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ABSTRACT

The present work describes a neural particle classifier system
based on topological mapping of the segmented information
provided by a high-energy calorimeter, a detector that mea-
sures the energy of incoming particles. The achieved clas-
sification efficiencies are above 97.50% for the higher en-
ergy particle beams, even when experimental data exhibit un-
avoidable contamination due to the particle beam generation
process, what could jeopardize the classifier performance.
Some deterioration in the performance for the lower energy
range is also discussed. The reduction on the dimensionality
of the data input space caused by the topological mapping
may be very helpful when online implementation of the clas-
sifier is required.

KEYWORDS: Neural networks, calorimeters, electronic in-
strumentation.

RESUMO

O presente trabalho apresenta um sistema classificador base-
ado em redes neurais aplicadas a um mapeamento topoldgico
da informag@o segmentada fornecida por um calorimetro de
altas energias. Este detector mede a energia das particulas
incidentes em feixes experimentais. A eficiéncia de classifi-
cacdo atingida fica acima de 97,50% para feixes de mais alta
energia, mesmo quando os dados experimentais apresentam
uma inevitdvel contaminagdo ocasionada durante o processo
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de producdo das particulas. Alguma deteriora¢do da quali-
dade do classificador encontrada para feixes de mais baixa
energia também € discutida. A redu¢@o no nimero de dimen-
soes do espago de entrada, causada pelo mapeamento topo-
16gico, pode ser muito importante quando a implementacio
do classificador para operagao online for considerada.

PALAVRAS-CHAVE: Redes neurais, calorimetros, instru-
mentacdo eletronica.

1 INTRODUCTION

In the search for increasing the knowledge on the structure
of matter, a bunch of collider experiments have been con-
structed and operated. To probe deeper into matter, CERN
(The European Laboratory for Particle Physics, 2002) is now
building a next generation particle accelerator. Such acceler-
ator will use superconductivity to create huge magnetic fields
which are necessary to maintain the particles on their tracks
while an enormous amount of energy is transferred to them.
From the particle collisions, it is expected to be found impor-
tant reactions that may prove or disprove theoretic models in
high-energy physics.

This new accelerator, LHC (Large Hadron Collider, 2002),
will collide bunches of protons at periods of 25 nanoseconds
and having 14 TeV in the center of mass, when it starts to
operate by the year 2007. LHC will have two main collision
points, around each a complex set of detectors will be re-
sponsible for studying the products of the collisions. One of
these particle detectors will be “A Toroidal LHC ApparatuS”
(ATLAS Collaboration, 1994). This detector (see Fig. 1) will
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Figure 1: The ATLAS detector.

comprise tracking detectors (to display the trajectories of the
particle coming from the impact point), calorimeters (to mea-
sure the energy of the particles) and other specific detectors,
such as the muon chambers to detect muons, an important
particle to the LHC physics.

One of the calorimeters of the ATLAS detector is Tilecal (F.
Ariztizabal et al., 1990), which is specialized to detect the
energy of hadronic particles, such as pions. This calorimeter
is now in the calibration phase, in which calorimeter modules
are submitted to particle beam tests. For detector calibration,
beam selection comprises the type of particle to be injected
(electrons, pions, and muons are used) and the energy (typi-
cally, energy selection ranges from 20 GeV to 180 GeV). De-
spite the high quality achieved by the beam line nowadays, it
is unavoidable particle contamination, when a specific beam
selection is made. Thus, muons are present (up to 30%) in
pion beam selections and both muons and pions can be de-
tected (up to 70% level of contamination has been observed)
in electron beam selections. Such contamination levels tend
to mask the actual performance of the calorimeter and affect
the accuracy of the calibration process. Muon beams can be
considered contamination free.

The purpose of this work is to use the calorimeter informa-
tion for online rejection of particle contamination (outsider
particles). As the calorimeter absorbs the energy of the in-
coming particles and it is segmented into a number of cells,
it provides a detailed information of the energy deposition
profiles, so that particle classes can be identified.

The online rejection of outsiders allows calibration data to
be recorded free of contamination. For achieving high parti-

Figure 2: The structure of TileCal.

cle classification efficiencies and fast response, a topological
mapping that groups calorimeter cells is developed. Such
compacted calorimeter information is fed into the neural
classifier for final particle identification, in terms of elec-
trons, pions or muons.

The paper is organized into four sections. The next section
will describe the calorimeter properties and the topological
mapping used. The third section will focus on the results of
the neural network application. Finally, the fourth section
will derive some conclusions.

2 HADRONIC CALORIMETER

The hadronic calorimeter will form a toroid around the AT-
LAS collision point. The structure of TileCal can be seen in
Fig. 2. It comprises a central barrel and two extended barrels,
each one made of 64 modules. Products of the collisions will
enter into TileCal at different impact points, defining regions
of interest that will be analyzed in terms of energy and how
the energy is deposited in the calorimeter.

The calorimeter is responsible for estimating with high ac-
curacy the energy of the incoming particles. To be able to
produce the energy measurement, the calorimeter is made of
absorber plates (iron) sandwiched with plates of an active
material (scintillating tiles). The incoming particles loose
their energy by interacting with atoms of the absorber ma-
terial. As a result of such interactions, many subproducts are
generated and will also be traveling through the calorime-
ter mass, interacting with other atoms and, thus, creating a
shower of particles with decreasing energy. The scintillating
material is sensible to the energy produced by such shower of
particles, so that light is produced proportional to the energy
being sampled by the active material. This light is carried to
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Figure 3: Cell topology in a calorimeter module and the trig-
ger tower definition.

the outsider part of the detector by means of optical fibers,
which are coupled to the tiles.

Detector segmentation into cells is produced by grouping
fibers in the calorimeter modules and connecting them to
photomultiplier tubes, which convert the light into elec-
trical signals. The energy deposited in the detector can
be estimated by adding the information readout from each
calorimeter cell. Fig. 3 shows the cell topology.

As marked in Fig. 3, towers of cells are formed in the
calorimeter structure, representing possible particle tracks in
the calorimeter. These towers will be used for particle iden-
tification at LHC, in order to reduce the high event rate (40
MHz) of LHC (ATLAS Level-1 Trigger Group, 1998). For
this, an online triggering system is being designed and it
relies strongly in the information obtained from the energy
deposited in each tower of TileCal (Cerqueira et al., 2001).
For the present work, 10 such trigger towers were formed by
grouping the cells along the pseudorapidity directions (from
1 = 0.05 up to i 0.95).

Each type of particle has a specific deposition profile in the
calorimeter (Wigmans, 2000). For example, a typical elec-
tron event is displayed in Fig. 4, top. The heights in this
figure represent the amount of energy deposited in each cell.
As it can be inferred from this figure, electrons deposit al-
most all of its energy in the first cell they touch. On the other
hand, typical pion profiles tend to achieve a deeper maxi-
mum, reaching the second layer of cells and spreading more
energy around such maximum (Fig. 4, middle). However,
higher fluctuations in pion profiles are observed, making pion
events to come closer to the electron pattern.

Muons typically deposit just a small fraction of their energy
in the calorimeter (Fig. 4, bottom), being easier to discrim-
inate from the other two classes of particles, which deposit
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Figure 4: Typical electron (top), pion (middle) and muon
(bottom) events.

around the nominal value of the beam !.

Discriminating between particles with calorimeter informa-
tion is then a pattern recognition problem, for which neural
networks (Haykin, 1999) may be an interesting choice. Feed-
ing a neural classifier with such detailed energy deposition
profiles (obtained from cell readout), a high performance par-
ticle identification system may be designed (Denby, 1999).
However, as it was already mentioned, particle beams used
for calibrating the calorimeter can be contaminated by out-
sider particles. This leads to a higher degree of difficulty in
the classification task, since the pure data can only be ob-

Lsome energy leakage can be observed due to the restricted dimensions

of the single module used in this work. For full calorimeter (192 modules,
as in Fig. 2), energy leakage is negligible
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tained from a muon beam line.

The training method chosen for the neural classifier design
was backpropagation, which is a supervised training method
that requires the presentation of input-output pairs for adapt-
ing the neural network weights (Haykin, 1999). As a signif-
icant amount of events may be outsiders in a given data set
acquired from a beam test, target values for the network train-
ing will be wrongly assigned. Despite such error in input-
output assignment, it will be shown that the neural classifier
can quickly recognize the energy deposition profile provided
by the calorimeter for each particle class and, based on this,
identify the actual class of the incoming particle. As online
operation is envisaged, the network input information will be
provided by the trigger tower mapping of the energy deposi-
tion profile. This data compaction allow to optimize the pro-
cessing speed for both training and production phases of the
network, so that the input data rate of the acquisition system
will not be deteriorated by the neural processing.

3 RESULTS

For designing the neural network and evaluating its clas-
sification efficiency, the Jet Net-2.0 package (Lonnblad et
al, 1992) was used. The multilayer neural network topology
was optimized to satisfy both performance and compaction
criteria. The final topology comprised 10 input nodes (to be
fed by the ten trigger tower signals), 8 hidden nodes and 3
output nodes. Each output node was assigned to a given par-
ticle class (electrons, pions or muons).

Experimental data was composed of data sets related to
each beam acquisition (muons, pions with contamination and
electrons with contamination). Each data set contained more
than 8000 events. These data sets were split into two sets,
one used in the training phase of the network design and the
other used to test the generalization power of the classifier.
Due to the high level of statistics of the experimental data
sample for all classes, training efficiencies were fully repro-
duced by the testing sets.

In spite of data contamination, for the training phase data ac-
quired from a given beam selection were labeled according
to the beam type, and only a single output was activated by
the target vector. For instance, for electron beams of differ-
ent energies (20, 100, and 180 GeV), all suffering from both
muon and pion contamination, acquired events were labeled
as electrons, even though muons and pions should be present
in the data sample. For this, the target values were +1 (activa-
tion) for the electron output node and -1 for the other output
nodes. In the testing phase maximum probability was used to
determine to which class the incoming particle would belong
(Trees, 1971).
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Figure 5: Neural network outputs (columns) for the three
data sets (rows). See text

The hyperbolic tangent was the activation function selected
for all neurons and the mean squared error, computed be-
tween the actual network output and the target vector for each
event, was the figure of merit of the training phase. The stop
criterium for the training phase was the maximum efficiency,
which was computed by the product of the efficiencies over
all particle classes.

For each event the trigger tower values were normalized by
the square root of the absolute value of the total energy ab-
sorbed by the calorimeter (all trigger tower signals added up).
This normalization scheme envisaged to retain some infor-
mation on the level of the energy deposited by each incoming
particle, which is quite relevant for discriminating electron
and pions from muons (as from Fig 4, muons deposit very
small amount of energy in the detector).

Fig. 5 shows a matrix of plots that exhibits the network re-
sponse for the testing sets, at the end of the training phase
(100 GeV case). Data coming from electron, pion and muon
beam selections are shown in the rows of this matrix and
columns refer to the network output nodes. Without any
contamination, the histograms in the main diagonal should
be peaking around +1, indicating output nodes correctly ac-
tivated by the respective particle class. On the other hand,
histograms out of the main diagonal would be all peaking
around -1, as output nodes should be inactive to particle
classes different to the ones they are assigned to. However,
due to contamination in both electron and pion beam selec-
tions, this is not the case. Examining the electron output for
data from the electron beam selection (top-left histogram),
not only the expected peaking structure near +1 is observed,
but also a second distribution close to -1 reveals that for
these events the electron output is inactive, which means that
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Figure 6: Correlation of the electron output and pion output
(top). For the events with negative pion output, the correla-
tion between the electron output and the muon output is also
presented (bottom).

the electron output does not recognize them as electrons and
thus declares them outsider particles in the data sample. The
pion output (next histogram on the right) shows an agree-
ment to the electron output, as it recognizes some events from
the electron beam as pions by means of exhibiting two-peak
structure, which includes a second peak near -1.

To confirm this result, Fig. 6 presents the correlation between
the electron output and the pion output (top) and th corre-
lation between the electron and the muon outputs. As can
be seen, the events considered by the electron output as be-
ing electrons (horizontal positive axis), were the same events
considered not pions by the pion output (vertical negative
axis). The events considered by the pion output as being pi-
ons, were the same events considered not electrons by the
electron output. There are some events that received electron
and pion output negative. The bottom figure shows the corre-

lation between the electron and the muon output for the same
events, except that the events with positive pion output were
cut off. Again, the events considered to be electrons by the
electron output were rejected as muons by the muons output
and the events considered to be muons were rejected as elec-
trons by the electron output. This means that the network
shows to be able to identify incoming particles by their main
features of energy deposition. Therefore, it can be concluded
that the wrong labeling caused by beam contamination did
not avoid the neural classifier to learn the detailed energy de-
position profiles provided by the calorimeter.

Although the neural network response seems to understand
the physics processes involved in the absorption of the in-
coming energy from different particle classes, validation of
the particle identification is mandatory. As the application is
intended to perform online rejection of outsiders, it should
be guaranteed that the neural classifier does not introduce
any bias in the data sample, allowing the offline analysis to
be executed accurately.

The network response can be validated by means of ex-
ploitation of the main features of the shower development.
As muons deposit a small fraction of their energy in the
calorimeter, an energy cut suffices for muon identification,
although detection efficiency decreases for lower energy
beams. On the other hand, pions tend to travel much fur-
ther in the calorimeter, with respect to electrons, so that the
shower development in depth can be extremely powerful in
electron/pion separation.

Considering data from pion beam (100 GeV), Fig. 7 displays
the correlation between the total energy and O, — O,,, the
subtraction of the muon output of the network from the pion
output. As it can be seen, events in this plot with a positive
Or — Oy, which correspond to declared pions by the neural
classifier, are those that deposited the largest energy in the
detector. On the other hand, events with a negative O, —
O,, (so identified as muons by the network, as the electron
output is not triggered by data from pion beam selections)
are exactly those that deposited only a small fraction of their
energy in the calorimeter. This agrees with the energy cut for
separating muons from pions, which is typically established
at 20 GeV for 100 GeV nominal beam energy.

Now, let’s consider data from 100 GeV electron beam. Out-
sider muon identification can be evaluated as above. For out-
sider pions, the detection is more difficult. Electrons and pi-
ons deposit basically the same amount of energy, but energy
distribution in terms of calorimeter depth is different in gen-
eral. To discriminate between electrons and pions, the frac-
tion of the energy deposited in the first layer of cells can be
used (as from Fig. 3, there are three layers of cells in depth).
For instance, a cut at the level of 72% can be established, so
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Figure 7: The subtraction of muon output from pion output
correlated with the total energy deposited in the detector.

that events above this cut can be identified as electrons.

Figure 8 shows the correlation between the fraction of en-
ergy deposited in the first layer and O,- — O, the subtrac-
tion of the pion output from the electron output. This figure
shows that the neural network response has also learned the
energy deposition profile in depth, as most events that de-
posited more than 72% of their energy in the first layer had
positive O,— — O, which means they have been declared as
electrons by the neural classifier. In addition, most of events
with negative O.- — O, (rejected electrons) deposited less
than 72% of their energy in this first layer.

The expert information on the physics involved in shower
development within the calorimeter can benchmark the neu-
ral processing, proving that the neural particle identification
is unbiased. Classically, high-energy physicists combine de-
tector information (total energy and shower development in
depth) with data from auxiliary detectors (Cherenkov coun-
ters (Green, 2000) and especial muon detectors are typi-
cally used for improving outsider particle detection for lower
energy values) for particle identification with calorimeters.
This classical methodology can validate the neural classifi-
cation (Seixas and Damazio, 1998), but it is quite hard to be
implemented online, since it it is based on correlations that
depend on beam. Also, classical methodology does not de-
pend only on calorimeter information and for smaller energy
beams it relies very much on auxiliary detector information,
which increases the difficulties for online operation. As it
will be shown next, neural processing works fine for different
energy values and meets the requirement for online outsider
rejection.

Table 1 shows the agreement between the classical method-
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Figure 8: The subtraction of pion output from electron output
correlated with the fraction of the energy deposited in the first
detector layer.

Table 1: Agreement between neural and classical method-
ologies for 100 GeV electron beam data.

Classical Neural Network

Method || electron pion muon

electron || 55.79% | 0.55% 0.04%
pion 1.61% | 11.78% | 0.15%
muon 0.11% 0.0% 29.98%

ology and the neural network classification, considering 100
GeV electron beam. Total energy cuts for muon detection
were placed at 20 GeV and electron/pion separation used
a cut in the energy deposited in the first layer at 72%. In
terms of contamination in the electron beam, both methods
agree that pion contamination is at the level of 11.78% and
outsider muons are present at a level of 29.98% of the data
sample. Only 55.79% of the data sample was identified as
electrons by both methods. The total agreement between the
two techniques is 97.55%, which is quite impressive.

Table 2 evaluates whether signal compaction by means of
trigger towers deteriorates the particle identification effi-
ciency. In this table, both neural classifier designs based on
trigger towers and full detector granularity (46 cell energies)
(Damazio and de Seixas, 1999) are compared for electron,
pion and muon selections. Results are shown for overall
agreement with classical methodology on particle detection
for each 100 GeV beam selection. As it can be inferred from
this table, for electron and pion beams, signal compaction
produced a gain in detection efficiency. On the contrary, for
muons some deterioration in performance is observed. Aver-
aging the efficiencies for the three beam selection, the com-
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pact classifier still performs better. In addition, for online
application, the reduction of the complexity of the neural
network, reducing the input nodes from 23 to 10, is quite
interesting as it can produce a faster classifier.

Table 2: Comparison between neural classifiers fed by trig-
ger towers or full calorimeter granularity for 100 GeV elec-
tron, pion and muon beams.

agreem. elec. pion muon | average.
gran. 95.30% | 94.37% | 99.50% | 96.39%
tower 97.55% | 97.62% | 97.80% | 97.66%

In order to check the dependency of the neural processing
on beam energy, the neural classifier using trigger tower in-
formation was evaluated for other energy beam selections,
covering low and high energy ranges. For both 100 and 180
GeV data, classical methodology employed the same cuts as
referred to above. For 20 GeV data, the total energy cut was
set to 7 GeV and the Cherenkov counter was used for per-
forming electron/pion separation. The agreement between
neural and classical methodologies is found in Table 3. Re-
sults are given in terms of overall agreement on each data
sample, considering electron, pion and muon beams. As it
can be depicted from this table, agreement is reduced for the
20 GeV case, being more significant for pion beam selec-
tion. This can be explained by the fact that, at 20 GeV, the
pion deposition profile is smaller in depth, being quite similar
to the electrons’ profile. In fact, 6.96% of the data sample,
although recognized as pions by the classical methodology
based on the Cherenkov counter, were identified as electrons
by the neural network, which results in such disagreement.

Table 3: Agreement between neural and classical method-
ologies for different beam energies (in GeV).

Ener. elec. pion muon tot
20 92.68% | 89.69% | 96.98% | 93.12%
100 || 97.55% | 97.62% | 97.80% | 97.66%
180 || 97.70% | 94.42% | 99.48% | 97.20%

To further evaluate this shower development effect for 20
GeV, Fig. 9 displays the distribution for the sum of the ener-
gies deposited in the second and the fourth towers (the beam
was entering into the calorimeter through the third layer,
so these are the neighbor towers with respect to the impact
point) for incoming particles from electron beam selections.
The figure at the top shows the distribution for such sum of
the trigger tower signals for 20 GeV data and the one at the
bottom the sum for 100 GeV. For 100 GeV, there is a rela-
tively clear separation that can be established between elec-
trons and muons (that only deposit energy in the main tower)
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Figure 9: The sum of the towers around the main tower for 20
GeV (top) and 100 GeV (bottom) electron beam selections.

and pions (that can leak energy to neighbor towers). For 20
GeV, separation is much harder, as only a small energy tail
is observed in the distribution. This means that, if the sum
of the towers around the maximum is an important informa-
tion for the neural discriminator, there is a clear explanation
for the decrease in performance of the neural classifier for 20
GeV data.

So, it is important to evaluate which detector information is
relevant to the neural classifier. To evaluate information rel-
evance the method was the following: for each neural net-
work trained (one for the 20 GeV case and other to the 100
GeV case), the inputs (one at a time) were substituted by their
mean value computed over the entire training set (including
patterns from electron, pion, and muon beams with their in-
herent outsider particles). Then, the mean square error the
outputs with relation to the outputs of the normal network
is calculated for the entire set. In mathematical terms, the
relevance of the input j is :

relevance(j) = %Ei:ﬂOutom(i) —Out;()]* (1)

Where Out,r4(4) is the output of the neural network for the
original data set and Out;(7) is the output of the same net-
work on the set with the input j changed by its mean. N is
the number of events on all data sets. If the input does not im-
ply in a reasonably discrimination, the difference between its
usage and the usage of the mean should not have an impor-
tant impact on the neural network output. In the other way, if
the input is important to the discrimination, then substituting
it by its mean would produce a great error.

Fig. 10 presents the result of such analysis for the 20 GeV
case and 100 GeV case. The first interesting point is that

68 Revista Controle & Automacao/Vol.15 no.1/Jan., Fev. e Margco 2004



main tower
/

side towers

Relevances (20 GeV)

towers

.— Mmain tower

side towers

Relevances (100 GeV)

towers

Figure 10: Relevances computed for each neural network in-
put for the 20 GeV case (top) and the 100 GeV case (bottom).

the second tower has an information which is very similar
to the fourth tower, since the particle energy spread can be
imagined, in a simplified way, as a circle around the maxi-
mum (third tower), so touching equally the second and the
fourth towers. This fact is recognized by the neural network
that gives a relative importance to the second tower but treats
the fourth one as redundant information by not assigning a
very high relevance to it. We can observe that only the tow-
ers from 2 to 4 have a greater importance. This could lead
to a procedure that uses just these towers as inputs to the
network. Since our approach tried to keep the possibility of
using the network for any tower, we decided to have all the
towers. Also, as can be seen, a greater importance was as-
signed to the third layer at 20 GeV case than at the 100 GeV
case, showing that most of the decision was taken based on
that tower for 20 GeV, while for the 100 GeV there is a rela-
tive greater importance given to the second tower. The rela-
tive importance of the second tower for 20 GeV with relation
to the maximum is more than 5 time smaller than the same
measurement for 100 GeV.

This demonstrates that the neural network was capable to
identify the smaller importance of the second (and fourth)
tower, but, anyway the network was not capable to have a so
high performance than in the higher energy cases. One pos-
sible solution is to usage of the fully calorimeter granularity,
in order to observe the different energy deposition profiles
inside a given tower. Using greater granularity at 20 GeV, it
was possible to reach an agreement of 95.22% for the elec-
tron beam, 93.34% for the pion beam and 97.48% for the
muon beam, 95.35% in the average, being comparable to the
100 GeV case. The cost of this procedure is, as said before,
a greater time for training and testing the neural network.

4 CONCLUSIONS

The neural methodology developed in this work employed
a topological mapping based on trigger towers as a prepro-
cessing method for a compact description of the information
provided by a high-energy calorimeter. This design approach
produced a high-efficiency particle discriminator that proved
also to be able to identify outsider particles (contamination)
in the data samples, even overcoming the wrong labeling of
events in the supervised training of the classifier due to the
existence of data contamination. This means that the back-
propagation method could be used even when there is some
inherent inconsistency in the data sample, which is an im-
portant result to the artificial intelligence field. Since it is un-
avoidable the wrong labeling of patterns, a design based on
unsupervised methods, such as Kohonen networks, can prob-
ably be applied to particle discrimination with calorimeters.
This shall be part of the developments of the future.

The results obtained in this paper have shown that a very
good performance for the higher energy range could be
achieved by the neural classifier, although some deterioration
had been verified for the lower energy range (20 GeV). This
was explained by the fact that part of the relevant informa-
tion was missing in the 20 GeV case, because of the smaller
energy spread in the calorimeter for 20 GeV energy parti-
cles. The neural network proved to be able to identify such
reduction in the relevance of some input towers information,
but, due to the complexity of the problem, the network could
not recover completely from this reduction in discrimination
power of the calorimeter towers. In such case, the usage of
the full calorimeter granularity could be a possible solution to
profit from the tower internal energy distributions (Damazio
et al., 2002). Another possibility would be to combine tow-
ers with the cells from the tower that had been hit by the
incoming particle beam.

The developed methodology can be applied for online oper-
ation, profiting from the inherent input space dimensionality
reduction and consequent increase in processing speed. This
online classifier is envisaged to be used in the next beam test
period of the calorimeter.
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