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Multiple linear regression and random forest to predict and map soil
properties using data from portable X-ray fluorescence spectrometer (pXRF)
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ABSTRACT

Determination of soil properties helps in the correct management of soil fertility. The portable X-ray fluorescence spectrometer (pXRF) has
been recently adopted to determine total chemical element contents in soils, allowing soil property inferences. However, these studies are
still scarce in Brazil and other countries. The objectives of this work were to predict soil properties using pXRF data, comparing stepwise
multiple linear regression (SMLR) and random forest (RF) methods, as well as mapping and validating soil properties. 120 soil samples
were collected at three depths and submitted to laboratory analyses. pXRF was used in the samples and total element contents were
determined. From pXRF data, SMLR and RF were used to predict soil laboratory results, reflecting soil properties, and the models were
validated. The best method was used to spatialize soil properties. Using SMLR, models had high values of R2 (=0.8), however the highest
accuracy was obtained in RF modeling. Exchangeable Ca, Al, Mg, potential and effective cation exchange capacity, soil organic matter, pH,
and base saturation had adequate adjustment and accurate predictions with RF. Eight out of the 10 soil properties predicted by RF using
pXRF data had CaO as the most important variable helping predictions, followed by P,O,, Zn and Cr. Maps generated using RF from pXRF
data had high accuracy for six soil properties, reaching R? up to 0.83. pXRF in association with RF can be used to predict soil properties
with high accuracy at low cost and time, besides providing variables aiding digital soil mapping.

Index terms: Soil analyses; spatial prediction; proximal sensor.

RESUMO

Adeterminacdo de atributos do solo auxilia no correto manejo da sua fertilidade. O equipamento portatil de fluorescéncia de raios-X (pXRF)
foi recentemente adotado para determinar o teor total de elementos quimicos em solos, permitindo inferéncias sobre atributos do solo.
No entanto, esses estudos ainda sdo escassos no Brasil e em outros paises. Os objetivos deste trabalho foram prever atributos do solo
a partir de dados do pXRF, comparando-se os métodos de regressdo linear multipla stepwise (SMLR) e de random forest (RF), além de
mapear e validar atributos do solo. 120 amostras de solo foram coletadas em trés profundidades e submetidas a anélises laboratoriais.
Utilizou-se o pXRF para leitura das amostras e determinou-se o teor total de elementos. A partir dos dados do pXRF, foram utilizadas
SMLR e RF para predizer resultados laboratoriais, que refletem atributos do solo, e os modelos foram validados. O melhor método foi
utilizado para espacializar os atributos do solo. Utilizando SMLR, os modelos apresentaram valores elevados de R? (20,8), porém maior
acurdcia foi obtida na modelagem com RF. A capacidade de troca de cations potencial e efetiva, matéria organica do solo, pH, saturagdo
por bases e teores trocaveis de Ca, Al e Mg apresentaram ajustes adequados e predi¢cdes acuradas com RF. Dos dez atributos do solo
preditos por RF a partir de dados do pXRF, sete apresentavam CaO como a varidvel mais importante para auxiliar as predicées, seguido
por P,O,, Zn e Cr. Os mapas gerados a partir de dados do pXRF usando RF apresentaram adequados valores de R? para seis atributos do
solo, atingindo R? de até 0,83. O pXRF em associacdo com RF pode ser usado para prever atributos do solo com elevada acuracia, com
rapidez e a baixo custo, além de proporcionar varidveis que auxiliam o mapeamento digital de solos.

Termos para indexacdo: Andlises de solo; predicdo espacial; sensor préximo.

INTRODUCTION

Soils present diverse physical, chemical, mineralogical
and biological properties, which influence their diverse
potentialities of use (Birkeland, 1999; Resende et al., 2014;
Schaetzl; Anderson, 2005), such as plant growth. The
characterization of those properties is of great importance for
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the proper management and conservation of soils (Severiano
etal., 2009). For that, several laboratory analyses of different
levels of complexity are employed, which helps making
decisions on the correct management required according to
the needs of the crops, so that the agricultural production may
be increased (Lopes; Guilherme, 2016).
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On the other hand, carrying out laboratory tests
in a large number of samples requires more time and
financial resources, as well as chemical reagents, which
generate residues. Thus, the use of tools that quickly
allow the evaluation of soil properties, at low cost and
without residues production may facilitate the evaluation
of more samples to characterize soils in more detail and
for different purposes.

Portable X-ray fluorescence spectrometer (pXRF)
is a tool used in works of several fields of study for
identification and quantification of chemical elements
present in varied materials (Ioannides et al., 2016; Milié,
2014; Peinado et al., 2010; Rouillon; Taylor, 2016;
Terra et al., 2014; Zhu; Weindorf; Zhang, 2011). This
equipment emits high-energy X-ray beams, which cause
the displacement of electrons from inner to outer orbits
as they hit the atoms of the elements in the sample. In
sequence, the displaced electrons return to their original
orbits emitting a fluorescence characteristic of each
chemical element, as it is related to the element atomic
number. Thus, in a few seconds the equipment is able to
determine the total contents of elements of the Periodic
Table between Mg and U, allowing its use both in the field
and in the laboratory (Weindorf; Bakr; Zhu, 2014).

The pXRF generates a large data set, which may
slow down their analyses and interpretation in detail.
In this sense, the use of machine learning tools may
accelerate the identification of data for characterizing
soils. Several methods of analyzing large amount of data
of both continuous and categorical variables have been
used in works of various natures, such as the stepwise
multiple linear regression (SMLR) (Juhos; Szabé;
Ladanyi, 2015; Menezes et al., 2016; Rodrigues; Cora;
Fernandes, 2012). This analysis adjusts regression models
from easily obtained variables to estimate data more
difficult to be acquired, in which the addition or removal
of predictive variables to the model is performed based
on statistical tests, generating a final equation. Weindorf
et al. (2012) evaluated the pXRF to discriminate spodic
and albic horizons in the field, using SMLR to estimate
organic carbon data from pXRF data, concluding that
the equipment was adequate, contributing to the rapid
generation of chemical data.

Another method that has been increasingly used for
predictions is the so-called random forest (RF) (Breiman,
2001). This algorithm presents as advantages the possibility
of using both numerical and categorical variables, modeling
non-linear relationships, assessment of the importance
of each variable for the generation of the final model,
calculation of modeling errors, among others (Breiman,

2001; Liaw; Wiener, 2002). However, despite of classifying
the variables according to their importance to the model
(Archer; Kimes, 2008), this method does not generate a final
equation of the model, as opposed to SMLR. Therefore, it
is sometimes referred to as a black-box method (Grimm
et al., 2008), although some works have pointed out that
this method is robust and provides better results than other
methods for both spatial and non-spatial predictions (Hengl
etal., 2015; Lies; Glaser; Huwe, 2012; Souza et al., 2016).

In recent years, most works involving digital
soil mapping has been based on continuous variables
for the area of interest, such as satellite images and
digital elevation models and their derivatives (e.g. slope,
topographic wetness index, curvatures, etc.), to spatialize
soils information (Adhikari et al., 2014; Giasson et al.,
2015; Menezes etal., 2014; Silva et al., 2016a; Taghizadeh-
Mehrjardi et al., 2015). However, when working in smaller
areas, mainly in developing countries, it is common to face
difficulties in obtaining data with high spatial resolution,
which tends to make the use of these variables unfeasible.
In this sense, pXRF can be an alternative to obtain a large
amount of punctual data that, after being spatialized, may
contribute to spatial predictions (Silva et al., 2016b).

In spite of the advantages of using pXRF to analyze
elemental composition of materials, very few works have
used pXRF in Brazil and in other developing countries for
studies with a variety of purposes, mainly regarding soils.
In this sense, due to the search for methods to obtain soils
information in rapid and economical ways, the objectives
of this work were: (i) to predict results of laboratory
analysis through SMLR and RF from data generated by
pXREF, validating the generated models and; (ii) to evaluate
the potential of pXRF to aid spatial prediction of analytical
results, reflecting soil properties, generating and validating
maps of soil properties.

MATERIAL AND METHODS

Study area

This work was carried out at Santa Luzia Farm, in
the county of Campos Altos, Minas Gerais, Brazil, located
between latitudes 19°35°05.33”* and 19°35°17.80”’S and
longitudes 46°16°14.46” and 46°15°24.34”W, covering
17.1 ha. The climate of the region is Aw, with annual
average rainfall of 1,450 mm (Motta; Baruqui; Santos,
2004), dry winters and rainy summers, and monthly
average temperature greater than 18 °C in all months of
the year. The area has varying land uses, such as coffee
plantations (Coffea arabica Lineu) with 5 years old (9.7%
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of the area) and 1 year old (51.8%), 5 year-old eucalyptus
plantation (15.4%) and native vegetation of secondary
forest (14.7%) and cerrado grasses (8.4%) (Figure 1).
The study area is occupied by typic Dystrophic
Haplic Cambisols (95% of the area) followed by typic
Dystrophic Regolithic Neosols (5%), classified using the
Brazilian Soil Classification System (Embrapa, 2013),
both with gravels, developed from metapelitic rocks. Soil
samples were collected at three depths: 0 to 10 cm, 10 to
20 cm and 20 to 40 cm, at 40 places randomly distributed
in the area, making up a total of 120 samples (Figure 1).

Laboratory analyses

Soil samples were air dried, passed through a
2 mm sieve and analyzed in the laboratory where the
following soil properties were determined: soil pH in water,
exchangeable contents of Ca**, Mg?" and AP* (Mclean et al.,
1958), available K extracted with Mehlich-1, soil organic
matter (OM) (Walkley; Black, 1934), remaining P (P-rem)
(Alvarez; Fonseca, 1990), potential (T) and effective (t)
cation exchange capacity (CEC), and base saturation (V).

The samples were also analyzed in the laboratory
with the pXRF of Bruker model S1 Titan LE. This
equipment contains 50 kV and 100 pA X-ray tubes. The

software used was GeoChem, in the Trace (dual soil)
configuration, recommended for soils, for 60 seconds,
including two X-ray beams. The 120 samples collected
were subjected to analysis in triplicate by pXRF and the
accuracy of the equipment was evaluated through scanning
standard reference materials 2710a and 2711a certified by
the National Institute of Standards and Technology (NIST)
as well as scanning an equipment standard sample (check
sample - CS). From the NIST and CS certified samples, the
recovery of the element contents obtained by pXRF (% of
recovery = 100 x Obtained content / Total certified content)
were calculated. The recovery percentages of the samples
are presented in Table 1 only for the elements that were
identified in all the samples of this work.

Analysis of data and modeling

The results of the laboratory analyses were
submitted to descriptive statistics, in the three soil depths
evaluated, to obtain the average, maximum and minimum
values, standard deviation and coefficient of variation
(CV). From the data of the pXRF, models were adjusted
to predict the following soil properties: exchangeable Ca*",
Mg*, K*, AI¥, P-rem, pH, potential CEC (T), effective
CEC (1), soil organic matter (OM) and base saturation (V).
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Figure 1: Study area location, land uses and sampling points for modeling and validation.

Table 1: Percentage of recovery of element contents by portable X-ray fluorescence spectrometer (pXRF) of
National Institute of Standards and Technology (NIST) and pXRF equipment (CS) certified samples.

Sample' Al Si P K Ca Ti Cr Mn Fe Ni Cu Zn Sr
2710a 80.2 587 399.8 56.1 36.0 784 - 716 76.0 - - - 97.8
2711a 67.0 498 5742 446 421 708 1186 63.1 686 981 752 827 926

cs 90.2 89.8 - 84.2 - - - 825 86.8 994 944 - -

12710a e 2711a - NIST certified samples; CS - equipment certified sample.
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Soil samples were randomly separated into modeling
and validation data sets, respectively, consisting of 75% and
25% of the total data. Also, the samples were subdivided
and modeled in two ways: 1) specific models, according to
the three depths of sampling, with n = 40 for each depth,
with 30 samples for modeling and 10 for validation; and
i) general model, including all samples (n = 120, 90 for
modeling and 30 for validation).

In order to adjust the models for predicting soil
property results from the pXRF data, two methods were
tested: stepwise multiple linear regression (SMLR) and
random forest algorithm (RF). The SMLR was generated
through SigmaPlot software, backward method, in which
the least important variables for model adjustment are
removed, with 95% probability.

The random forest analysis was performed in R
software, randomForest package (Liaw and Wiener, 2015),
with the following parameters established: number of trees of
the model (ntrees) = 1000, number of variables in each node
(nodesize) = 5, and number of variables used in each tree
(mtry) = one third of the total number of samples, as suggested
by Liaw and Wiener (2002) for regression random forests.

The random forest adjustment results in the mean
square of the residuals (MSE_ ), the percentage of the
variance explained by the model and the importance of all
the variables of the model in the prediction of the data, by
the out-of-bag method. MSE_ is calculated when, for each
iteration, only a few predictor variables are used to generate
a tree. The MSE_ is calculated through Equation 1. The
importance of the variables, also obtained by the algorithm,
is a result of the average of the reduction of the accuracy
in the prediction as one variable is left out of the model
while the other variables are included. Thus, if a variable
is removed, the more the prediction error increases, which
means, the accuracy of the prediction decreases, the
more important that variable is for the model adjustment
(Breiman, 2001; Liaw; Wiener, 2002).

MSEoob = lZ[y,- -7 (1)
n-y

in which y, is the real (observed) value, y.°°® is the mean
of the predictions of OOB for the i observation, n is the
number of trees.

Accuracy of the models

The validation of the general and specific (per
depth) models generated by SMLR and random forest
was performed using the independent subset of data (not

used in the modeling), consisting of 25% of the total data,
to determine if the predictions by the models are valid for
other observed data. For this, the estimated values for each
sample of the independent subset were determined and the
accuracy of the models was evaluated through the following
statistical indices: coefficient of determination (R?), adjusted
R* (R?, ;) in relation to observed and estimated data, root
mean square error (RMSE), and mean error (ME), according
to Equations 2 and 3:

RMSE = lz:il(ei—mi)z 2)
\; 2

ME =lZfZ1 (ei -mi) 3)
n="=v

where n: number of observations, ei: values estimated by the
model, and mi: values observed through laboratory analysis.

The efficiency of the modeling methods (SMLR and
random forest) was carried out in addition to the determination
of the analytical results capable of being predicted with
greater accuracy from the generated models. In this sense,
the models that obtained the highest values of R* and R?, "
and the smallest RMSE and ME comparing observed with
estimated data were considered the best for prediction of the
results of laboratory analysis from the pXRF data.

Spatial prediction of soil properties from pXRF data

From the definition of the best method for modeling,
the laboratory results that presented high accuracy of
predictions were spatialized for the entire study area.
This procedure aimed to evaluate the possibility of using
pXRF data as a basis for mapping soil properties (Duda et
al., 2017; Silva et al., 2016b), providing easily obtainable
variables, at low cost, rapidly and with no generation of
chemical residues.

First in this procedure it was necessary to spatialize
the variables obtained by pXRF for the entire study area,
since the soil properties prediction models are based on
pXRF data, which, in turn, only refer to the sites at where
samples were collected. In order to do so, the inverse distance
weighting (IDW) method was employed in the spatialization
of the pXRF variables, allowing their subsequent use for
mapping. The values inferred at non-sampled areas by
IDW are estimated using linear combination of values at
the sampled places, weighted by an inverse function of the
distance from the point of interest to the sample points. The
weights (1) are expressed in Equation 4:
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1
P
A= d

! n 1
Zi:1d7

where d, is the distance between two points, p is a power
parameter, and n represents the number of sampled points
used for the estimation.

The predicted maps of the soil properties were
also validated with 25% of the samples (not used for the
modeling) through the R*, R?, " RMSE, ME and 1: 1 graphs
(observed vs. estimated data).

RESULTS AND DISCUSSION

Descriptive statistics

The analytical data of the samples used for
modeling and validation are presented in Table 2. There is
great variability of values of all evaluated soil properties,
as demonstrated by the high coefficients of variation, in

both modeling and validation data sets. This occurred,
as expected, due to the different land uses of the area
and soil management practices, ranging from native
vegetation, where pH and nutrient contents are lower
since no anthropic influence occurs, to cultivated
areas, where these values are higher because of liming
and fertilizers application. This variability of data can
contribute to the generation of more reliable models
with possible use for soils with different conditions,
since the used values contemplate a wide range of values
of the analyzed properties, such as P-rem varying from
10.8 to 47.1 mg dm~, and pH, from 4.4 to 7.7.

As a general trend, the exchangeable/available
nutrient contents as well as pH, OM, T, t, and V
decreased from the surface to the subsurface, contrary
to the exchangeable Al that increases in depth. These
facts are in agreement with the fertilizer applications
and liming practices, which are carried out on the more
superficial soil layers.Furthermore, although liming
decreases the content of exchangeable Al, this product
moves very little in depth in the soil, thus, its corrective
effect is more concentrated on the layer in which it is
incorporated (Alvarez; Ribeiro, 1999).

Table 2: Descriptive statistics of soil properties in modeling and validation data sets.

Soil Depth Modeling' Validation?
Property’ (cm) Min  Max Mean STD CV(%) Min Max Mean STD CV (%)
0to 10 4.5 7.7 59 12 203 47 7.5 58 1.1 19.0
oH 10 to 20 4.4 7.7 56 09 161 4.2 7.5 54 09 167
20to 40 4.6 7.2 52 05 9.6 39 7.1 52 08 154
General 4.4 7.7 56 09 161 3.9 7.5 54 09 167
0to10 369 3816 1347 823 61.1 391 161.7 1059 46.1 435
K 10to20 325 5353 137.6 130.1 945 281 2762 1007 745 740
(mg dm?) 20to40 215 5796 115 1316 1144 171 289.6 887 869 98.0
General 215 579.6 129.1 116 89.9 17.1 2896 984 69.1 702
0to 10 0.1 7.9 26 25 962 0.1 7.3 24 25 1042
Ca 10 to 20 0.1 5.7 16 1.7 1063 0.1 5.1 1.1 1.6 1455
(cmol_dm?) 20 to 40 0.1 5.0 07 1.1 157.1 0.1 34 06 1.0 166.7
General 0.1 7.9 16 2 1250 0.1 7.3 14 1.9 1357
0to 10 0.1 3.1 07 08 1143 0.1 1.9 0.6 0.6 100.0
Mg 10 to 20 0.1 1.7 06 0.6 1000 0.1 2.3 0.5 0.7 1400
(cmol_dm?) 20 to 40 0.1 1.0 02 02 1000 0.1 1.3 03 04 1333
General 0.1 3.1 05 06 1200 0.1 2.3 04 06 150.0

Continue...
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Table 2: Continuation...

Soil Depth Modeling' Validation?
Property' (cm) Min  Max Mean STD CV(%) Min Max Mean STD CV (%)
0to10 153 471 312 88 282 225 469 333 86 258
P-Rem 10t020 132 397 27 75 278 162 444 284 83 292
(mg dm?) 20to40 108 349 250 60 240 161 392 264 63 239
General 10.8 471 277 79 285 161 469 294 81 276
0t0 10 00 37 1.1 13 1182 00 26 1.0 11 1100
Al 10t020 00 40 13 13 1000 00 34 14 12 857
(cmol_dm?) 20t040 0.0 34 15 09 600 00 2.6 1.5 0.8 533
General 00 40 13 12 923 00 34 13 10 769
0to 10 19 114 48 25 521 25 92 42 23 548
¢ 10to20 1.7 82 38 16 421 19 78 33 17 515
(cmol._dm?) 20to40 1.5 74 28 11 393 17 55 25 1.1 440
General 15 114 38 2 526 1.7 92 33 18 545
0t0 10 55 144 85 24 282 49 103 74 18 243
T 10t020 48 159 78 26 333 49 88 67 13 194
(cmol._dm=) 20to40 39 137 65 24 369 43 69 56 09 16.1
General 39 159 76 26 342 43 103 66 15 227
0to 10 27 931 445 383 8.1 37 893 434 35 806
v 10to20 23 87 353 329 932 37 885 272 29 1066
(%) 20to40 3.1 824 202 202 1000 40 792 177 228 1288
General 23 931 334 326 976 37 893 294 303 103.1
0t0 10 23 92 37 14 378 17 67 34 15 441
oM 10t020 16 43 27 08 296 17 36 24 07 292
(dag kg™) 20 to 40 1.1 38 19 06 316 1.1 2.3 1.7 04 235
General 1.1 92 28 12 429 11 67 25 12 480

30 samples for 0 to 10 cm, 10 to 20 cm and 20 to 40 cm, and 90 samples for General; 210 samples for 0 to 10 cm, 10 to
20 cm and 20 to 40 cm, and 30 samples for General; Min: minimum value; Max: maximum value; STD: standard deviation;
CV: coefficient of variation; P-Rem: Remaining phosphorus; t: effective cation exchange capacity; T: potential cation exchange

capacity; V: base saturation; OM: organic matter.

The pXRF determined 16 elements for all analyzed
samples, being them Al,O,, Fe, SiO,, CaO, P,0,, KzO, Cl,

Ti, V, Cr, Mn, Ni, Cu, Zn, Zr ¢ Sr. Table 3 presents the
descriptive statistics for the pXRF data.

Modeling soil properties through stepwise multiple
linear regression

Analyzing Figure 2, which shows the R? values from
the SMLR models, it is noticed that high values were found
with at least one model obtaining R? greater than 0.8 for all

of'the soil properties, except for T. Among the three depths,
0to 10 and 20 to 40 presented, in general, higher values than
10to 20. The latter only presented better adjustment for OM
and t. These values indicate the potentiality of using pXRF
to provide variables for adjusting prediction equations of soil
properties in tropical regions. Works such as Sharma et al.
(2015), who used pXRF data to perform CTC prediction in
soils of the United States, obtaining adequate results using
SMLR, corroborate the appropriate soil property predictions
from pXRF data.
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Figure 2: Coefficient of determination (R?) of the equations to modeling soil properties through stepwise multiple linear
regression. Al, Ca, Mg and K represent the exchangeable/available contents of these elements; OM - organic matter;
P-rem - remaining P; T - potential cation exchange capacity; t - effective cation exchange capacity; V - base saturation.

The general equation presented lower R? values in
most cases, which may be due to the greater heterogeneity of
the samples used in this modeling. In contrast, these results
demonstrate that adjusting equations according to the depth
of sampling tends to provide better models using SMLR.
Souza et al. (2016) used SMLR for bulk density prediction,
comparing models created only for A horizon, only for B
horizon and a general one, encompassing the two horizons,
and also obtained better adjustments for the equations for
horizons separately in relation to the general model.

Table 4 shows the equations with R? values greater
than or equal to 0.80 generated for 0 to 10 cm, 10 to 20
cm, 20 to 40 cm. The general models did not reach R? of
0.80. It is noticed that, in the 17 equations presented, the
CaO content was the one that appeared more often (15
equations), followed by SiO, (12 equations) and Fe (11
equations). Also, for 0 to 10 cm, 8 equations presented R?
of at least 0.80, against 4 for 10 to 20 cm and 5 for 20 to
40 cm. Thus, these equations indicate that exchangeable
Ca, Mg, K, Al as well as P-rem, pH, t, V(%) and OM
could be adequately modeled by SMLR using pXRF data.

Modeling soil properties through random forest

Table 5 shows the results of random forest modeling:
MSE_, and the percentage of variance explained for each
model (general and specific). With the exception of Mg, it
is observed that the percentage of the variance explained
by the models for the analyzed soil properties decreased
in depth, being greater, therefore, for the 0 to 10 cm depth
and smaller for the 20 to 40 cm depth. However, the general
model was the one that presented the lowest MSE_ and the
highest percentages of the explained variance. This may be

due to the greater amount of data used for this model (n =
90) relative to the models for only one depth (n = 30). This
result is contrary to that found with SMLR modeling, in which
the general models were mostly worse than the specific ones
(by depth). Carvalho Junior et al. (2016) compared SMLR
models generated with different sets of variables and number
of samples to estimate the bulk density and noticed that R?
values were lower for the models with greater amount of
samples. In the same work, they noticed that the models
generated by random forest with greater amount of data
presented better adjustments than those with smaller amount
of data, in agreement with the findings of this work.

Table 5 indicates that the soil properties most
explained by the general and specific random forest models
were base saturation, exchangeable Ca and Al, and pH,
whereas OM and T were the least explained. K was the
variable with the highest MSE__ , indicating larger prediction
errors (to be confirmed by the validation of the models).

Validation of models generated with stepwise
multiple linear regression and random forest

The R? values resulted from the comparison between
the observed and estimated values generated by SMLR and
random forest for the validation of samples are presented in
Tables 6 and 7. It is noted that the highest R? values were
obtained in predictions with random forest rather than with
SMLR for the soil properties, except for K. Available K was
also the predicted soil property that presented the highest
MSE_, values in the modeling phase (Table 5). Differences
were verified between the R? values of the validation of the
analyzed properties prediction with random forest models
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and SMLR, especially exchangeable Ca and Al, pH and t,
being them better predicted with random forest. This suggests
that random forest presents greater potential for estimating
analytical results, reflecting soil properties, from pXRF data.

RMSE, ME and R? & presented in Tables 6 and 7,
corroborate the best predictions with random forest in
relation to the SMLR. Souza et al. (2016) compared model
adjustments for predicting bulk density using SMLR and
random forest, also obtaining better results with random
forest, in consonance with this work.

In the validation of the models obtained with
SMLR, only pH of the 20 to 40 cm depth model and of the
general model, exchangeable Al in general model, and t
and OM by the 20 to 40 cm depth model presented RMSE
values lower than 1.0, while in the validation by random
forest, Ca, pH, Al , Mg, t and OM showed values lower
than that at all depths and in the general model (Tables 6
and 7). The absolute values of ME were also mostly smaller
for the validation of the random forest models in relation
to the SMLR models.

Table 4: Stepwise multiple linear regression equations with R2 >0.80, in different depths to predict exchangeable
Ca (cmol_dm?), exchangeable Mg (cmol_dm?), available K (mg dm3), exchangeable Al (cmol_dm?), pH, effective
cation exchange capacity (t) (cmol_dm?), base saturation (V) (%), remaining P (P-rem) (mg dm?) and organic

matter content (OM) (%) from pXRF data (ppm).

Equation R?
0to10cm
Ca=13.211 + 0.0000481Al,0, - 0.0000213Si0, - 0.000950P,0, + 0.00358Cl - 0.0436Cr - 0.000257Fe 0.89
+0.232Cu + 0.03265r - 0.0192Zr
Mg = 1.903 + 0.0000984K,0 + 0.0000332Ca0 - 0.00867Cr - 0.00176Mn - 0.0146Zr 0.85

K'=32.668 + 0.0133K,0 + 0.00329Ca0 + 0.621V - 2.088Cr - 0.327Mn + 6.258Cu - 2.3525r - 0.937Zr 0.81

Al =3.053 + 0.000835P,0, - 0.00163Cl - 0.0000676Ca0 + 0.0103V + 0.0299Cr + 0.00383Mn -

0.131Cu

pH =6.442 - 0.00000519Si0, - 0.000615P,0, + 0.00102Cl + 0.000100K,O + 0.0000816Ca0 -

0.82

0.86

0.0209Cr - 0.0000533Fe + 0.0677Cu

t = 6.281 +0.000352K,0 - 0.0373Cr - 0.00586Mn + 0.0706Zn - 0.0442Zr
V =16.322 +0.00101AL,0, - 0.000315Si0, - 0.0193P,0, + 0.0524C] + 0.00164Ca0 - 0.912Cr -

0.87

0.89

0.0646Mn -0.00302Fe +3.552Cu

P-rem = 41.156 + 0.000125A1,0, + 0.00704Cl - 0.000401Ca0 - 0.118Cr - 0.000721Fe + 0.2765r

0.84

10to 20 cm

Ca =4.449 + 0.0000756Al,0, - 0.0000113Si0, + 0.000217Ca0 + 0.00131Ti + 0.0143V - 0.000323Fe -
0.0561Ni + 0.269Cu - 0.296Zn

t=12.538 + 0.0000671Al,0, - 0.0000223Si0, + 0.000203Ca0 + 0.000725Ti + 0.0189V + 0.00607Mn -
0.000294Fe + 0.190Cu - 0.226Zn

V =113.847 + 0.00145Al,0,- 0.000221Si0O, + 0.00418Ca0 + 0.0304Ti + 0.309V - 0.00675Fe - 1.449Ni
+4.983Cu - 6.450Zn

OM =4.057 + 0.0000406Al,0,- 0.0000121Si0, - 0.000512Cl + 0.000119Ca0 + 0.0000697Fe -
0.0432Ni - 0.0746Cu - 0.0543 Sr

20to 40 cm
Ca =-2.866 + 0.00000409Si0, + 0.0000237K,0 + 0.000318Ca0 + 0.000150Ti

Al'=10.433 - 0.0000173Si0, + 0.000722P,0, - 0.000112K,0 - 0.000290Ca0 - 0.000400Ti + 0.0202Cr
+0.00502Mn - 0.0000890Fe + 0.0661Zn 0.0173Zr

t =4.037 - 0.00000469Si0, - 0.000506CI + 0.000334Ca0 + 0.00278Mn
V=-71.659 +0.000172Si0, - 0.00931Cl + 0.00134K,0 + 0.00404Ca0 + 0.00503Ti + 0.3465r - 0.247Zr

P-rem =-26.468 + 0.000121Si0, - 0.00390P,0, + 0.000751K,0 + 0.00150Ca0 - 0.193Cr - 0.0126Mn
+0.000490Fe - 0.612Zn + 0.141Sr - 0.0576Zr

0.87

0.87

0.81

0.82

0.88
0.87

0.86
0.81

0.86
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Table 5: Mean error of prediction by the out-of-bag method (MSE_ ) and percentage of the explained variance of
the models originated using the random forest algorithm.

or Ospoé'rtw MSE,, Varexp(%)? MSE,, ~Varexp(%) MSE,, Varexp(®%) MSE,, 7o
0to 10 10to 20 20 to 40---------- ----General-----
Ca 146 76.42 0.64  77.22 069 7563 042  89.42
P-rem 2535 6591 2450 5531 2436 5557 1598  73.82
K 414818 3657  12319.80 2473 1217427 2561 793345  40.42
Al 039 7634 045  71.26 047  70.06 027 8029
Mg 030  56.55 011  68.02 012 6505 013 6624
pH 041  68.30 024  67.26 025  65.86 015 8290
oM 157 2112 0.56 2.39 0.54 5.54 121 2138
T 5.18 4.88 6.41 -1.89 657  -4.50 456 2967
t 186  68.11 107 5832 111 56.94 0.76  80.50
v 25346 82.08 23207 7777 21261 7963 10007  90.49

'Ca, Mg, Al, T and t in cmol_dm3; P-rem and K in mg dm=, OM in dag kg”; V in %; 2Var exp (%) = percentage of the variance of

the models explained.

Importance of variables

By analyzing the importance of the variables for the
explanation of the data with random forest, eight out of the
ten soil properties predicted through pXRF data had CaO as
the most important variable (Table 8, Figure 3) and, among
these ten soil properties, base saturation, and exchangeable
Al and Ca had Cr as the second most important variable.
P,O, was the most important variable to predict OM,
followed by Zn, whereas SiO, was the most important to
predict T, with P Oy as the second most important variable.
Aldabaa et al. (2015) used pXRF, remote sensing data and
visible infrared diffuse reflectance spectroscopy (VisNIR
DRS) to predict values of electrical conductivity and
verified that, among the pXRF variables, Cl and S were
the most important elements for predictions.

The frequency that each pXRF variable appeared in
the first three positions of importance for the predictions
shows that CaO was the one that appeared most (8 times),
followed by P,O, Zn, and Cr (6 times each), SiO, (2), Sr
(1) and Fe (1). Figure 3 shows the values of importance for
the main variables to help predict soil properties in order
to show the greater importance of CaO in relation to the
other important variables.

In contrast to the most important variables, the ones
that appeared more often in the last three positions were
ALO, (7),Cu(4),Cl, Zr,V and Ti (3 times each), K,O (2),
and SiO,, Mn Cr, Fe and Ni (1 each). It is worth noticing
that A1,O, may have not been an important contributor to

the prediction of exchangeable Al since the pXRF obtains
total element contents, including both the exchangeable Al
and the Al stuck in the structure of soil minerals. However,
as the study area has managed areas, the exchangeable
Al content is quite variable (Table 2), even having little
variation of total Al contents as obtained by pXRF (Table
3), which may have hampered the models. Similar trends
can be inferred for available K.

Mapping soil properties with random forest through
pPXRF data

Using random forest, which obtained better
modeling and validation results than the SMLR, maps of
some well predicted soil properties for the 0 to 10 cm layer
were prepared and validated (Figure 4). The maps show that
the highest contents of plant nutrients Ca and Mg, higher
levels of OM, V, t, higher pH and lower exchangeable Al
content were found in the areas of cultivated coffee, with
the oldest crop being the one with better soil chemical
conditions for plant development (only considering the
chemical soil properties predicted here). Under eucalyptus
plantation, the nutrient contents are lower, since this area
was fertilized only at the moment of implantation, 5 years
earlier the sampling. The areas with the lowest nutrient
contents and pH are under native forest and native cerrado
grasses, which do not present anthropogenic intervention,
and reflect the high degree of weathering-leaching of these
Brazilian cerrado soils (Resende et al., 2014).
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Table 8: Importance of portable X-ray fluorescence spectrometer (pXRF) variables in decreasing order to predict
soil properties.

irr?prgft;gze Predicted soil property’
--Al-- --Ca-- -K-- -Mg-- --OM-- --P-rem-- --pH-- -T-- -t-- --V--
1 (most) Ca0 Ca0 Ca0 Ca0 P,O, Ca0 Cao Sio, Ca0 Ca0
2 Cr Cr P,O, Zn Zn Cr Zn P,O, PO, Cr
3 Sr P,O, Zn Cr Sio, Fe Cr Zn Zn P,O,
4 \ Zn c Sr Cao Sio, Sr CaO Cr Zn
5 Fe Cu Cr P,O, Cr Sr PO, Mn Sr Fe
6 Zn Fe Cu cl Mn P,O. Fe Sr cl Sr
7 SiO, Sr Zr Fe Sr Mn Cu c Cu SiO,
8 ALO, Sio, Sr Cu c Zn Zr Ti K20 Cu
9 K,0 Mn Ni Sio, Ti Ti K,O0 K,0 Mn Mn
10 P,O, Ni Mn Ni \ Zr v Fe Sio, \
" Mn Zr Sio, K,0 Fe \% Ni Ni AlLO, Ti
12 Ti \ Ti Zr K,0 Ni c Y Ni Zr
13 cl K,0 ALQO, Ti Ni K,O Mn Zr Fe Ni
14 Ni Ti Fe \ Cu AlLO, Sio, Cu Ti c
15 Cu c K,O Mn ALO, cl Ti Cr Zr K,0
16 (least) Zr ALO, \ ALO, Zr Cu ALO, ALO, \ ALO,

'available/exchangeable Al, Ca, K, Mg; P-rem - remaining P; OM - soil organic matter; T - potential cation exchange capacity; t -
effective cation exchange capacity; V - base saturation.

Figure 3: Most important variables of portable X-ray fluorescence spectrometer (pXRF) (importance increases
from 0 to 60) for prediction of soil properties with random forest.
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Figure 4: Maps of predicted soil properties for 0 to 10 cm depth spatialized with random forest; P-rem: remaining
P; t: effective cation exchange capacity; ; V: base saturation; OM: soil organic matter.

Validation of these maps with an external set of
samples (n = 10) resulted in 1:1 graphics between predicted
and observed values of the soil properties (Figure 5). For
most predicted soil properties, high R* and R | values were
found, except for available Mg, which had a R? 0f 0.30. For
exchangeable Al (R?=0.83), P-rem (R?=0.80), exchangeable
Ca (R? = 0.78) and t (R?> = 0.73), adequate spatialized
predictions were found, followed by base saturation (R* =
0.67), OM (R? = 0.66), and pH (R? = 0.54). These results
indicate that, although this mapping procedure has
accumulated errors, first on the spatialization of the pXRF
variables by the IDW, and then during the random forest
modeling and predictions, most generated soil property
maps presented satisfactory accuracy. This demonstrates
the potential of using pXRF as a source of variables

to help predict soil properties also spatially, mainly in
areas that lack continuous information in greater detail
(e.g., digital elevation model and its derivatives), as it
is the case of the study area of this work. In addition,
by providing results quickly and inexpensively, it may
favor gathering more observations (points visited) in the
field and also, through predictions, reduce the number of
laboratory analyses. The use of pXRF to improve spatial
and non-spatial soil predictions was also found by Silva
et al. (2016b), who used magnetic susceptibility and
pXRF data, as well as continuous variables derived from
digital elevation model for soil classes and properties
prediction in Brazil, finding that magnetic susceptibility
and pXRF data increased the models accuracy when
associated with terrain data.

Ciéncia e Agrotecnologia, 41(6):648-664, Nov/Dec. 2017



662

SILVA, S. H. G. et al.

Exchangeable Ca (cmolc dm-3)

[ ]
54
<
O 4/
)
g3
g 7 R =078
g Rigj=0.75
M 21 RMSE = 1.66
14 ME =-0.92
I. T T T
0 2 4 6
Observed Ca
pH
T 6.5+
o,
B 6.0
é R =054
2 551°¢ Rig= 048
&3] RMSE = 0.80
5.01e ME =-0.33
50 55 60 65 70 75
Observed pH
t (cmole dm'3)
- 7 1
B
5 07
£ 5 K =073
7] R2;j=0.69
M RMSE = 1.60
41 s ME =-0.97
3456789
Observed t
OM (dag kg'!)
4.04
% .
- 4.0
[
‘5 4
£ 36
w2
m
3.2

Observed OM

Estimated Mg

Estimated V

Estimated P-rem

Estimated Al

Exchangeable Mg (cmolc dm™)

1.4 . *
1.0
] R=030 o
0.6 ' Rigi=0.22
g ° RMSE = 0.50
] ME = -0.09
02-e T T T
0.5 1.0 1.5
Observed Mg
Exchangeable Al (cmol, dm-3)
2.0 °

—
w
1

(=t
1

6 [ ]
Rzz 0.83
Rzldi: 0.80

0.57 RMSE = 0.62
ME = 026
T T T T T
00 05 1.0 15 20 25
Observed Al
V (%)
80 ~
60
40 4 R =067
Rgdj: 0.63
] RMSE = 26.1
20 - ME =-15.79
. T T T T
20 40 60 80
Observed V
P-rem (mg dm)
36
Y [ ]
321 R2=0.80
i Rfdj =0.78
RMSE = 4.98
2815 @ ME = 0.38

25 30 35 40 45
Observed P-rem

Figure 5: Plots of observed and estimated values resulted from random forest prediction of soil properties for
the whole study area. Ca, Mg and Al refer to exchangeable contents; t - effective cation exchange capacity; V -
base saturation; OM - soil organic matter; P-rem - remaining P.

Weindorf; Bakr; Zhu (2014), after presenting
examples of correlations among the element contents
obtained by pXRF and results of laboratory analysis,
suggested that many works using this equipment would
be performed focusing on predicting soil properties in the
years to come. Here we demonstrated the potential of this

Ciéncia e Agrotecnologia, 41(6):648-664, Nov/Dec. 2017

equipment for predicting soil properties also in Brazilian
soils, in accordance with Piikki et al. (2016), who used
pXRF coupled with three other sensors to predict results of
laboratory soil analyses in Kenya, observing that pXRF was
frequently employed in good models. Sharma et al. (2014)
used pXRF data to predict soil pH from linear regressions.
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Data collection through pXRF in this work was carried
out in the laboratory; however, the use of this equipment in the
field can accelerate the acquisition of data that is more difficult
to be obtained, through adjustment of models with data from
pXRF scanning in the field. Stockmann et al. (2016) evaluated
the concentration of elements in soil profiles to infer about their
parent materials using the pXRF in the field, in addition to
making a comparison with the data obtained in the laboratory.
In this way, future tests in this line of research are suggested
for tropical soils, since the pXRF in association with robust
algorithms can increase the amount of data on soils in Brazil
both spatially and punctually, providing results rapidly, at low
cost and without generation of chemical residues.

CONCLUSIONS

Soil properties such as exchangeable Ca, Mg, Al,
pH, organic matter, base saturation, potential and effective
CEC and P-rem could be predicted with high accuracy
by random forest from the data obtained by pXRF,
surpassing the predictions made by stepwise multiple
linear regression. The variables obtained by pXRF allowed
the spatial prediction of soil properties related to soil
fertility, leading to the generation of accurate maps, which
demonstrates the potential of pXRF to be used as a source
of variables to help spatial prediction of soil properties
rapidly, at low cost and without generating residues.
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