EFEITO DO NÍVEL DE INGESTÃO SOBRE A DIGESTIBILIDADE DOS AMINOÁCIDOS EM FRANGOS DE CORTE

Effect of the food intake on the amino acids digestibility in broiler chickens

Flávia Maria de Oliveira Borges¹, Horácio Santiago Rostagno², Carlos Eduardo do Prado Saad³, Leonardo Boscolli Lara⁴, Edgar Aleixo Teixeira⁵

RESUMO

Foi realizado um trabalho com aves cecectomizadas para avaliar o efeito do nível de consumo sobre os coeficientes de digestibilidade dos aminoácidos (coeficiente de digestibilidade aparente (CDAaa) e coeficiente de digestibilidade verdadeira – (CDVaa)), utilizando-se a metodologia de alimentação forçada. O delineamento experimental foi inteiramente ao acaso, em esquema fatorial 2 x 8 (níveis de consumo x alimentos), com quatro repetições. Sete alimentos oriundos do trigo e uma ração-referência foram utilizados. Todas as aves foram submetidas a jejum de 30 horas e forçadas a ingerir 25 e 50 gramas dos alimentos puros de uma única vez. Quatro aves em cada nível de consumo foram deixadas em jejum total para a determinação das perdas metabólica e endógena. Nos alimentos e excretas foram analisadas matéria seca, proteína bruta e aminoácidos. As médias foram comparadas pelo teste de SNK. Os valores de CDAaa para todos tratamentos foram afetados pela quantidade de alimento ingerido, e no nível de consumo menor os valores de CDAaa foram significativamente menores (P<0,05). Igualmente, a CDVaa apresentou diferenças significativas (P<0,05) entre alguns tratamentos, indicando que os níveis de consumo podem afetar esta medida.

TERMOS PARA INDEXAÇÃO: Aves, alimentação forçada, níveis de consumo, aminoácidos digestíveis, cecectomia.

ABSTRACT

This paper were conducted with the objective of evaluation the effects of feed intake levels on the methodology of forced feeding of caecectomised broilers, on the coefficients of digestibility amino acids (apparent digestibility amino acids coefficients - ADCaa and true digestibility amino acids coefficients - TDCaa), using as feeds tests the wheat and some of its products. The feeds were randomly distributed in factorial outline of 2 x 8, (levels x feeds) with four repetitions. Seven wheat grain by-products were used. All broilers were submitted to a fast of 30 hours and forced to ingest 25 and 50 grams of the pure feeds ate the same time. In the two levels a treatment was left in fast, for the determination of the metabolic and endogenous losses. In the feeds and excrete, dry matter, crude protein and amino acids were analyzed. The means were compared by the test of SNK test. The values of DACaa over all treatments were affected for the amount of ingested feed, and in the lower intake level the values of DACaa were significantly lower (P,0,05). In the same way, TDCaa showed significant differences (P<0,05) among some treatments, indicating that the feed intake levels should be take in account since it had effect on the digestibility of AA of caecectomised broilers

INDEX TERMS: broilers, forced feeding, feed intake, digestible amino acids, caecectomy.

(Recebido para publicação em 6 de abril de 2004 e aprovado 10 de março de 2005)

INTRODUÇÃO

Da mesma maneira que o consumo pode afetar a energia metabolizável verdadeira (BORGES et al., 1990), avaliada pela metodologia de alimentação forçada (SIBBALD, 1976), ele poderia influenciar a avaliação de aminoácidos digestíveis, uma vez que a ingestão de pequena quantidade de alimento poderia induzir um catabolismo corporal, no sentido de suprir as necessidades

energéticas. Esse catabolismo levaria a um aumento da porção de aminoácidos endógenos das aves, com uma subestimativa dos aminoácidos digestíveis dos alimentos.

Outra questão é a avaliação da fração endógena de nitrogênio. O método direto, baseado na alimentação de grupos de animais com dietas livres de proteína, ou mesmo em jejum, é a forma mais simples para estimar o nitrogênio endógeno.

^{1.} Medica Veterinária – M.Sc., Dra em Nutrição Animal - Universidade Federal de Lavras/UFLA – Caixa Postal 3037 – 37200000 – Lavras, MG – borgesvet@ufla.br

^{2.} Engenheiro Agrônomo - M.Sc., PhD Nutrição Animal - Departamento de Zootecnia - Universidade Federal de Viçosa/UFV - 36.570-000 - Viçosa, MG.

^{3.} Zootecnista – MSc., Dr Nutrição Animal - Fundação Zoobotânica de Belo Horizonte.

^{4.} Médico Veterinário - Estudante de Doutorado da Universidade Federal de Lavras/UFLA.

Médico Veterinário - Estudante de Doutorado da Universidade Federal de Lavias/or Ex.
 Médico Veterinário - Estudante de Doutorado da Universidade Federal de Minas Gerais/UFMG.

Entretanto, esse método tem sido questionado porque o processo digestivo apresenta um comportamento diferente daquele que teria com o fornecimento de uma dieta normal; as excreções encontram-se diminuídas com tais rações, o que resultaria numa avaliação subestimada das perdas dos aminoácidos endógenos totais.

Vários autores questionam a grande variabilidade dos dados obtidos em aves em jejum, na qual a consideração da média desses valores poderia induzir a um erro não quantificável no modelo. As aves alimentadas com diferentes quantidades de alimentos poderiam apresentar excreções endógenas distintas entre si, bem como distintas daquelas em regime de restrição total de alimentos. Essas últimas apresentam um grande desvio padrão nos valores de excreção endógena, o que certamente poderia levar a uma sub ou superestimativa dos valores de aminoácidos digestíveis (DALE & FULLER, 1984; PESTI et al., 1988). Sibbald (1980) discorda citando que aves submetidas ao jejum primeiro utilizam suas reservas lipídicas como fonte de energia e depois os tecidos protéicos. Desse modo, é essencial que a duração do período de jejum seja idêntico para o grupocontrole e o grupo-experimental.

Com trabalho teve-se como objetivo avaliar o efeito da quantidade de alimento ingerida sobre a digestibilidade aparente e verdadeira de aminoácidos de alimentos para frangos de corte adultos cecectomizados, utilizando-se metodologia de alimentação forçada.

MATERIAL E MÉTODOS

Este experimento foi conduzido nas dependências do departamento de Zootecnia da Escola de Veterinária da Universidade Federal de Minas Gerais (UFMG), Campus da Pampulha, em Belo Horizonte, com o objetivo de comparar o efeito de dois níveis de consumo de alimento (25 e 50 gramas) sobre os coeficientes de digestibilidade obtidos pela metodologia de alimentação forçada (SIBBALD, 1976).

Para tal experimento, foram utilizadas 32 aves previamente cecectomizadas, segundo Pupa et al. (1998), recebendo oito dietas, em dois períodos experimentais. Além das 32 aves, oito aves (quatro aves em cada período) foram utilizadas para estimar as perdas endógenas e metabólicas, e este grupo não fez parte das análises estatísticas.

Foram comparados dois níveis de consumo (25 e 50 gramas) utilizando-se uma ração-referência e sete

alimentos-teste, constituídos de produtos oriundos do trigo: trigo integral moído (TIM), gérmen de trigo (GT), farinha de trigo clara (FTC), farinha de trigo escura (FTE), farelo de trigo para uso humano (FTH), farelo de trigo para uso animal (FTA) e farelo de trigo grosso (FTG),utilizando-se o método da alimentação forçada descrito por Sibbald (1976). A dieta-referência constituiu um tratamento e foi calculada segundo recomendações de Rostagno et al. (1985) a base de milho moído, farelo de soja, óleo de soja e mistura vitamínico-mineral.

Os dois períodos experimentais foram de quatro dias cada um, obedecendo ao seguinte cronograma: todas as aves tiveram toda a região da cloaca previamente depenada para evitar aderência da excreta; .foram submetidas ao jejum de 30 horas para esvaziamento completo do trato gastrintestinal e após o jejum foram forçadas a ingerir 25 e 50 gramas dos alimentos teste de uma única vez. Foram utilizados os alimentos puros, sem fração de substituição, conforme recomendado por Sibbald (1976). Quatro aves foram deixadas em jejum por mais 48 horas para determinação das perdas metabólicas e endógenas.

A coleta de excreta foi total, de 12 em 12 horas, até completar o período exato de 48 horas para todas as aves, inclusive as em jejum. No final do experimento foram agrupadas por repetição e homogeneizadas para futuras análises.

As análises de matéria seca e aminoácidos foram realizadas no laboratório de nutrição animal da Escola de Veterinária da UFMG para os alimentos puros, ração-referência e excreta. As análises de aminoácidos foram feitas por hidrólise ácida e leitura por cromatografia líquida de alta eficiência (CLAE) em coluna de troca iônica com reação pós-coluna com ortoftaloleido (OPA) nos alimentos puros, ração-referência e excreta, utilizando-se cromatógrafo de fase líquida Shimatzu - 10A, com detector de fluorescência (MOTTER, 1991).

Nos alimentos puros foram analisados os aminoácidos essenciais: valina (VAL), metionina (MET), isoleucina (ISO), leucina (LEU), treonina (THR), fenilalanina (FEN), histidina (HIST), lisina (LYS) e arginina (ARG), e os não essenciais aspartato (ASP), tirosina (TYR), serina (SER), glutamina (GLU), prolina (PRO), glicina (GLI), alanina (ALA) ecistina (CYS) conforme a Tabela 1.

As fórmulas utilizadas para os cálculos dos coeficientes de aminoácidos digestíveis aparentes e verdadeiros dos alimentos foram às citadas por Albino (1991).

TABELA 1 – Composição em aminoácidos essenciais e não essenciais (%/MS) dos alimentos.

Aminoácido	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Valina	0,99	0,66	0,86	0,43	0,36	0,75	0,55	0,67
Metionina	0,48	0,23	0,36	0,14	0,15	0,24	0,17	0,21
Isoleucina	0,89	0,52	1,00	0,76	0,24	1,07	0,40	1,02
Leucina	2,04	1,16	1,77	0,80	0,85	1,10	0,86	1,07
Treonina	0,78	0,39	0,74	0,20	0,31	0,44	0,34	0,44
Fenilalanina	1,31	0,93	1,26	0,63	0,65	0,81	0,68	0,80
Histidina	0,87	0,56	1,21	0,34	0,41	0,65	0,52	0,59
Lisina	1,62	0,56	2,32	0,32	0,45	0,99	0,74	0,72
Arginina	2,35	1,06	2,99	0,53	0,76	1,85	1,24	1,51
Aspartato	2,55	0,81	2,94	0,47	0,7	1,26	0,96	1,02
Tirosina	0,94	0,52	1,13	0,33	0,37	0,63	0,49	0,54
Serina	1,26	0,86	1,46	0,59	0,71	0,81	0,64	0,81
Glutamina	5,11	7,05	5,44	5,33	5,3	3,86	3,28	5,19
Prolina O	1,64	2,25	1,63	1,69	1,53	1,26	1,03	1,71
Glicina I	0,91	0,64	0,71	0,4	0,25	0,87	0,63	0,78
Alanina	1,07	0,52	1,92	0,31	0,51	0,82	0,56	0,64
Cistina	0,25	0,25	0,23	0,14	0,19	0,2	0,15	0,23

Análises realizadas no laboratório de nutrição da Escola de Veterinária da UFMG

Para a avaliação dos efeitos do nível de consumo sobre a digestibilidade dos aminoácidos determinados pela metodologia de alimentação forçada, adotou-se um, delineamento experimental em blocos inteiramente casualizados, com oito tratamentos, sendo cada ave uma unidade experimental, durante dois períodos experimentais, em esquema fatorial 2 x 8 (níveis de consumo x alimentos), com quatro repetições por tratamento, totalizando 64 repetições. As médias foram comparadas pelo teste de F.

RESULTADOS E DISCUSSÃO

Nas Tabelas 2 e 3 encontram-se descritos os valores de digestibilidade aparente dos aminoácidos

essenciais (CDAaae) e não essenciais (CDAaane) em porcentagem, respectivamente, segundo o nível de consumo. O maior nível de ingestão (50 gramas) apresentou maiores valores de CDAaa_e e de CDAaa_{ne} para todos os aminoácidos (P<0,05), com exceção da isoleucina da ração-referência. Embora não tenham sido encontrados, na literatura disponível, trabalhos com relação ao efeito do consumo sobre a CDAaa, pode-se presumir que, igual à energia metabolizável (BORGES et al., 1990), os valores de CDAaa estão sujeitos ao efeito do nível de consumo. A influência dos aminoácidos metabólicos e endógenos (Tabela 5) é mais alta em baixo nível de consumo, o que leva a uma subestimativa da digestibilidade aparente dos aminoácidos dos alimentos no nível de consumo menor. Essa influência diminui com o aumento

^{1:} RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

da ingestão, conforme pode ser observado neste experimento. Entretanto, segundo Sibbald (1977), na metodologia de alimentação forçada, desafortunadamente não se pode ultrapassar as 50 gramas de alimento, sob o risco de provocar regurgitação e contaminar a excreta.

Os valores negativos de digestibilidade aparente de alguns aminoácidos essenciais (isoleucina e treonina na FTE e treonina na FTC) encontrados no tratamento com 25 gramas de alimento reforçam o efeito do consumo. Os valores desses aminoácidos nos alimentos são muito baixos, comparados aos demais (0,20 e 0,31% de treonina na FTC e FTE, respectivamente, e 0,24% de isoleucina na FTE). Isso faz com que a excreção endógena (tabela 8) subestime a digestibilidade desses aminoácidos.

Os alimentos fibrosos apresentam uma tendência, não avaliada estatisticamente, de apresentar menores valores de CDAaa nos dois níveis de ingestão, particularmente no nível de mais baixo consumo, devido à interferência da porção endógena, aliada à baixa digestibilidade desses alimentos. De acordo com Mejía & Ferreira (1996), o teor e o tipo de fibra promovem aumento das secreções endógenas, o que pode contribuir para uma maior excreção endógena em aves alimentadas com alta fibra, o que levaria a uma subestimativa da digestibilidade dos aminoácidos.

Segundo Mejía & Ferreira (1996), mesmo que a metodologia de utilização de aves em jejum ou alimentadas com dietas purificadas livres de proteína seja a forma mais simples e fácil para estimar o nitrogênio endógeno, esse método tem sido muito questionado porque o processo digestivo apresenta um comportamento diferente daquele que teria com o fornecimento de uma dieta normal. Os autores citam que as excreções encontram-se diminuídas com tais rações, o que resultaria numa subavaliação das perdas dos aminoácidos endógenos totais.

TABELA 2 – Coeficiente de digestibilidade aparente (%) dos aminoácidos essenciais dos alimentos¹, segundo o nível de consumo.

Aminoácido	Método	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Valina	Trat. 25g	65,24b	48,93b	53,43b	42,19b	29,08b	51,71b	42,48b	45,92b
v aiiiia	Trat. 50g	80,73a	75,26a	78,13a	74,04a	53,17a	67,48a	68,33a	63,06a
Metionina	Trat. 25g	82,96b	61,60b	69,53b	36,89b	55,53b	56,73b	44,95b	59,74b
Metionina	Trat. 50g	94,40a	87,98a	90,75a	82,96a	71,43a	87,73a	89,34a	89,52a
Isolovoino	Trat. 25g	61,97a	40,38b	70,37b	67,25b	-18,46b	64,22b	21,95b	65,51b
Isoleucina	Trat. 50g	68,32a	57,52a	82,61a	79,75a	35,51a	71,69a	38,86a	71,59a
Lauaina	Trat. 25g	61,38b	37,51b	59,28b	20,77b	8,95b	6,80b	9,74b	9,06b
Leucina	Trat. 50g	92,06a	89,21a	93,04a	89,98a	85,67a	84,49a	83,37a	84,05a
Treonina	Trat. 25g	52,09b	5,65b	50,91b	-70,58b	-13,48b	3,185b	0,465b	12,52b
Treomia	Trat. 50g	85,65a	76,18a	88,68a	70,98a	70,58a	76,58a	75,15a	77,55a
Fenilalanina	Trat. 25g	55,77b	40,29b	53,74b	30,42b	23,17b	29,79b	22,37b	35,71b
	Trat. 50g	82,62a	80,26a	81,76a	78,17a	72,83a	70,79a	71,82a	69,26a
Histidina	Trat. 25g	52,88b	35,81b	75,31b	8,24b	27,88b	14,02b	26,55b	29,02b
Ilistidina	Trat. 50g	84,35a	80,13a	86,54a	71,60a	71,30a	68,84a	75,09a	69,75a
Lisina	Trat. 25g	79,27b	41,54b	85,77b	11,04b	43,85b	60,55b	47,08b	51,59b
Lisilia	Trat. 50g	87,72a	74,48a	90,95a	72,83a	64,79a	75,02a	72,22a	68,03a

Valores na coluna, para uma mesma variável, com letras distintas diferem entre si, pelo teste F (P<0,05).

^{1:} RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

TABELA 3 – Coeficiente de digestibilidade aparente (%) dos aminoácidos não essenciais dos alimentos ¹ ,	segundo
o nível de consumo.	

Aminoácido	Método	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Asmontata	Trat. 25g	67,43b	16,25b	75,00b	-29,29b	15,99b	28,25b	25,72b	31,41b
Aspartato	Trat. 50g	87,42a	70,31a	90,41a	61,91a	63,50a	71,50a	70,71a	65,43a
Tirosina	Trat. 25g	55,14b	19,16b	64,51b	0,55b	3,14b	24,85b	22,72b	21,65b
THOSHIA	Trat. 50g	79,33a	69,50a	84,22a	58,39a	46,66a	64,36a	63,08a	62,13a
Sererina	Trat. 25g	63,83b	46,19b	70,21b	37,50b	44,96b	37,74b	35,60b	42,37b
Selelilla	Trat. 50g	84,37a	78,85a	87,21a	76,94a	72,38a	71,98a	70,70a	73,48a
Glutamina	Trat. 25g	78,19b	85,44b	83,48b	84,14b	84,65b	71,17b	69,78b	77,79b
Giutaililia	Trat. 50g	90,06a	94,07a	91,39a	94,58a	92,06a	84,39a	89,91a	88,57a
Prolina	Trat. 25g	63,99b	71,09b	65,34b	70,02b	62,11b	46,26b	47,10b	67,23b
Fiolilia	Trat. 50g	84,00a	89,27a	83,82a	87,22a	81,82a	76,21a	75,46a	83,27a
Alanina	Trat. 25g	60,03b	14,78b	77,38b	-2,39b	33,32b	36,82b	19,58b	15,28b
Aiaiiiia	Trat. 50g	79,76a	66,24a	86,59a	60,98a	65,58a	66,62a	60,15a	58,33a

1: RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

O mesmo comportamento também é observado nos valores de digestibilidade aparente da soma total dos aminoácidos, da soma dos aminoácidos não essenciais, da soma dos aminoácidos essenciais, e da soma dos aminoácidos limitantes (Met + Thr + Lys), em porcentagem, segundo o nível de consumo (Tabela 4). As aves dos tratamentos com menor nível de consumo (25 gramas) apresentaram os menores valores de CDAaa em todos os alimentos (P<0,05) devido à alta interferência das perdas metabólicas e endógenas (Tabela 5) e do baixo consumo nos métodos de alimentação forçada.

Nas Tabelas 6 e 7 apresentam-se os valores de digestibilidade verdadeira dos aminoácidos essenciais (CDVaa_e) e não essenciais (CDVaa_{ne}) em porcentagem, respectivamente, segundo o nível de consumo. O esperado, teoricamente, é que subtraído o efeito da porção endógena, as aves apresentassem a mesma digestibilidade verdadeira, uma vez que elas apresentavam características corporais e pesos vivos similares. Entretanto,

não foi o que ocorreu, demonstrando que mesmo que se retire a porção endógena calculada pela média de excreção das aves em jejum, o nível de consumo continua a imprimir o seu efeito sobre a digestibilidade dos aminoácidos, embora esse efeito seja minimizado quando comparado ao efeito sobre a digestibilidade aparente.

A digestibilidade verdadeira para a maioria dos aminoácidos (tanto essenciais quanto não essenciais) foi maior no maior nível de consumo (P<0,05), com exceção da lisina, quando todos os alimentos apresentaram valores significativamente iguais (P>0,05) e somente a FTC apresentou maior valor de CDVaa para a lisina no maior nível de consumo. Esse comportamento pode ser observado com maior clareza nos valores de digestibilidade verdadeira da soma total dos aminoácidos, da soma dos aminoácidos não essenciais, da soma dos aminoácidos essenciais e da soma dos aminoácidos limitantes (Met + Thr + Lys), descritos na Tabela 8.

TABELA 4 – Coeficiente de digestibilidade aparente (%) da soma total dos aminoácidos (aa), da soma dos aa não essenciais, da soma dos aa essenciais e da soma dos aa limitantes dos alimentos¹, segundo o nível de consumo.

Aminoácido	Método	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Totals	Trat. 25g	64,23b	40,33b	69,98b	21,91b	28,72b	38,14b	32,41b	40,55b
Totais	Trat. 50g	85,96a	85,42a	69,98a	85,18a	79,58a	76,02a	74,96a	77,96a
${\rm AA_{NE}}^2$	Trat. 25g	64,76b	42,16b	73,12b	26,75b	40,70b	41,15b	37,69b	42,62b
AA_{NE}	Trat. 50g	87,19a	89,20a	89,06a	88,60a	84,32a	78,09a	78,18a	82,18a
AA_E^2	Trat. 25g	63,94b	38,96b	67,63b	18,28b	19,73b	35,88b	28,44b	39,00b
AA_{E}	Trat. 50g	84,55a	77,55a	87,22a	77,87a	69,24a	73,65a	70,69a	71,60a
LIM ^{2,3}	Trat. 25g	71,44b	36,26b	72,39b	-7,55b	29,08b	40,16b	34,86b	42,26b
LIM	Trat. 50g	88,28a	77,80a	90,43a	74,43a	67,87a	77,22a	75,36a	74,38a

TABELA 5 – Valores de aminoácidos (mg) expressos por peso vivo total, por 100 gramas de peso vivo e em Kg de peso metabólico, do grupo de oito aves deixadas em jejum para a estimativa das perdas endógenas.

Aminoácido	mg/aves em 24 h.	mg/ 100g de PV	mg/ kg P0,75
Asp	56,525	2,545	23,3
Tyr	32,085	1,375	12,965
Ser	36,13	1,53	14,535
Glu	76,97	3,205	30,945
Pro	50,7	2,11	20,37
Ala	33,22	1,345	13,35
Val	16,795	0,755	6,66
Met	6,535	0,285	2,63
Iso	23,3	1,02	9,385
Leu	65,155	2,86	26,24
Thr	22,62	1,19	10,59
Fen	39,135	1,725	15,88
Hys	24,145	1,08	9,85
Lys	24,865	1,115	10,15
Totais	512,505	22,16	206,34

^{1:} RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

^{2:} AA_{NE} = aminoácidos não essenciais, AA_E = aminoácidos essenciais e LIM = aminoácidos limitantes

^{3:} Metionina, treonina e lisina.

TABELA 6 – Coeficientes de digestibilidade verdadeira (%) dos aminoácidos essenciais dos alimentos¹, segundo o nível de consumo.

Aminoácido	Método	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Valina	Trat. 25g	80,28a	71,76b	82,73a	77,76b	70,79a	71,37b	69,14a	68,44a
v aiiiia	Trat. 50g	84,62a	81,22a	82,60a	83,24a	63,96b	72,56a	75,23a	68,88a
Metionina	Trat. 25g	94,06b	85,69b	93,76a	75,22b	92,28b	79,22b	82,43b	88,54b
- Wietioiiiia	Trat. 50g	97,70a	95,14a	95,13a	94,36a	81,96a	92,20a	92,58a	97,22a
Isoleucina	Trat. 25g	83,51a	78,50a	89,56a	92,96b	61,41a	82,09a	70,29a	84,68b
Isoleucilia	Trat. 50g	74,66b	68,75b	88,26a	87,32a	59,02b	76,09b	53,09b	77,23a
Leucina	Trat. 25g	88,32b	85,84b	90,28b	90,48a	74,38b	56,48b	72,87b	60,73b
Leucina	Trat. 50g	97,71a	99,36a	99,55a	101,62a	97,41a	94,93a	96,63a	94,90a
Treonina	Trat. 25g	85,74b	75,11b	86,45b	64,16b	70,51b	62,89b	77,82b	73,03a
	Trat. 50g	92,40a	90,13a	95,82a	98,04a	87,45a	88,58a	90,69a	79,70a
Fenilalanina	Trat. 25g	80,59b	76,20b	79,59b	82,64b	73,71b	69,48a	70,01b	77,01b
	Trat. 50g	89,96a	90,88a	89,41a	93,62a	87,79a	82,68a	85,91a	81,49a
Histidina	Trat. 25g	76,65b	73,77b	92,36a	69,52b	68,26b	45,86b	66,13b	64,67a
Ilisudilia	Trat. 50g	91,06a	90,84a	91,38a	88,87a	85,50a	77,81a	86,25a	69,80a
Lisina	Trat. 25g	92,75a	81,28a	96,36a	80,05b	92,48a	82,48a	81,95a	82,27a
Lisilia	Trat. 50g	92,91a	90,03a	94,56a	99,38a	93,50a	83,46a	83,48a	79,84a

TABELA 7 – Coeficientes de digestibilidade verdadeira (%) dos aminoácidos não essenciais dos alimentos¹, segundo o nível de consumo.

Aminoácido	Método	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Aspertato	Trat. 25g	87,40b	80,90a	92,31a	81,73b	89,45b	68,35b	78,35b	81,64b
Aspartato	Trat. 50g	92,76a	86,44a	94,73a	89,60a	81,83a	81,50a	83,84a	78,00a
Tirosina	Trat. 25g	81,59b	67,76b	86,50b	76,60b	69,79a	64,14b	73,35b	67,62b
HOSHIA	Trat. 50g	88,13a	85,67a	91,53a	83,69a	68,84a	77,74a	79,93a	77,42a
Sererina	Trat. 25g	85,59b	78,69b	90,00b	84,45b	83,49a	71,10a	79,28b	76,65b
Seleilla	Trat. 50g	91,87a	90.06a	93,64a	93,14a	85,49a	83,49b	85,36a	85,28a
Glutamina	Trat. 25g	88,95b	93,42b	94,00a	94,62b	95,08a	85,32a	86,39b	88,47b
Giutaililla	Trat. 50g	94,16a	97,10a	95,23a	98,55a	96,04a	89,78a	91,24a	92,63a
Prolina	Trat. 25g	85,67b	87,31b	87,21b	91,47b	85,59b	74,36b	81,42b	88,33a
	Trat. 50g	92,46a	95,60a	92,36a	95,58a	90,97a	87,18a	88,85a	91,49a
Alanina	Trat. 25g	80,33b	57,12b	89,81a	68,21b	76,26b	65,07b	62,30b	49,28a
Aiaiillia	Trat. 50g	88,71a	84,89a	91,55a	92,09a	84,49a	78,25a	77,01a	73,40a

Valores na coluna, para uma mesma variável, com letras distintas diferem entre si, pelo teste F (P<0,05)

Ciênc. agrotec., Lavras, v. 29, n. 2, p. 444-452, mar./abr., 2005

^{1:} RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

^{1:} RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

TABELA 8 – Coeficiente de digestibilidade verdadeira (%) da soma total dos aminoácidos (aa), da soma dos aa não essenciais, da soma dos aa essenciais e da soma dos aa limitantes dos alimentos¹, segundo o nível de consumo.

Aminoácido	Método	RR	TIM	GT	FTC	FTE	FTH	FTA	FTG
Totais	Trat. 25g	85,10b	78,11b	89,35b	80,70b	79,53b	69,87b	75,12b	75,11b
Totals	Trat. 50g	91,83a	93,03a	93,43a	95,60a	79,53a	84,58a	86,16a	86,25a
$A{A_{ m NE}}^2$	Trat. 25g	84,92b	77,53b	89.97b	82,84b	83,27b	71,39b	76,84b	73,36b
AA _{NE}	Trat. 50g	92,87a	95,02a	94,22a	96,49a	91,94a	86,38a	88,30a	89,27a
AA_E^2	Trat. 25g	85,24b	78,55b	88,89b	79,10b	76,73b	68,74b	73,83b	74,92b
AAE	Trat. 50g	90,65a	88,91a	92,57a	93,79a	84,93a	82,53a	83,32a	81,69a
LIM ^{2,3}	Trat. 25g	90,85a	80,70b	92,19a	73,14b	85,09a	74,86b	80,74b	81,28b
LIM	Trat. 50g	93,58a	91,08a	94,89a	97,90a	85,09a	86,33a	87,49a	85,66a

- 2: AANE = aminoácidos não essenciais, AAE = aminoácidos essenciais e LIM = aminoácidos limitantes
- 3: Metionina, treonina e lisina.

Este efeito pode ser devido ao maior catabolismo protéico das aves que receberam menor quantidade de alimentos, embora não seja possível comprovar neste experimento sua real extensão. O nível de 50 gramas de ingestão apresentou CDVaa mais altos em todos os tratamentos quando comparados ao nível de 25 gramas (P<0,05), com exceção aos aminoácidos limitantes da ração-referência, do germe de trigo e da farinha de trigo escura, que foram significativamente semelhantes (P>0,05) entre os dois tratamentos.

Neste ponto é importante estabelecer uma relação entre os valores obtidos para a digestibilidade de aminoácidos e os valores encontrados na EMV e EMVn desses mesmos tratamentos (BORGES et al., 1990). Nos resultados de EMV e EMVn, obtidos pelos citados autores, observou-se que a EMV apresentou diferenças significativas entre os vários alimentos, o que não acorreu com a EMVn, que apresentou valores estatisticamente iguais para todos os alimentos, com exceção a FTC. Ora, se no trabalho de Borges et al. (1990) a correção do excretado endógeno foi feita para as duas medidas, torna-se evidente que uma porção extra e não quantificável de nitrogênio, possivelmente sob a forma de aminoácidos endógenos, poderia estar interferindo sobre os valores de EMV, o que se torna evidente depois

de realizadas as devidas correções, pois essas diferenças estatísticas desaparecem na EMVn.

Esse fato pode ser confirmado observando-se a CDVaa dos dois níveis de ingestão, no presente trabalho. Estes resultados estão de acordo com Pesti (1984), que afirma que o baixo nível de ingestão pode levar a uma mobilização de tecidos que modifica a quantidade de nitrogênio excretada.

CONCLUSÕES

Nas condições em que se realizou este trabalho pode-se concluir que:

Os coeficientes de digestibilidade aparente dos aminoácidos são afetados pela quantidade de alimento ingerido, e nos níveis de consumo menores os valores de CDAaa são significativamente menores. Do mesmo modo, os coeficientes de digestibilidade verdadeira do total de aminoácidos, da soma dos aminoácidos essenciais, da soma dos aminoácidos não essenciais e da soma dos aminoácidos limitantes para a maioria dos alimentos apresentaram diferenças significativas entre os níveis de consumo. Neste caso recomenda-se que, para este tipo de avaliação, sejam utilizados consumos iguais ou maiores que 50 gramas de alimento.

^{1:} RR = ração-referência, TIM = trigo integral moído, GT = germe de trigo, FTC = farinha de trigo clara, FTE = farinha de trigo escura, FTH = farelo de trigo para uso humano, FTA = farelo de trigo para uso animal, FTG = farelo de trigo grosso.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALBINO, L. T. F. Sistemas de avaliação nutricional de alimentos e suas aplicações na formulação de rações para frangos de corte. 1991. 55 f. Tese (Doutorado em Zootecnia) Universidade Federal de Viçosa, Viçosa, 1991.
- BORGES, F. M. O. et al. Metodologia de alimentação forçada em aves: I efeito dos níveis de consumo de alimento na avaliação da energia metabolizável. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 35., 1990, Botucatu. **Anais...** Botucatu: SBZ, 1990. Disponível em: http://www.sbz.org.br/scripts/anais1998>. Acesso em: 20 out. 2003.
- DALE, N.; FULLER, H. L. Correlation of protein content of feedstuffs with the magnitude of nitrogen correction in true metabolizable energy determinations. **Poultry Science**, Champaign, v. 63, p. 1008-1012, 1984.
- MEJÍA, A. M. G.; FERREIRA, W. M. Métodos de avaliação da disponibilidade da proteína e dos aminoácidos nos alimentos para não ruminantes. In: SIMPÓSIO INTERNACIONAL DE PRODUÇÃO DE MONOGÁSTRICOS, 1., 1996, Seropédica, RJ. Anais... Seropédica: [s.n.], 1996.
- MOTTER, J. H. **Fundamental principles of HPLC.** [S.l.]: Shimadzu, 1991. 49 p.

- PESTI, G. M. Influence of substitution method and of food intake on bioassays to determine metabolisable energy with chickens. **British Poultry Science,** London, v. 25, p. 495-504, 1984.
- PESTI, G. M.; DALE, N. M.; FARRELL, D. J. A comparison of methods to determine the metabolizable energy of feather meal. Poultry Science, Champaign, v. 68, p. 443-446, 1988.
- PUPA, J. M. R. et al. Cecectomia em galos sob anestesia local e incisão abdominal. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia,** Belo Horizonte, v. 50, p. 531-535, 1998.
- ROSTAGNO, H. S. et al. **Composição de alimentos e exigências nutricionais de aves e suínos.** 19. ed. Viçosa: UFV, 1985. 59 p.
- SIBBALD, I. R. A bioassay for true metabolizable energy in feedingstuffs. **Poultry Science**, Champaign, v. 55, p. 303-308, 1976.
- SIBBALD, I. R. The effect of level of feed input on true metabolizable energy values. **Poultry Science,** Champaign, v. 56, p. 1662-1663, 1977.
- SIBBALD, I. R. The effects dietary cellulose and ssand on the combined metabolic plus endogenous energy and amino acid output adult cockerels. **Poultry Science,** Champaign, v. 59, p. 836-844, 1980.