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RESUMO

A estabilidade de acionamentos por orientacao de campo
indireta de motores de inducdo quando sujeitos a er-
ros de estimativa da constante de tempo do rotor é
analisada. O artigo se concentra na estabilidade glo-
bal, estendendo os resultados de (Bazanella and Regi-
natto, 1998). Margens de robustez sdo determinadas e
diretivas para projeto do laco PI de velocidade sao obti-
das. A metodologia de anélise é aplicada a dois sistemas
distintos a fim de ilustrar as estimativas de margens de
estabilidade.

PALAVRAS-CHAVE: Margens de robustez, estabilidade
global assintética, controle indireto de orientacdo de
campo, motores de inducao.

ABSTRACT

The influence of the rotor time constant mismatch on
the stability of induction motors under indirect field ori-
ented control is analyzed. The paper focuses on the
global asymptotic stability property and extends the re-
sults of (Bazanella and Reginatto, 1998). Robustness
margins for global asymptotic stability with respect to
rotor time constant mismatches are obtained. The effect
of the PI settings in such robustness margins is clarified

Artigo submetido em 05/12/00
la. Revisio em 07/08/01; 2a. Revisdo em 28/01/02
Aceito sob recomendacdo do Ed. Assoc. Prof. Edson H. Watanabe

allowing to derive design guidelines. The methodology
is applied to two different induction motor drive systems
illustrating the stability margin estimates.

KEYWORDS: Robustness margins, global asymptotic
stability, indirect field-oriented control, induction mo-
tors.

1 INTRODUCTION

Indirect Field Oriented Control (IFOC) is a well es-
tablished and widely applied control technique when
dealing with high performance induction motor drives
(Novotny and Lorenz, 1986; Leonhard, 1985; Bose,
1987). The commissioning of an IFOC requires the
knowledge of the rotor time constant, a parameter
that can vary widely in practice (Krishnan and Do-
ran, 1987; Marino et al., 1993) and is known to cause
performance and stability problems.

Most results in the literature address this problem from
the application point of view focusing on the perfor-
mance issue without providing any guarantees about
stability. Only the recent works (Bazanella and Regi-
natto, 2000; Bazanella et al., 1999b; Bazanella and Regi-
natto, 1998; Ortega et al., 1996; Ortega et al., 1993; De
Wit et al., 1996) have aimed at filling in this gap by
providing IFOC with a firm theoretical foundation.

In (Bazanella and Reginatto, 1998; De Wit et al., 1996),
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a complete characterization of the equilibria with re-
spect to rotor time constant mismatches has been
given. Local stability properties of the equilibrium
point have been investigated in (Bazanella and Regi-
natto, 1998; Bazanella et al., 1999b) where conditions for
non-existence of both saddle-node and Hopf bifurcations
were provided. Guidelines for setting the PI gains in or-
der to guarantee a certain local stability margin with
respect to rotor time constant mismatches for a prac-
tical loading range were also given (see also (Bazanella
et al., 1999a)).

The robustness of IFOC against mismatches in the ro-
tor time constant has also been analyzed in (De Wit
et al., 1996), where the robust global stability of the
operating point has been established from a qualitative
standpoint. These results were generalized in (Bazanella
and Reginatto, 1998) where explicit formulae to con-
clude about robust global asymptotic stability were
derived. A passivity based analysis has been used
in (Espinosa-Perez et al., 1998) to conclude about ro-
bust global asymptotic stability in the special case of
zero load operation.

In this paper we concentrate on the robust global stabil-
ity property of IFOC with respect to rotor time constant
mismatches. We extend the results of (Bazanella and
Reginatto, 1998) and provide a deeper insight into the
characterization of stability margins for global asymp-
totic stability of IFOC. Section 2 formulates the problem
and provides the complete model for the induction mo-
tor with IFOC and PI rotor speed regulation. The model
is parameterized in the rotor time constant mismatch,
thus allowing for the robustness analysis. In section 3
the main tool for robustness analysis is developed. An
explicit condition to conclude about global asymptotic
stability is provided. This tool is explored in section 4 to
obtain robust global asymptotic stability margins with
respect to rotor time constant mismatches. Numerical
results are provided for two actual drive systems. Fi-
nally, section 5 provides a discussion on the results ob-
tained.

2 PROBLEM STATEMENT

We consider the current fed induction motor model ex-
pressed in a reference frame rotating at synchronous
speed. In terms of state variables, this model can be
written as (Novotny and Lorenz, 1986)

T1 = —c1x1 — U1T2 + causg (1)
.’bz = —C1X2 + U1 + CoU2 (2)
W = —csw+ cqles(Taus — Truz) — Ty (3)

where x; and zo represent the g-axis and d-axis ro-
tor fluxes, respectively, w is the rotor speed, uy, us
and ug stand for the inputs - the slipping frequency,
the d-axis and qg-axis stator current components, re-
spectively; 7, is the load torque, which is assumed
constant, and the ”c’parameters are all positive. In
particular, ¢; represents the inverse of the rotor time
constant, which is a critical parameter for indirect
field oriented control. For more information regard-
ing the induction motor modeling the reader is refered
to (Leonhard, 1985; Bose, 1987; Krause, 1986; Regi-
natto, 1993).

In speed regulation applications the indirect field ori-
ented control strategy is usually applied along with a
PI speed loop as described by the following equations
(Novotny and Lorenz, 1986; De Wit et al., 1996):

us

u = él— (4)
U2
Uz = uS (5)
t
ws = kyewlt) +k; / ew(C)dC (6)

where ¢; is an estimate for the inverse rotor time con-
stant ci, k, and k; are the gains of the PI speed con-
troller, w,.¢ is the constant reference velocity, e, =
Wres — w is the rotor velocity error, and ud is some con-
stant which defines the flux level.

The knowledge of ¢; is the key issue in IFOC. If ¢, = ¢,
that is, if we have a perfect estimate of the rotor time
constant, we say that the control is tuned, otherwise it
is said to be detuned. Accordingly, we define

¢1

- (7)

C1

A
K =

as the degree of tuning. It is clear that k > 0 and the
control is tuned if and only if kK = 1.

We parameterize the system (1)-(3) in closed-loop with
the control (4)-(6) (see Figure 1) in terms of the degree
of tuning «, yielding a fourth-order system that can be
described as:

1 = —c1o1+ a4 — H—COIZ‘QZM (8)
Uy
iy = —cixa 4 coud + %171174 (9)
2
iﬁg = —C3T3 — 04[05(:02:04 — u(z)xl) — Te] (10)
Ta = kexs— kpC4[C5(m2m4 - Ugml) - Te] (11)
where we have defined the new state variables x3 2
Wrep —w and 4 = uz and the new parameters
A A C3
ke = ki — kpcs, T. =T, + c_wref (12)
4
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Figure 1: Block diagram of IFOC.

Throughout the paper, both T}, and w,.s; are assumed
constant. Let z¢ = [2§ z§ x5 x5]7 represent a generic
equilibrium point for the closed loop system (8)-(11) and

define the change of coordinates z 2 2 — ¢, In this new
coordinates, the system is given by

. TSKC e\ KC

1 = —caz+ (e — 2 5 ! )za — z2(24 + x4)—01 (13)
ud u9

. KRC1 [ ¢ e

Z = —caz+ F[.’IZ1Z4 + z1(z4 + 23)] (14)

2
Z3 = —cazs — cacs|z2(za 4 x5) — z1uy + £524] (15)
24 = kezs — kpcacs[z2(z4 +2%) — Zlug + x524] (16)

The first issue for the stability analysis of (13)-(16)
is the characterization of equilibria. This characteriza-
tion has been completely provided in (Bazanella and
Reginatto, 1998; De Wit et al., 1996). The system
(13)-(16) has a unique equilibrium point for any s in
the interval (0, 3), regardless of the PI settings, load
conditions, and other parameters of the induction ma-
chine. Local stability properties of such equilibrium
point have been investigated in (Bazanella and Regi-
natto, 1998) and (Bazanella et al., 1999b). In (Bazanella
et al., 1999b) it was shown that for x in the interval
(0, 3), local stability of the equilibrium point may be
lost due to a Hopf bifurcation that may take place for
certain loading conditions and PI settings.

In this paper we concentrate on the global asymptotic
stability property of the closed-loop system (13)-(16).
We look for establishing allowable margins for the degree
of tuning x which preserve global asymptotic stability
for given PI settings and loading conditions.

3 A TOOL FOR ROBUST GLOBAL STA-
BILITY ANALYSIS

Let us define, for convenience of notation:

A KRG
a=— >0
U9C4Cs
2
A a‘k;
k=2 —2>0
Co

k
s 2 a?c3-2 > 0
k;

and consider the quadratic function

1
V(z) = EZT(Pl +mPy)z (17)
where
kp+%2 0 —ko —kpa
0 0 0 0
o= ~ks 0 Klks+aks —kpks (18)
—kpa 0 —kpks ks + o?
_ Inxz  02x2
Po= [ Oss> Oaxo } (19)

and m is a positive scalar to be assigned. The matrix

P, + mP; is a function of the degree of tuning k. It
is symmetric positive definite for any m > 0 and any
possible operating condition.

The time derivative of (17) along trajectories of the
closed-loop system (13)-(16) can be calculated as

Viz) = —oqz% — agzg — a4zZ — 2B132123

2 2
420142124 — MC12] — MC125

+2maa2124 + 2mnaa2024 (20)

where

e

Z—l(n +1)(k2es + kia) > 0
2

aq

e

Qs C—SaQ(kf,cQ + ki) >0

C2
A
oy = c2kpa >0

A Q. C C
Bys & —§[é(n + Dkja + i(k,%z + kia) — kpk;]

1
B4 2 §[kia + kf,@ + kpaci(k+1)] >0

T5C1IK

7]

Us

>

1

3le =

i1k
2ud

1>

The expression in (20) can be put into a quadratic form

V(z)=—-27Qz (21)
where
ap +cm 0 Biz  —Bia —mma
0= 0 cm 0 —M)2q
513 0 Qa3 0
—Bra—mma —mnag 0 ay

Even though the system is nonlinear, it is possible to ob-
tain such a quadratic form for the Lyapunov derivative
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thanks to the choice made for the Lyapunov function,
which implies cancelation of the nonquadratic terms in
equation (20). Let the second order polynomial p(m) be

defined by
p(m) 2 pam? + prm + po (22)

with coefficients given by

pr = —craz(niy +n5,)
p1 = —orasmsy — 2cia3Biama + Bismss + ciaszay
po = c(mazas — Oé3ﬁ124 - 5%3044)

The following result (Bazanella and Reginatto, 1998)
provides a robust stability test and establishes the ro-
bust global stability of the tuned condition.

Theorem 1 Let p(m) have distinct real roots my, mo
ordered such that my > mq. If

2
Biz — 13 A
c1G3

mo > mq (23)
then the origin of the system (13)-(16) is globally asymp-
totically stable.

<

The proof of Theorem 1 has been provided in (Bazanella
and Reginatto, 1998). It is included in this paper for
completeness.

Proof: It is clear from (21) that if there exists an m
such that all the leading minors of the symmetric matrix
@ are positive then the origin will be globally asymp-
totically stable. The leading minors of first and second
order are always positive, whereas the third and fourth
order minors are given respectively by

Az(m) = mer[(ar +mer)ag — Bis)
Ay(m) = mp(m)

If the roots of p(m) are real and distinct, then p(m) >
0, VYm € (mq,ms), since ps is negative; then Ay(m) is
positive in this interval. On the other hand, Az(m) >
0, Vm > myg, so that all the leading minors will be
positive for m € (max{mg,m;},ms). Condition (23)
guarantees that this interval is not empty.

O

The condition (23) establishes a simple verification pro-
cedure to conclude about global asymptotic stability for
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any particular IFOC based induction motor drive sys-
tem. Indirectly, it can also provide a way to charac-
terize robust global asymptotic stability margins with
respect to k for such systems, i.e., for a given PI set-
ting and loading condition find, if possible, a range of
k for which global asymptotic stability of system (13)-
(16) is guaranteed. That such a range does exist is a
direct consequence of Theorem 1, as stated in the next
Corollary.

Corollary 1 The equilibrium of the system (13)-(16)
is globally asymptotically stable provided that kK =1 or
sufficiently close to this value.

<

4 ANALYSIS OF ACTUAL DRIVE SYS-
TEMS

Theorem 1 provides a test for global stability. The crite-
rion (23) that determines the global stability depends on
all the parameters of the driving, which can be divided
into four sets:

e the physical parameters of the motor (the ’¢’ pa-
rameters);

e the setting of the PI (k, and k;);
e the load (r*);

e the mismatch in the rotor time constant (k).

In order to get a better insight to the problem and es-
tablish typical robustness margins, we apply the global
stability test to data taken from real induction motors.
We aim to study, for a given motor and a given setting
of the PI speed loop, what is the region of the param-
eter plane x x r* for which global stability is achieved.
To this end, we apply the test (23) with the ¢ param-
eters, k, and k; fixed, varying £ and r* in the set of
practical significance (x,7*) € (0, 3] x [0,2]. In order to
make a representative practical assessment of the global
stability test, we apply it to two very different motors:
a small motor (1hp) and a large motor (500 hp). The
parameters for each motor are given in the Appendix.

Furthermore, we perform this procedure for different
settings of the PI speed loop, in order to verify its in-
fluence on the robustness of the global stability. The
PI parameters are usually set in order to provide a de-
sired performance to the system under the assumption of
perfect tuning (k = 1), under which conditions the sys-
tem becomes a second-order linear system (Bazanella
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Figure 2: Parameter range of global asymptotic stability 05 1 1.5 2 25
*
for the 1HP motor, n = 0.5. r

et al., 1999b). We assume that the PI is always set Figure 3: Parameter range of global asymptotic stability
so that the tuned system’s transient response is over for the 1HP motor, n = 5.

damped and is 7 times faster than the rotor time con-

stant ¢1, that is, the eigenvalues of the tuned system are

assigned as Ay = Ay = —nc;. Then the parameter 7 is

used to represent the PI setting.

4.1 A small motor

We take data from a three phase induction motor, with
1 HP nominal power output and 220 V nominal line 18}
voltage. Let the parameters of the PI be chosen such
that the transient response of the tuned system is over
damped and dominated by a time constant which is half rar
the rotor time constant, that is, n = 0,5. Then we apply 1ok
the global stability test for x and r* varying in steps of
0.1. Figure 2 shows the region of the parameter space
kx1* for which the test gives a positive answer. That is, 08
the operating point is guaranteed to be globally asymp-
totically stable for all load and parameter mismatch in
the dotted region.

XXXXXXXXX
L

XXXXXXXXKXXXKHXKXKKXK XXX KKK XXX
L

041
PSfrag replacements .|
Figures 3 and 4 show the parameter values with guar-
anteed global asymptotic stability for n = 5 and n = 10 If 05
respectively. "

T
XK XXX XX XXX XX XXX XXX XX XXX XX XXX XXX XXX XXX XX X X X X X

It is clear that for moderate values of n, which means
that the PI settings are such that the closed-loop system
is not too fast, the region of global stability encompasses
a large range of mismatches in the rotor time constant
for all loading conditions. As one tries to make the sys-
tem faster by re-tuning the PI speed controller, this re-

Figure 4: Parameter range of global asymptotic stability
for the 1HP motor, n = 10.
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Figure 5: Parameter range of global asymptotic stability
for the 500HP motor, n = 0.5.

gion shrinks. For values of 7 larger than ten (that is,
closed-loop performance faster than ten times the rotor
time constant) global asymptotic stability is guaranteed
only if the estimate of the rotor time constant is very
good (k = 1).

4.2 A large motor

We take data from a three phase induction motor, with
500 HP nominal power output and 380 V nominal line
voltage. We apply the global stability test for different
PI settings defined in the same way as in the 1H P mo-
tor, again with x and r* varying in steps of 0.1. Figures
5, 6 and 7 show the parameter values with guaranteed
global asymptotic stability for n = 0.5, 7 = 5 and n = 10
respectively.

The results for this large motor are more favorable than
for the small motor in the previous example, as the nor-
malized range of parameters for which global asymp-
totic stability is guaranteed are considerably larger. Yet,
these ranges still get smaller as one tries to make the
system faster. For n = 5 only overestimates can be tol-
erated, as the range of k in the figure starts very close
to unity.

5 CONCLUDING REMARKS

We have provided a test for robust global asymptotic
stability which can be easily implemented provided the
physical parameters of the motor are known. This test
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XXX 1 0.2
Sfragireplacements S SIS
|

120202620702 % 0

0
K 0.5 1
,r*

1.5 2 25

Figure 6: Parameter range of global asymptotic stability
for the 500HP motor, n = 5.

provides allowable margins of errors in the rotor time
constant for any given IFOC drive.

Rules of thumb for tuning the PI speed loop can also be
derived from these results. If global asymptotic stabil-
ity is required (as in drives subject to large disturbances
and/or large set-point variations) then the speed loop
should not be made too fast, as the robustness margins
would become too small. These results and rules rein-
force the results on local asymptotic stability provided in
previous works (Bazanella et al., 1999b; Bazanella and
Reginatto, 1998; Espinosa-Perez et al., 1998; De Wit
et al., 1996).

A DATA FOR THE 1 HP MOTOR

c1 | 137571 [ ey | 1.56 Q
c3 [ 05957t | s | 118 kg7 tom™2
cs | 2.86 ud | 4 A
B DATA FOR THE 500 HP MOTOR
c | 1.28 571 c | 0.183 Q)
cs | 0.0904s7T [ ¢q | 0181 kg Tom™2
cs | 2.93 ud | 70 A
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Figure 7: Parameter range of global asymptotic stability
for the 500HP motor, n = 10.
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