Q(sc) ≥ Q(sn)−Q(sc)−|Q(0)−Q(sn)| ≥ c2 min{
,
1}−γ4‖C(x)‖

for all x ∈ {xki | k ≥ k2}, where c2, k2 and 
1 are defined as in Lemma 6 and
γ4 > 0. Therefore, (38) follows if we choose c3 < c2 and k3 ≥ k2 such that
ε ≤ α2(c2 − c3)2/(2γ 24 ), where α = min{1,
1/
}. �

We next examine what happens if
 is bounded away from zero and an infinite

subsequence of points is added to F .

Lemma 8. Suppose that A1, A2, A3 and A4 hold and that {xk j } is an infinite
subsequence atwhich xk j is added to F . Suppose furthermore that the limit points
of this sequence are feasible and regular, that the restoration always terminates
successfully and that
k j ≥ 
2, where
2 is a positive scalar. Then there exists
a limit point of this sequence that is a feasible, regular and stationary point
for (1).

Proof. From assumptionA3, we know that {xk j } has a convergent subsequence,
say {xki }. Let us suppose that the limit point of this subsequence is not stationary
for (1).

From Lemma 3 we know that there exists k5 ∈ N such that, for ki > k5,

ϕ(xki ) < εh

2
2.
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Thus, a restoration is never called for ki > k5. So, the hypothesis that xki
is added to Fki implies that Ared(xki , sc, θ

sup

ki ) ≥ γg Pred(xki , sc, θ supki ) for some
θ
sup

ki ≥ γm , and that one of the inequalities stated at step 1.8.2 of the algorithm is
satisfied at iteration ki .
Suppose, for the purpose of obtaining a contradiction, that {xki } converges to

a point that is not stationary for (1). So, from Lemma 3 and (38), there exists

k6 ≥ k5 such that ϕ(xki ) < ε
2ki and

Poptred (xki , sc) ≥ c3 min{
1,
2},
for all ki > k6.
Using Lemma 3 again, we can deduce that there exists k7 ≥ k6 such that

ϕ(xki ) < (c3/κ)min{
1,
2} and the condition Poptred < κϕ(xk) is never satisfied
for ki > k7.
Therefore, ρk < γr must hold. To show that this is not possible, let us write

the inequality Ared(xki , sc, θ
sup

ki ) ≥ γg Pred(xki , sc, θ supki ), as
θ
sup

ki A
opt
red(xki , sc)+ (1− θ supki )(ϕ(xki )− ϕ(xki + sc))

≥ γgθ supki Poptred (xki , sc)+ γg(1− θ supki )P f sbred (xki , sc).

Using the hypothesis that ρk < γr and the fact that P
f sb
red (xki , sc) ≥ 0, we have

θ
sup

ki γr P
opt
red (xki , sc)+ (1− θ supki )(ϕ(xk)− ϕ(xk + sc)) ≥ γgθ supki Poptred (xki , sc).

Then, taking k4 > k3 (defined in Lemma 7), we deduce from (38) that, for
ki > k4,

(1− θ supki )(ϕ(xki )− ϕ(xki + sc)) ≥ (γg − γr )θ supki c3 min{
1,
2}.
But, since, γg > γr and limi→∞ ϕki = 0, we must have

lim
i→∞ θ

sup

ki = 0,

which contradicts the fact that θ
sup

ki ≥ γm . Therefore, {xki } must converge to a
stationary point for (1). �

Supposing again that 
 is bounded away from zero, we will now complete

our analysis investigating what happens when no iterates are added to F for k
sufficiently large.
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Lemma 9. Suppose that A1, A2, A3 and A4 hold, that xk is always accepted
but Fk remains unchanged for k > k5 and that 
k ≥ 
3, for some positive 
3.
Suppose also that the limit points of the infinite sequence {xk} are feasible and
regular. Then there exists a limit point of {xk} that is a feasible, regular and
stationary point of (1).

Proof. Assumption A3 implies that there exists a convergent subsequence

{xki }. If the limit point of this subsequence is not stationary for (1), then from
Lemma 7, we have

Poptred ≥ c3 min{
3,
1} (39)

for all ki > max{k5, k3}. Moreover, since xki is always accepted and Fk is not
changed, we deduce, from step 1.8.2 of the algorithm, that ρk ≥ γr . Therefore,

f (xki )− f (xki + sc) ≥ γr Poptred . (40)

From (39) and (40) we conclude that f (xki )− f (xki + sc) ≥ γr c3 min{
1,
3}
for all ki sufficiently large, which contradicts the compactness assumption A3.
Thus, the limit point of {xki } must be stationary. �

In the last part of this section, we will discuss the behavior of the algorithm

when
→ 0. Wewill start showing that the predicted reduction of the quadratic

model is sufficiently large when 
 is small.

Lemma 10. Suppose that A2 and A4 hold and that {xki } is an infinite subse-
quence that converges to the feasible and regular point x∗ ∈ �, which is not
stationary for (1). Suppose also that ϕk satisfies (37) and that


 < min
{
c3/(κε),
1

} = 
5 (41)

for ki > k6, where c3, ε and
1 are defined as in Lemma 7. Then P
opt
red > κϕ(xki ).

Proof. Suppose, for the purpose of obtaining a contradiction, that Poptred ≤
κϕ(xk) for some ki > k6. Then, from (38), we have

c3 min{
,
1} ≤ Poptred ≤ κϕ(xki ) ≤ κε
2,
which is impossible because of (41). Thus Poptred > κϕ(xki ) must hold. �
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The purpose of the next four Lemmas is to prove that there exists a sufficiently

small trust region radius so the step is always accepted and 
 is not reduced

further at step 1.7.1 of algorithm 1.

The first lemma shows the relation between the predicted reduction of the

infeasibility and 
.

Lemma 11. Suppose that assumption A1 holds and that xk is not ϕ-stationary.
Then there exists 
6, c4 > 0 such that

P f sbred (xk, sc) ≥ c4
k, (42)

if 
k ∈ (0,
6).

Proof. The proof of this Lemma is based on the same arguments used to obtain

(21). However, here we deal with the reduction of the infeasibility, instead of

the reduction of the objective function, so some modifications need to be done.

Firstly, wemust notice that dn �= 0, sincewe suppose that xk is notϕ-stationary.
Thus, we can redefine (20) as

t (
) = max {
t > 0 | [xk, xk + tdn] ∈ � and ‖tdn‖ ≤ βd


}
.

Now, using the fact that for 
 sufficiently small we have ‖t (
)dn‖ = βd
 and
defining

c = −1
2
dTn ∇ϕ(xk)/‖dn‖ > 0,

there must exist 
6 ∈ (0, ‖dn‖] such that

M(0)− M(t (
)) ≥ −1
2
dTn ∇ϕ(xk)t (
) = c‖dn‖t (
) = βdc


for all 
 ∈ (0,
6). Therefore, for the normal step sn computed at step 1.3.3 of
algorithm 1, we have

M(0)− M(sn) ≥ βdβmc
k .
But, since A(xk)sc = A(xk)sn , we deduce from (4) that

P f sbred (xk, sc) ≥ βdβmc
k
and the desired inequality follows. �
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In order to prove that xk + sc will be accepted, we need to consider how ϕ and
f are computed. Let us begin using the previous lemma to show that, for a small

, ϕi , defined in (10), will depend on the predicted reduction of the infeasibility.

Lemma 12. Suppose that A1 holds and that xk is not ϕ-stationary. Then there
exists 
7 > 0 such that

γc P
f sb
red (xk, sc) > γ f ϕ(xk),

if ϕ(xk) < εh

2
k and 
k ∈ (0,
7).

Proof. Lemma 11 ensures that

γc

γ f
P f sbred (xk, sc) ≥

γc

γ f
c4
k > 0.

Defining 
7 = min
{
γcc4/(γ f εh),
6

}
, where 
6 is given in Lemma 11, we

have that
γc

γ f
P f sbred (xk, sc) ≥ εh
7
 > εh


2 ≥ ϕ(xk),
for all 
 ∈ (0,
7), so the desired result follows. �
Using Lemma 11 again, we can also show that f , defined in (11), will depend

on Poptred if 
 is sufficiently small.

Lemma 13. Suppose that A1, A2 and A4 hold, that {xki } is an infinite sub-
sequence that converges to the feasible and regular point x∗ ∈ �, which is not
stationary for (1), and that ϕk is given by (10). Then there exists 
8 > 0 such
that

γ f P
opt
red (Hk, xk, sc) ≥ (ϕ(xk)− ϕk),

if ϕ(xk) < min{εh, ε}
2k and 
k ∈ (0,
8), where ε is defined as in Lemma 7.

Proof. From Lemma 7 we deduce that, if 
k ∈ (0,
1], then
γ f P

opt
red (Hk, xk, sc) ≥ γ f c3
k .

Now, defining 
8 = min
{
γ f c3/εh,
1

}
, we have

γ f P
opt
red (Hk, xk, sc) ≥ εh
8
 ≥ εh
2k ≥ ϕ(xk) ≥ (ϕ(xk)− ϕk)

and the desired conclusion follows. �
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Let us prove now that, for a infeasible x , the ratio between the actual and the
predicted reduction of the merit function is sufficiently large if 
 is small, not

matter how the penalty parameter θ is chosen.

Lemma 14. Suppose that A1, A2 and A4 hold, that θ ∈ [0, 1] and γ ∈ (0, 1)
are given parameters and that {xki } is an infinite subsequence that converges to
the feasible and regular point x∗ ∈ �, which is not stationary for (1). Then there
exists 
9 > 0 such that, for ki sufficiently large,

Ared(xki , sc, θ) ≥ γ Pred(Hki , xki , sc, θ)
for all 
ki ∈ (0,
9), if xki is infeasible.

Proof. Since limi→∞ ϕ(xki ) = 0 and, at the beginning of iteration k, the trust
region radius satisfies 
ki ≥ 
min, there must exist k7 ≥ k3 (defined in Lem-
ma 7) such that, for ki > k7, the condition ϕ(xki ) ≤ ε
2ki is satisfied, so (38)
holds. Besides, since xki is infeasible, (42) also holds if we take 
9 ≤ 
6

(defined in Lemma 11). Therefore, from the definition of Pred , we have that

Pred(Hki , xki , sc, θ) ≥ θc3 min{
ki ,
1} + (1− θ)c4
ki .
where 
1, c3 and c4 are defined as in Lemmas 7 and Lemma 11.
For any θ ∈ [0, 1], the above inequality implies that

Pred(Hki , xki , sc, θ) ≥ min{
ki ,
1}min{c3, c4} > 0.
But, from A1 and A4, we also have that

|Ared(
ki )− Pred(
ki )| ≤ c5
2ki .
for some c5 > 0. From the last two inequalities, we deduce that, for 
ki ≤ 
1,

|Ared(
ki )− Pred(
ki )|
Pred(
ki )

=
∣∣∣∣ Ared(
ki )Pred(
ki )

− 1
∣∣∣∣ ≤ c5

min{c3, c4}
k . (43)

Therefore, defining 
9 = min{(1 − γ )min{c3, c4}/c5,
1,
6}, we obtain the
required result. �

In our last lemma, we will use the previous results to prove that, if 
 → 0,

there is no infinite subsequence that converges to a point that is not stationary

for (1).
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Lemma 15. Suppose that A1, A2, A3 and A4 hold. Suppose also that the limit
points of the infinite sequence {xk} are feasible and regular and that limk→∞
k
= 0. Then there exists a limit point of {xk} that is a stationary point of (1).

Proof. AssumptionA3 implies that there exists a convergent subsequence {xki }.
Let us suppose, for the purpose of obtaining a contradiction, that the limit point

of this subsequence is not stationary for (1).

Now, we need to consider separately two mutually exclusive situations. First,

let us suppose that xki is feasible. In this case, Lemma 2 assures that, for
 < 
4

(defined in (26)), the step is accepted and the trust region radius need not to be

reduced further.

On the other hand, if xki is not ϕ-stationary, Lemmas 12 and 13 assure that, for

ki ≤ min{
7,
8} = 
10, we have P f sbred ≥ γ f ϕi/γc and Poptred ≥ (ϕi −ϕi )/γ f ,
so the parameter η used in (12) is given by

η = ( f i−1 − f i )γc P f sbred + (ϕi − ϕi−1)γ f Poptred

( f i−1 − f i )P f sbred + (ϕi − ϕi−1)Poptred

,

where i is defined in such a manner that ϕi−1 ≤ ϕ(x+) ≤ ϕi . Thus, 0 < η < 1

and f (xki + sc) > P(F ki , ϕ(xki + sc)) is equivalent to (12).
Now, using Lemmas 10 and 14, we can deduce that, for 
ki < 
9, the step is

always accepted. Consequently,
ki ≥ αR min{
4,
9,
10}, which contradicts
the hypothesis that limk→∞
k = 0, so we conclude that the limit point of the
subsequence {xki } is a stationary point of (1). �

Finally, let us state a theorem that puts together all of the results presented

so far.

Theorem 1. Suppose that A1, A2, A3 and A4 hold and that {xk} is an infinite
sequence generated by Algorithm 1. Then either the restoration converges to
a ϕ-stationary but infeasible point of (1), or limk→∞ ϕ(xk) = 0. Moreover,
if the restoration always succeeds and all of the limit points of {xk} are regu-
lar, there exists a limit point x∗ that is a regular and stationary point for (1).
In particular, if all of the ϕ-stationary points are feasible and regular, then there
exists a subsequence of {xk} that converges to a feasible, regular and stationary
point of (1).
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Proof. This result is a direct consequence of Lemmas 3, 4, 8, 9 and 15. �

7 Numerical experience

The description of some steps of Algorithm 1 was intentionally left vague to

suggest the reader that several alternative implementations are available. In

this section, we describe one of such possible implementations and present the

numerical results obtained by applying the algorithm to some problems from

the CUTEr collection [13].

7.1 Algorithmic details

The computational effort of algorithm 1 may be decomposed into three main

parts. The first is related to the reduction of the infeasibility and includes steps

1.3.1 to 1.3.3. The aim of the second part, that comprises steps 1.4 to 1.6, is

to improve the objective function. Finally, a restoration is called, at step 1.9.1,

if the infeasibility needs to be drastically reduced. Each one of these parts is

briefly described below.

Taking a closer look at steps 1.3.1 and 1.3.2, onemay notice that vectors dn and
sdecn can be easily determined, since the first involves computing a projection on

a box and the second requires only the solution of a one-dimensional problem.

The normal step, sn , can be obtained by solving the bound-constrained least
squares problem (18), replacing the word reduce by minimize. In our experi-
ments, the Quacon package [2] was used for this purpose. The computation of

sn is declared successful when both conditions

M(xk, 0)− M(xk, sn) ≥ βm
[
M(xk, 0)− M(xk, sdecn )

]
and

‖gp(sn)‖2 ≤ 0.001‖gp(sdecn )‖2
are satisfied, where βm = 0.9 and gp is the projected gradient of the quadratic
functionminimized. Otherwise, the limit of max{1000, 6n} iterations is reached.
Vector sc is computed by applying the MINOS 5.4 [19] solver to the quadratic

problem (19), stopping the algorithm when both

‖gp(sc)‖∞ ≤ 10−6
{‖λ‖1√

m
, 1

}
, (44)
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and condition (36) are satisfied, where, again, gp is the projected gradient and λ
is the vector of Lagrange multipliers. A limit of max{1000, 3n} iterations also
applies.

Vector dt is obtained, at step 1.4, using the MINOS package to approximately
solve the problem

minimize
1

2
‖d + γt∇Q(sn)‖22

subject to A(xk)d = 0
l ≤ xk + sn + d ≤ u,

where γt = 0.001. Since dt is much more difficult to obtain than dn , we decided
to compute this vector only if sc fails to satisfy conditions (36) and (44). In this
case, after determining dn and sdect , sc is computed again.
To determine the restored point sr , successive normal steps were computed

until the conditions stated at step 1.9.1 were satisfied. A more sophisticated

restoration procedure could be devised, but this very simple scheme seemed to

be satisfactory.

In all of the experiments, exact Hessians were computed, using the Lagran-

ge multipliers supplied by MINOS as the approximate dual variables for prob-

lem (1).

Algorithm 1 terminates when ‖C(xk)‖∞ ≤ 10−6 and one of the conditions
1. ‖∇�(xk, λk)‖∞ ≤ εg max{1, ‖∇�(xtyp, λt yp)‖∞},
2. ‖sc‖∞ ≤ εx max{1, ‖xk‖∞}, or
3. P f sbred ≤ εs and Poptred ≤ εo (for three successive iterations),

is satisfied, where εg = 10−6, εx = 10−18, εs = εo = 10−8, and xtyp and λt yp are
typical primal and dual steps, determined at the first iterations of the algorithm.

The algorithm also stops if, after a restoration step, ∇ϕ(xk + s) ≤ 10−10. In
this case, it is more than likely that a ϕ-stationary but infeasible point was found.

The remaining parameters used are 
0 = 105, 
min = 10−5, γn = 1.0,

γt = 10−8, γr = 10−2, γg = 5.10−2, κ = 10−4, η = 0.9, αA = 2.5, αR = 0.25,
βd = 0.8, βq = 0.9, βr = 16.0, γs = 10−4, γ f = 10−6, γc = 10−3, γm = 10−4,

rest = 10−1 and εh = 102.
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7.2 Algorithm performance

To analyze the behavior of the algorithm just described, a set of 82 small to

medium-size problems was extracted from the CUTEr collection [13]. The

selected problems are presented in Tables 1, 2 and 3. The number of variables

of the original CUTEr problem is given by n, while s is the number of slack
variables required to convert the problem to the form shown in (1). The number

of constraints is given by m.

Problem n s m Problem n s m

AIRPORT 84 42 42 HS116 13 14 14

AVION2 49 15 LAKES 90 78

CORE1 65 18 59 LAUNCH 25 19 28

DEMBO7 16 20 20 MINMAXBD 5 20 20

DIXCHLNG 10 5 MRIBASIS 36 46 55

DIXCHLNV 100 50 PRODPL1 60 9 29

ERRINBAR 18 1 9 SWOPF 83 14 92

HIMMELBI 100 12 TENBARS3 18 8

HIMMELBK 24 14 TRUSPYR2 11 8 11

Table 1 – Selected tiny problems from the CUTEr collection.

The algorithm, hereafter called GMM99, was implemented in FORTRAN 77

and the executable programwas generated using the ifort 8.1 compiler, under the

Fedora 3 Linux operating system. To evaluate its performance, the algorithmwas

compared to Lancelot (release B), the well known nonlinear programming pack-

age distributed along with the Galahad library [14]. The tests were performed

on a Dell Optiplex GX280 computer, using an Intel Pentium 4, 540 processor,

with a clock speed of 3.2GHz, 1MB of cache memory, a 800MHz front side bus

and the Intel 915G chipset. The Lancelot default parameters were used, except

for the maximum number of iterations that was increased to 10000. Exact first

and second derivatives were computed by both methods.

The new algorithm failed to obtain a feasible point for problems LUBRIF,

ROTDISC and YORKNET. Besides, it also could not find an objective func-

tion as good as Lancelot for problems BRAINPC5, CATENARY, DIXCHLNG,
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Problem n s m Problem n s m

BRITGAS 450 360 LUBRIF 751 500

CATENARY 501 166 MADSSCHJ 201 398 398

DALLASL 906 667 MINC44 583 519

EIGENACO 110 55 NET3 464 127 521

EIGMINB 101 101 QPCBLEND 83 31 74

ELATTAR 7 102 109 SMBANK 117 64

EXPFITC 5 502 502 SMMPSF 720 23 263

HAIFAM 99 150 150 SSEBNLN 194 24 96

HALDMADS 6 42 42 STEENBRC 540 126

HET-Z 2 202 202 YORKNET 312 256

LEAKNET 156 153

Table 2 – Selected tiny problems from the CUTEr collection.

DTOC2, EG3, ELATTAR, NGONE and OPTCTRL3. These 11 occurrences

were classified as GMM99 failures.
Lancelot attained the limit of 10000 iterations without finding a feasible

point for problems CRESC132, DITTERT, LAUNCH, NET3, OPTMASS and

SMMPSF. For problems DRUGDIS, GAUSSELM, HALDMADS, HVY-

CRASH, READING3 and SINROSNB, the new algorithm found a better objec-

tive function. Finally, for problems BRIDGEND and ROTDISC Lancelot ex-

ceeded the limit of 3000 seconds of running time. These 14 cases were treated as

Lancelot failures.
Table 4 shows a summary of the results obtained comparing the new algo-

rithm to Lancelot. According to this table, GMM99 outperformed Lancelot in

47 problems (out of 82), while Lancelot achieved the best performance in 32

cases (including GMM99 failures). As mentioned above, both algorithms failed

to solve problem ROTDISC.

Table 5 shows the number of times GMM99 and Lancelot obtained the best

solution for each type of objective function and constraint. In this table, the

problems are also divided according to their size.

For this specific selection of problems, GMM99 performed better for problems

with a linear objective function, while Lancelot was the best option for solving

Comp. Appl. Math., Vol. 26, N. 3, 2007



FRANCISCO A.M. GOMES 373

Problem n s m Problem n s m

AUG2D 3280 1600 HYDROELL 1009 1008 1008

BIGBANK 2230 1112 JUNKTURN 5010 3500

BRAINPC5 6907 6900 MINPERM 1113 1033

BRIDGEND 2734 2727 MOSARQP1 2500 700 700

CLNLBEAM 3003 2000 NGONE 100 1273 1273

CORKSCRW 906 100 700 OET2 3 1002 1002

COSHFUN 6001 2000 2000 OPTCDEG3 1202 800

CRESC132 6 2654 2654 OPTCTRL3 4502 3000

DITTERT 1133 1034 OPTMASS 3010 501 2505

DRUGDIS 3004 2000 ORTHREGD 1003 500

DTOC2 5998 3996 READING1 4002 2000

DTOC4 2999 1998 READING3 4002 2001

EG3 1001 1999 2000 ROTDISC 905 361 1081

GAUSSELM 1240 2002 3017 SINROSNB 1000 999 999

GILBERT 1000 1 SSNLBEAM 3003 2000

GRIDNETD 3444 1764 SVANBERG 1000 1000 1000

HADAMARD 401 800 1010 TFI1 3 1001 1001

HAGER1 2001 1000 TRAINF 4008 2002

HAGER2 2001 1000 UBH1 9009 6000

HANGING 1800 1150 1150 ZAMB2 3966 1440

HELSBY 1408 1399 ZIGZAG 3004 500 2500

HVYCRASH 4004 3000

Table 3 – Selected medium-size problems from the CUTEr collection.

Compared performance GMM99 Lancelot

Almost indistinguishable 2 2

From 1.01 to 2 times better 2 5

From 2 to 10 times better 18 12

From 10 to 100 times better 10 3

More than 100 times better 4 2

Failures 11 14

Table 4 – Comparison between GMM99 and Lancelot.
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problems with a quadratic function and nonlinear constraints. These results are

probably related to the fact that MINOS was used to compute the tangential step

in GMM99. In general, GMM99 had a slightly better performance.

Objective Constraint
Algorithm

Problem size
Total

type type tiny small medium

Linear Nonlinear
Lancelot 0 3 2 5

GMM99 9 8 8 25

Quadratic

Linear
Lancelot 0 0 3 3

GMM99 0 1 1 2

Nonlinear
Lancelot 3 2 10 15

GMM99 2 1 3 6

Nonlinear

Linear
Lancelot 0 0 2 2

GMM99 2 3 2 7

Nonlinear
Lancelot 0 1 6 7

GMM99 1 1 5 7

Table 5 –Number of timesGMM99 andLancelot outperformed one another as a function

of problem type.

The new algorithm was also compared with GMM, the standard trust-region

SQP method presented in [10]. The results are shown in Tables 6 and 7.

Compared performance GMM99 GMM

Almost indistinguishable 15 15

From 1.01 to 2 times better 18 12

From 2 to 10 times better 9 3

From 10 to 100 times better 3 1

Failures 9 15

Table 6 – Comparison between GMM99 and GMM.

The GMM algorithm was not able to find a feasible solution for problems

CATENARY, CRESC132, LAKES, LUBRIF, ROTDISC and STEENBRC.

Moreover, the objective function at the solution was worse than the value ob-

tained by GMM99 for problems AUG2D, COSHFUN, EIGMINB, HAGER1,
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HAGER2, HIMMELBI, NGONE and SSNLBEAM. For the OPTCTRL3 prob-

lem, the algorithm found a solution too far from the one supplied by Lancelot.

These problems were classified as GMM failures.
The 9 GMM99 failures cited in Table 6 include problems LUBRIF, ROTDISC

and YORKNET, for which a feasible point was not found, problem OPTC-

TRL3, because Lancelot obtained a much better solution, and also problems

BRAINPC5, ELATTAR, GAUSSELM, HVYCRASH and SINROSNB, for

which GMM has found a lower objective function.

Naturally, the definition of failure used here is arguable, since the fact that an

algorithm has found a better solution does not imply that the other method failed

to find a local optimum. Besides, problems CATENARY,DIXCHLNG,DTOC2,

EG3 and NGONE, classified as GMM99 failures when comparing this algorithm

to Lancelot, are not considered as failures in Table 6, since GMM was not able

to find a better solution in all of these cases. Even though, we decided to use

the term failure to stress that an algorithm that finds a lower solution performs
better than the rival, no matter the time spent to find the solution.

Finally, Table 7 shows how the good performance of GMM and GMM99 is

distributed among different types of problems.

Objective Constraint
Algorithm

Problem size
Total

type type tiny small medium

Linear Nonlinear
GMM 2 4 3 9

GMM99 3 5 7 15

Quadratic

Linear
GMM 0 0 0 0

GMM99 0 1 3 4

Nonlinear
GMM 0 1 5 6

GMM99 3 0 7 10

Nonlinear

Linear
GMM 0 1 1 2

GMM99 1 1 2 4

Nonlinear
GMM 0 2 3 5

GMM99 1 0 8 9

Table 7 – Number of times GMM and GMM99 outperformed one another as a function

of problem type.
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Tables 6 and 7 clearly show the superiority of GMM99 over GMM. The new

algorithm is more robust and attained the best performance for all of the problem

classes. Taking into consideration that GMM also uses Minos to compute the

horizontal step and Quacon to compute the vertical step, so the core of the

algorithm is the same of GMM99, these results suggest that the use of the new

acceptance criterion, combined with a restoration procedure, can improve the

performance of the SQP algorithm.

For some problems, no points were included in F , so the behavior of GMM
and GMM99 were very similar. Considering the whole set of 82 problems, the

mean number of points in F at the last iteration of GMM99 was 5. However,
for 7 problems, the cardinality of the F set was greater or equal to 20.
The restoration was called at least once for 24 problems. The purpose of the

restoration is to avoid the excessive reduction of the step size when xk is very
infeasible. This strategy has shown to be effective for 18 problems, while the

performancewas not significantly altered for twoproblems and slightlyworsened

for 4 problems.

8 Conclusions

In this paper, we depict the general framework of a new SQP algorithm that

combines ideas from both merit functions and the filter introduced by Fletcher

and Leyffer in [8]. The use of several penalty parameters defined automatically

by the previous iterates avoids the premature reduction of θ as well as the zigzag-

ging that can occur when a non-monotone strategy is used to update this param-

eter. The new method is also less tolerant than the filter method, since we do not

accept points that marginally reduce the infeasibility or the objective function.

The algorithm presented here is unique in the sense that it combines

• The use of a piecewise-linear function to accept or reject iterates. This

function can be interpreted as a merit function that selects the penalty

parameter according to the position of the predicted point in the (ϕ, f )-
plane, but also as a convex piecewise filter.

• The effective use of the points in F to define the forbidden region in the
(ϕ, f )-plane. In addition to dominated points, filter-SQP methods cut
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off the entire northwestern part of the allowed region when the predicted

reduction of the objective function is positive. The GMM99 algorithm

reject points if they belong to the forbidden region depicted in Figure 2

or if condition (14) is satisfied. However, this second condition is so mild

that it is seldom used in practice.

• Theuse of the restoration to prevent the step shortening inherent tomethods

that use points in the (ϕ, f )-plane to define the forbidden region.

The results shown in the previous section suggest that the algorithm, as im-

plemented, is superior to the method presented in [10] and slightly better than

Lancelot for small to medium-size problems. As a future work, we intend to test

other strategies to compute the restoration, as well as other solvers to compute

the normal and tangential steps, in order to deal with larger problems. Perhaps,

the library used to solve the quadratic subproblems can be selected dynamically,

after knowing the size of the problem and the type of the objective function and

constraints.
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