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ABSTRACT 
The paper studies the reliability (sensor and actuator 
failures) of the asymptotic disturbance rejection problem 
for linear time invariant systems using the factorization 
approach, assuming that not all loops fail simultaneously 
and that sensor and actuator do not fail simultaneously. The 
plant is two-output, i.e. two-vector-output, and the 
disturbance is at the measured output of the plant. 
Necessary and sufficient conditions are presented for the 
general problem and a simple solution is given for problems 
with stable plants. 

KEYWORDS: Disturbance rejection; Actuator failures; 
Sensor failures; Stability. 
 

RESUMO  

Este artigo estuda o problema da confiabilidade – com 
falhas de sensores e atuadores – da rejeição assintótica de 
distúrbios em sistemas lineares multivariáveis invariantes 
no tempo usando o método da fatoração das matrizes de 
transferência. Supõe-se que não ocorram falhas simultâneas 
de todas as malhas de realimentação e que não haja falha 
simultânea de algum sensor e atuador. A planta tem dois 
vetores de resposta e o distúrbio ocorre na resposta que é 
medida. Obtêm-se condições necessárias e suficientes para 
o problema geral e uma solução simples é dada quando a 
planta é estável. 

PALAVRAS-CHAVE: Rejeição de distúrbios; Falhas nos 
atuadores; Falhas nos sensores; Estabilidade. 

1. INTRODUCTION 
A system is reliable if it can tolerate failures of actuators 
and / or sensors, while retaining desired control system 
properties. 

The reliability problem has been studied, among others, by 
Ackerman (1985) and Siljak (1980), who addressed the 
stability problem, by Date & Chow (1989), who studied the 
pole placement problem. The reliable stability problem is 
addressed also with the name of integrity or partial 
integrity: see Fujita & Shimemura (1988), Desoer & 
Gündes (1988b) and Ferreira (1990). The reliable stability 
with integral controller was addressed by Morari (1985) 
and by Gündes & Kabuli (2001). The reliable servo system 
problem has been addressed in Ferreira (2001) and the 
tracking problem with sensor failures has been recently 
addressed in Ferreira (2002). 

In this paper, we address the reliable asymptotic rejection 
of disturbances at the measured output of the plant with 
sensor and actuator failures. Besides the solutions in the 
general cases corresponding to sensor and actuator failures, 
a simple solution is given when the plant is stable. An 
example illustrates the issues. We handle the continuous 
time problem, but the results are algebraic, so they can be 
easily adapted for discrete time systems.  

Notation:  

The set of  proper and stable rational functions, a principle 
ideal domain (Vidyasagar, 1985), is denoted by  S. The set 
of matrices with elements in  S  is denoted by  M(S). U(S) 
will denote the set of all unimodular matrices in M(S).  
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In the block diagram below the inputs and outputs are 
Laplace-transforms of multivariable signals.  w(s)  is the 
Laplace transform of the signal to be asymptotically 
rejected at the inverse Laplace-transform of  z(s). 
                        P1 (s) 
     P (s)  =                         represents the given plant. 
                          P2 (s)        
 
     
  C(s)   is the compensator to be designed.  

      Δ1  =  diag(δ11 , δ12 , …., δ1m ) 

      Δ2  =  diag(δ21 , δ22 , …., δ2 p ),   δi j =  1 or 0, but neither 
all  δ1j  nor all  δ2j  are zero.  

       Besides, if some  δ1k  (δ2 k)  = 0, then  δ2j  (δ1j)  = 1  for 
all  j. 

We say that the solution of the asymptotic disturbance 
rejection problem is reliable with respect to actuator 
(sensor) failures if it is achieved for all  allowed  Δ1  (Δ2 ). 
We will omit the argument (s) when convenient. 
 
 
P1,   P2    and   C  are proper rational matrices and have the 
appropriate dimensions. 

The exogenous signal  w  is assumed proper. 
    
                           P1                         N1 
Let    P  =                             =                    D –1   ,  a  right  
                          P2                          N2 

 

coprime factorization. 

All the factorizations of the paper will be over  M(S). 

Let  C =   Dl c
-1 Nl c  define  a  left coprime factorization of 

the compensator. (The factors of left coprime factorizations 
will always have a subscript  " l " ). Define C =  Nc  Dc

-1,      
P2 = Dl

-1 Nl2, right coprime  and  left coprime  
factorizations, respectively. 

Define     w  =   Dl w 
-1   Nl w  w0 ,  where  Dl w   is a known 

matrix,   Nl w   need not be known,  Dl w  and   Nl w  are  left 
coprime and   w0  is an arbitrary vector of real numbers. 

We use the standard definition of  closed loop stability. 
Notice that the closed loop is stable only if   N2  and  D  are 
right coprime: see for example Desoer and Gündes (1988a). 
It is known that  the closed loop is stable if and only if (see 
Vidyasagar (1985)): 

Dl c  D   +   Nl c N2     =     I                                                (1)        
Dl  Dc   +    Nl 2  Nc   =   I                                         (2) 

On the other hand, asymptotic rejection is achieved when   
z(s)  has no pole in the closed right plane.                 

2. THE RESULTS 
Consider sensor outages, provided that not all sensors fail 
simultaneously. Denote by  y*  the failed measured output. 
Define   P2 r   and  N2 r  correspondingly, i.e., with zero rows 
corresponding to the zero elements of y*. It is clear that  y* 
= P2 r  u   = N2 r D -1  u.  Let   Pr  and  Nr  denote the set of 
all allowed   P2r ‘s  and    N2 r ’s, respectively. It is clear, 
according to the assumption, that the zero matrix does not 
belong to  Pr  and  N r  . 

P1 

 
P2         

 
Δ1 

 
- C 

 
Δ2 

 
                              
z 
                                                            u 
 y                                       u*                               u 
 
 
 
                                                       
           y                                      
                                                 
                                                y*  +                
                                                           +  w 
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Lemma 1: Asymptotic rejection of  w   is reliable with 
respect to sensor failures if and only if the nominal closed 
loop is stable and 

i)       I  - Nl c ( N2 – N2 r)   ∈  U(S)   ∀  N2 r  ∈   N r 

ii)      N1 [ I  - Nl c ( N2 – N2 r)]-1  Nl c    Dl w –1   ∈  M(S)  ∀ N2 r   

         ∈   N r.        

Proof:  (We give a proof for completeness, it has appeared 
in a less general set-up in Ferreira (2001)). 

 Notice that if the nominal loop is stable, we have, in view 
of (1),   

Dl c D  + Nl c  N2 r =  I - Nl c ( N2 – N2 r ) ,                           (3)                                                                    

which implies the necessity of  i), and notice that this 
condition implies the right coprimeness of    N2 r    and   D. 
Next,  

u  = - C (w + y*)  = - ( I + C P2 r)-1 C  w  = - D[I  - Nl c ( N2 
– N2 r)]-1  Nl c  w, in view of (3), 

z  =  P1 u = - N1 [ I  - Nl c ( N2 – N2 r)]-1  Nl c    Dl w
–1  Nl w  w0  

∈  M(S) ∀ N2 r  ∈   N r  .     

Hence asymptotic rejection of  w  implies  ii).  

On the other hand, it is clear that loop nominally stable and 
satisfaction of conditions i)  and ii)  imply asymptotic 
disturbance rejection in the nominal situation and with 
failed loops, completing the proof.                                    ♦                                                                                        

We consider next actuator failures. Again, it is assumed that 
not all loops fail simultaneously. When actuator failures 
occur, the input to the plant will be  u* . The measured 
output will be  P2 u*  =: P2f u , where  P2f  is defined in the 
obvious way, i.e., with zero columns corresponding to the 
zero elements of  u* . Analogously, the controlled output 
will be  P1f  u . Let    P2f  =: Dl 

–1 Nl 2 f . The set of  all 
allowed     P2f ‘s   and  Nl 2 f ‘s   will be denoted by   Pf   and   
Nf ,  respectively . It is clear that it is assumed that the zero 
matrix does not belong to  Pf   and  Nf  . 

We have then 

Lemma 2: Asymptotic rejection of  w  is reliable with 
respect to  failures in the actuator if and only if the nominal 
loop is stable and 

i)  I -  (Nl 2 -  Nl 2 f) Nc     ∈ U(S)  ∀ Nl 2 f   ∈  Nf 

ii)  P1f   Nc   (I -  (Nl 2 -  Nl 2 f) Nc ) –1 Dl  Dl w 
–1   ∈ M(S) ∀ Nl 2 f   

∈  Nf. 

Proof: (A proof in a less general set-up was given in 
Ferreira (2001). 

Condition  i)  follows from  (2 ) , analogously as in the first 
lemma. Next, 

z  =  P1f  u =  -P1f C ( I + P2f  C) –1  w 

    =  - P1f  Nc    (Dl Dc + Nl 2 f  Nc ) –1  Dl  Dl w 
–1   Nl  w   w0  

    =  - P1f   Nc   (I -  (Nl 2 -  Nl 2 f) Nc ) –1 Dl  Dl w 
–1 Nl w   w0 

from which follows  ii). 

On the other hand, it is clear that loop nominally stable and 
satisfaction of conditions i)  and ii)  imply asymptotic 
disturbance rejection in the nominal situation and with 
failed loops, completing the proof.                                     ♦                        

The conditions of the two lemmas, especially the second,  
are neither much insightful nor practical from a calculation 
point of view. But with stable plants, we get a very practical 
result, as shown in the proof of the following result, in 
which we assume that actuator and sensor do not fail 
simultaneously. The proof of the sufficiency will be 
constructive. 

Theorem: Assume that the plant is stable. Then the 
asymptotic rejection of  w  with sensor (actuator) failures is 
possible if and only if it is possible without failures 

Proof:  Necessity is obvious. 

For sufficiency, according to the Youla-Bongiorno-Kucera 
parameterization, any  C  which stabilizes in the feedback 
loop a stable  P2  is given by the coprime factorizations 

C =  (I – Nc  P2) –1 Nc    =   Nc  (I – P2  Nc) –1 , 

Nc  arbitrary but such that   det (I – Nc  P2)  ≠  0. (Notice 
that    Nl c  =   Nc ). 

In the case of sensor failure, condition  i)  of Lemma 1 is 

I  - Nc ( P2 – P2 r) ∈  U(S)   ∀  P2 r  ∈  P r  ,                       (4) 

while condition  ii)  of the same Lemma is 

P1 [I  - Nc ( P2 – P2 r)]-1  N c  Dl w
–1 ∈ M(S)  ∀ P2 r  ∈ P r.   (5) 

Choose    Nc   such that   Nc  Dl w
 -1   ∈  M(S),    ⎢⎢Nc ⎢⎢  

sufficiently small  so that 
⎢⎢Nc  (P2  - P2 r ) ⎢⎢  <  1                                   (6)                        
              
It is clear that with this choice, (4) and (5) are satisfied. 
In the case of actuator failures, conditions  i)  and  ii)  of 
Lemma 2 are 
I -  (P 2 -  P 2 f) Nc     ∈ U(S)   ∀ P 2 f   ∈  Pf                       (7)       
and                           
P1f   Nc   (I -  (P 2 -  P 2 f) Nc ) –1 Dl w 

–1   ∈ M(S) ∀ P 2 f   ∈  Pf ,    
respectively.                  
This last is equivalent to 
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P1f  (I - Nc (P 2 -  P 2 f))–1 Nc 
 Dl w

–1  ∈ M(S) ∀ P 2 f  ∈ Pf .   (8) 
 
Choose  Nc  such that 
Nc Dl w

-1  ∈  M(S),  ⎢⎢Nc ⎢⎢ sufficiently small so that  ⎢⎢Nc 
(P2  - P2 f ) ⎢⎢  <  1, so (7) and (8) are satisfied. This 
completes  the proof.                                                         ♦                                                 
                                                 

3. CONCLUSION 
The paper studies the reliable asymptotic disturbance 
rejection problem with sensor and actuator failures with 
two-output plant and the disturbance entering the loop at 
the measured plant’s output. We use the factorization 
approach a la Vidysagar (1985) and establish the necessary 
and sufficient conditions for both  the sensor and actuator 
problems in the general case (unstable plant). When the 
plant is stable, a sufficient condition is obtained, the same 
compensator solving both the sensor and actuator problems 
(but nos simultaneously).   

                     REFERENCES 
 

Ackermann, J.  (1985). Sampled-Data Control Systems. 
Springer Verlag, New York. 

Date, R. A. & Chow, J. H.  (1989). A reliable coordinated 
decentralized control  system design. Proc. 28th. Confer. 
Decision and Control, pp. 1295-1300. Tampa, FL. 

Desoer, C. A.  &   Gündes, A.  N.  (1988a). Algebraic 
theory of linear time-invariant feedback systems with two-
input two-outpu plant and compensator. International 
Journal of Control, vol. 47, pp. 33-51. 

Desoer, C. A.  &  Gündes, A. N.  (1988b). Stability under 
sensor or actuator failure. Proc. 27th. Confer. on Decis. and 
Control, pp. 2148-2149. Austin, Texas. 

Ferreira, Pedro M. G.  (1990). Partial integrity. Intern. 
Journal of Control, vol 52, pp. 509-515. 

Ferreira, Pedro M. G.  (2001). On the reliable servo system. 
Proc. of the American Control Conference, pp. 1021-1025. 
Arlington, Virginia.  

Ferreira, Pedro M. G. (2002).  Tracking with sensor 
failures. Automatica, vol. 38, pp.1621-1623. 

Fujita, M.  &  Shimemura, E.  (1988). Integrity against 
arbitrary feedback-loop failure in linear multivariable 
control systems. Automatica, vol. 24, pp. 765-772. 

Gündes, A. N.  &  Kabuli, M. G. (2001).  Reliable 
decentralized integral - action controller design. IEEE 
Trans. on Autom. Control, vol. 46, pp. 296-301. 

Morari, M.  (1985). Robust stability of systems with 
integral controllers. IEEE Trans. on Autom. Control, vol. 
AC-30, pp. 574-577. 

Siljak, D. D.  (1980). Reliable control using multiple 
control systems. Intern. Journal of Control, vol. 31, pp. 
303-329. 

Vidyasagar, M. (1985). Control System Synthesis: A 
Factorization Approach. MIT Press, Cambridge, MA. 

 

 

 

 

 

 

 


