Acessibilidade / Reportar erro

Anti-windup design with guaranteed regions of stability for discrete-time linear systems with saturating controls

The purpose of this paper is to study the determination of stability regions for discrete-time linear systems with saturating controls through anti-windup schemes. Considering that a linear dynamic output feedback has been designed to stabilize the linear discrete-time system (without saturation), a method is proposed for designing an anti-windup gain that maximizes an estimate of the basin of attraction of the closed-loop system in the presence of saturation. It is shown that the closed-loop system obtained from the controller plus the anti-windup gain can be modeled by a linear system connected to a deadzone nonlinearity. From this model, stability conditions based on quadratic Lyapunov functions are stated. Algorithms based on LMI schemes are proposed for computing both the anti-windup gain and an associated stability region.

Anti-windup; control saturation; discrete-time systems; regions of stability


Sociedade Brasileira de Automática Secretaria da SBA, FEEC - Unicamp, BLOCO B - LE51, Av. Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, 13083-852 - Campinas - SP - Brasil, Tel.: (55 19) 3521 3824, Fax: (55 19) 3521 3866 - Campinas - SP - Brazil
E-mail: revista_sba@fee.unicamp.br