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ABSTRACT

This paper presents a detailed discussion about the conver-
gence properties of a variable structure controller for un-
certain single-input–single-output nonlinear systems (SISO).
The adopted approach is based on the sliding mode con-
trol strategy and enhanced by an adaptive fuzzy algorithm to
cope with modeling inaccuracies and external disturbances
that can arise. The boundedness of all closed-loop signals
and the convergence properties of the tracking error are an-
alytically proven using Lyapunov’s direct method and Bar-
balat’s lemma. This result corrects flawed conclusions previ-
ously reached in the literature. An application of this adap-
tive fuzzy sliding mode controller to a second-order nonlin-
ear system is also presented. The obtained numerical results
demonstrate the improved control system performance.

KEYWORDS: Nonlinear Control, Sliding Modes, Fuzzy
Logic, Adaptive Methods

RESUMO

Controle por Modos Deslizantes Nebuloso Adaptativo de
Sistemas Incertos Não-lineares
Este trabalho apresenta uma discussão detalhada acerca das
propriedades de convergência de um controlador à estrutura
variável para sistemas incertos com uma entrada e uma saída
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(SISO). A abordagem adotada baseia-se na estratégia de con-
trole por modos deslizantes e incorpora um algoritmo difuso
adaptativo para compensar imprecisões de modelagem e per-
turbações externas que possam ocorrer. A limitação de to-
dos os sinais do sistema em malha-fechada e as propriedades
de convergência do erro de rastreamento são demonstradas
analiticamente através do método direto de Liapunov e do
lema de Barbalat. Este resultado corrige conclusões errôneas
apresentadas anteriormente na literatura. Uma aplicação do
controlador por modos deslizantes difuso adaptativo em um
sistema não-linear de segunda ordem também é discutida. Os
resultados obtidos numericamente confirmam o desempenho
do controlador.

PALAVRAS-CHAVE: Controle Não-Linear, Modos Deslizan-
tes, Lógica Difusa, Métodos Adaptativos

1 INTRODUCTION

Sliding mode control, due to its robustness against model-
ing imprecisions and external disturbances, has been suc-
cessfully employed to nonlinear control problems. But a
known drawback of conventional sliding mode controllers
is the chattering effect. To overcome the undesired effects
of the control chattering, Slotine (1984) proposed the adop-
tion of a thin boundary layer neighboring the switching sur-
face, by replacing the sign function by a saturation function.
This substitution can minimize or, when desired, even com-
pletely eliminate chattering, but turns perfect tracking into
a tracking with guaranteed precision problem, which actu-
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ally means that a steady-state error will always remain. In
order to enhance the tracking performance inside the bound-
ary layer, some adaptive strategy should be used for uncer-
tainty/disturbance compensation.

Due to the possibility to express human experience in an al-
gorithmic manner, fuzzy logic has been largely employed
in the last decades to both control and identification of dy-
namical systems. In spite of the simplicity of this heuristic
approach, in some situations a more rigorous mathematical
treatment of the problem is required. Recently, much effort
has been made to combine fuzzy logic with nonlinear con-
trol methodology. In (Wang, 1993) a globally stable adaptive
fuzzy controller was proposed using Lyapunov stability the-
ory to develop the adaptive law. Combining fuzzy logic with
sliding mode control, Palm (1994) used the switching vari-
able s to define a fuzzy boundary layer. Some improvements
to this control scheme appeared in (Chai and Tong, 1999)
and (Berstecher et al., 2001). Wong et al. (2001) proposed a
fuzzy logic controller which combines a sliding mode con-
troller and a proportional plus integral controller. A sliding
mode controller that incorporates a fuzzy tuning technique
was analyzed in (Ha et al., 2001). By defining a general-
ized error transformation as a complement to the conven-
tional switching variable, Liang and Su (2003) developed a
stable fuzzy sliding mode control scheme. Cheng and Chien
(2006) proposed an adaptive sliding mode controller based
on T–S fuzzy models and Wu and Juang (2008) showed that
fuzzy sliding surfaces can be established by solving a set of
linear matrix inequalities.

A robust and very attractive approach was proposed in (Yoo
and Ham, 1998). Yoo and Ham (1998) used fuzzy infer-
ence systems to approximate the unknown system dynamics
within the sliding mode controller. Su et al. (2001), Wang
et al. (2001), Chang et al. (2002) and also Kung and Chen
(2005) suggested some improvements to this methodology.
A drawback of this approach is the adoption of the state vari-
ables in the premise of the fuzzy rules. For higher-order sys-
tems the number of fuzzy sets and fuzzy rules becomes in-
credibly large, which compromises the applicability of this
technique.

In this paper, an adaptive fuzzy sliding mode controller (AF-
SMC) is proposed to deal with imprecise single-input-single-
output (SISO) nonlinear systems. The proposed control
scheme is based on (Yoo and Ham, 1998) but here an es-
timate of system dynamics is assumed to be known and the
adaptive fuzzy inference system is adopted to compensate for
modeling imprecisions and external disturbances. In order to
reduce the number of fuzzy sets and rules and consequently
simplify the design process, the switching variable s, instead
of the state variables, is considered in the premise of the
fuzzy rules. By replacing the sign function by the saturation

function, the undesirable chattering effects are completely
avoided. This control strategy has already been success-
fully applied to the dynamic positioning of remotely operated
underwater vehicles (Bessa et al., 2008; Bessa, Dutra and
Kreuzer, 2007) and to the chaos control in a nonlinear pendu-
lum (Bessa, De Paula and Savi, 2007; De Paula et al., 2007).
In this work, using Lyapunov’s second method (also called
Lyapunov’s direct method) and Barbalat’s lemma, the bound-
edness of all closed-loop signals and some convergence prop-
erties of the tracking error are analytically proven for an nth-
order uncertain SISO nonlinear system. This result also cor-
rects a minor flaw in Slotine’s work, by showing that the
bounds of the error vector are different from the bounds pro-
vided in (Slotine, 1984). A simulation example is also pre-
sented in order to demonstrate that, when compared with a
conventional sliding mode controller, the AFSMC shows an
improved performance.

2 ADAPTIVE FUZZY SLIDING MODE
CONTROLLER

Consider a class of nth-order nonlinear systems:

x(n) = f(x) + b(x)u+ d (1)

where u is the control input, the scalar variable x is the
output of interest, x(n) is the n-th time derivative of x,
x = [x, ẋ, . . . , x(n−1)] is the system state vector, d repre-
sents external disturbances and unmodeled dynamics, and
f, b : R

n → R are both nonlinear functions.

In respect of the dynamic system presented in equation (1),
the following assumptions will be made:

Assumption 1 The function f is unknown but bounded by a
known function of x, i.e. |f̂(x) − f(x)| ≤ F (x) where f̂ is
an estimate of f .

Assumption 2 The input gain b is unknown but positive and
bounded, i.e. 0 < bmin ≤ b(x) ≤ bmax.

Assumption 3 The disturbance d is unknown but bounded,
i.e. |d| ≤ δ.

The proposed control problem is to ensure that, even in
the presence of external disturbances and modeling impre-
cisions, the state vector x will follow a desired trajectory
xd = [xd, ẋd, . . . , x

(n−1)
d ] in the state space.

Regarding the development of the control law the following
assumptions should also be made:

Assumption 4 The state vector x is available.
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Assumption 5 The desired trajectory xd is once differen-
tiable in time. Furthermore, every element of vector xd, as
well as x(n)

d , is available and with known bounds.

Now, let x̃ = x − xd be defined as the tracking error in the
variable x, and

x̃ = x − xd = [x̃, ˙̃x, . . . , x̃(n−1)]

as the tracking error vector.

Consider a sliding surface S defined in the state space by the
equation s(x̃) = 0, with the function s : R

n → R satisfying

s(x̃) =

(

d

dt
+ λ

)n−1

x̃ (2)

or conveniently rewritten as

s(x̃) = Λ
T
x̃ (3)

where Λ = [cn−1λ
n−1, . . . , c1λ, c0] and ci states for bino-

mial coefficients, i.e.

ci =

(

n− 1

i

)

=
(n− 1)!

(n− i− 1)! i!
, i = 0, 1, . . . , n− 1

(4)

which makes cn−1λ
n−1 + · · ·+ c1λ+ c0 a Hurwitz polyno-

mial.

From equation 4, it can be easily verified that c0 = 1, for
∀n ≥ 1. Thus, for notational convenience, the time deriva-
tive of s will be written in the following form:

ṡ = Λ
T ˙̃x = x̃(n) + Λ

T
u x̃ (5)

where Λu = [0, cn−1λ
n−1, . . . , c1λ].

Now, let the problem of controlling the uncertain nonlinear
system (1) be treated in a Filippov’s way (Filippov, 1988),
defining a control law composed by an equivalent control
û = b̂−1(−f̂ − d̂ + x

(n)
d − Λ

T
u x̃) and a discontinuous term

−K sgn(s):

u = b̂−1
(

−f̂ − d̂+ x
(n)
d − Λ

T
u x̃

)

−K sgn(s) (6)

where d̂ is an estimate of d, b̂ =
√
bmaxbmin is an estimate of

b, K is a positive gain and sgn(·) is defined as

sgn(s) =







−1 if s < 0
0 if s = 0
1 if s > 0

(7)

Based on Assumptions 1–3 and considering that β−1 ≤
b̂/b ≤ β, where β =

√

bmax/bmin, the gain K should be
chosen according to

K ≥ βb̂−1(η + δ + |d̂| + F ) + (β − 1)|û| (8)

where η is a strictly positive constant related to the reaching
time.

Based on the sliding mode methodology (Slotine and Li,
1991), it can be easily verified that (6) is sufficient to impose
the sliding condition:

1

2

d

dt
s2 = sṡ = (x̃(n) + Λ

T
u x̃)s = (x(n) − x

(n)
d + Λ

T
u x̃)s

= (f + bu+ d− x
(n)
d + Λ

T
u x̃)s

=
[

f + bb̂−1(−f̂ − d̂+ x
(n)
d − Λ

T
u x̃)+

− bK sgn(s) + d− (x
(n)
d − Λ

T
u x̃)

]

s

Recalling that û = b̂−1(−f̂ − d̂+ x
(n)
d − Λ

T
u x̃), and noting

that f = f̂ − (f̂ − f) and d = d̂− (d̂− d), one has

1

2

d

dt
s2 = −

[

(f̂ − f) + (d̂− d) + b̂û− bû+ bK sgn(s)
]

s

Thus, considering assumptions 1–3 and defining K accord-
ing to (8), it follows that

1

2

d

dt
s2 = sṡ ≤ −η|s|

Then, dividing by |s| and integrating both sides over the in-
terval 0 ≤ t ≤ ts, where ts is the time required to hit S,
gives

∫ ts

0

s

|s| ṡ dt ≤ −
∫ ts

0

η dt

|s(t = ts)| − |s(t = 0)| ≤ −η ts

In this way, noting that |s(t = ts)| = 0, one has
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ts ≤ |s(t = 0)|
η

and, consequently, the finite time convergence to the sliding
surface S.

In order to obtain a good approximation to the disturbance d,
the estimate d̂will be computed directly by an adaptive fuzzy
algorithm.

The adopted fuzzy inference system was the zero order TSK
(Takagi–Sugeno–Kang) (Jang et al., 1997), whose rules can
be stated in a linguistic manner as follows:

If s is Sr then d̂r = D̂r ; r = 1, 2, . . . , N

where Sr are fuzzy sets, whose membership functions could
be properly chosen, and D̂r is the output value of each one
of the N fuzzy rules.

At this point, it should be highlighted that the adoption of
the switching variable s in the premise of the rules, in-
stead of the state variables as in (Yoo and Ham, 1998; Su
et al., 2001; Wang et al., 2001; Chang et al., 2002; Kung and
Chen, 2005), leads to a smaller number of fuzzy sets and
rules, which simplifies the design process. Considering that
external disturbances are independent of the state variables,
the choice of a combined tracking error measure s also seems
to be more appropriate in this case.

Considering that each rule defines a numerical value as out-
put D̂r, the final output d̂ can be computed by a weighted
average:

d̂(s) =

∑N

r=1 wr · d̂r
∑N

r=1 wr

(9)

or, similarly,

d̂(s) = D̂
T
Ψ(s) (10)

where, D̂ = [D̂1, D̂2, . . . , D̂N ] is the vector contain-
ing the attributed values D̂r to each rule r, Ψ(s) =
[ψ1(s), ψ2(s), . . . , ψN (s)] is a vector with components
ψr(s) = wr/

∑N

r=1 wr and wr is the firing strength of each
rule.

To ensure the best possible estimate d̂(s) to the disturbance
d, the vector of adjustable parameters can be automatically
updated by the following adaptation law:

˙̂
D = ϕsΨ(s) (11)

where ϕ is a strictly positive constant related to the adapta-
tion rate.

Equation (11) also shows that there is no adaptation when

states are on the sliding surface, ˙̂
D = 0 for s = 0.

It’s important to emphasize that the chosen adaptation law,
equation (11), must not only provide a good approximation
to disturbance d but also not compromise the attractiveness
of the sliding surface, as will be proven in the following the-
orem.

Theorem 1 Consider the uncertain nonlinear system (1)
and assumptions 1–5. Then, the controller defined by (6),
(8), (10) and (11) ensures the convergence of the tracking
error vector to the sliding surface S.

Proof: Let a positive-definite function V1 be defined as

V1(t) =
1

2
s2 +

1

2ϕ
∆

T
∆

where ∆ = D̂ − D̂
∗ and D̂

∗ is the optimal parameter vec-
tor, associated to the optimal estimate d̂∗(s). Thus, the time
derivative of V1 is

V̇1(t) = sṡ+ ϕ−1
∆

T
∆̇

= (x̃(n) + Λ
T
u x̃)s+ ϕ−1

∆
T
∆̇

= (x(n) − x
(n)
d + Λ

T
u x̃)s+ ϕ−1

∆
T
∆̇

=
(

f + bu+ d− x
(n)
d + Λ

T
u x̃

)

s+ ϕ−1
∆

T
∆̇

=
[

f + bb̂−1(−f̂ − d̂+ x
(n)
d − Λ

T
u x̃)+

− bK sgn(s) + d− (x
(n)
d − Λ

T
u x̃)

]

s + ϕ−1
∆

T
∆̇

Defining the minimum approximation error as ε = d̂∗(s)−d,
recalling that û = b̂−1(−f̂ − d̂ + x

(n)
d − Λ

T
u x̃), and noting

that ∆̇ = ˙̂
D, f = f̂ − (f̂ − f) and d = d̂ − (d̂ − d), V̇1

becomes:

120 Revista Controle & Automação/Vol.21 no.2/Março e Abril 2010



V̇1(t) = −
[

(f̂ − f) + ε+ (d̂− d̂∗) + b̂û− bû+

+ bK sgn(s)
]

s+ ϕ−1
∆

T ˙̂
D

= −
[

(f̂ − f) + ε+ (D̂ − D̂
∗)TΨ(s) + b̂û− bû+

+ bK sgn(s)
]

s+ ϕ−1
∆

T ˙̂
D

= −
[

(f̂ − f) + ε+ b̂û− bû+ bK sgn(s)
]

s+

+ ϕ−1
∆

T
( ˙̂
D − ϕsΨ(s)

)

Thus, by applying the adaptation law (11) to ˙̂
D:

V̇1(t) = −
[

(f̂ − f) + ε+ b̂û− bû+ bK sgn(s)
]

s

Furthermore, considering assumptions 1–3, defining K ac-
cording to (8) and verifying that |ε| = |d̂∗ − d| ≤ |d̂− d| ≤
|d̂| + δ, it follows

V̇1(t) ≤ −η|s| (12)

which implies V1(t) ≤ V1(0) and that s and ∆ are bounded.
Considering that s(x̃) = Λ

T
x̃, it can be verified that x̃ is also

bounded. Hence, equation (5) and Assumption 5 implies that
ṡ is also bounded.

Integrating both sides of (12) shows that

lim
t→∞

∫ t

0

η|s| dτ ≤ lim
t→∞

[V1(0) − V1(t)] ≤ V1(0) <∞

Since the absolute value function is uniformly continuous, it
follows from Barbalat’s lemma (Khalil, 2001) that s → 0 as
t → ∞, which ensures the convergence of the tracking error
vector to the sliding surface S. 2

Remark 1 Although Theorem 1 only guarantees the asymp-
totic convergence to S, the control law (6) actually ensures
the finite time convergence to S, as previously verified by
imposing the sliding condition to system states, and, conse-
quently, the exponential stability of the closed-loop system.

In spite of the demonstrated properties of the controller, the
presence of a discontinuous term in the control law leads to
the well known chattering effect. In order to avoid these un-
desirable high-frequency oscillations of the controlled vari-
able, the sign function can be replaced by a saturation func-
tion (Slotine, 1984), defined as:

sat(s/φ) =

{

sgn(s) if |s/φ| ≥ 1
s/φ if |s/φ| < 1

(13)

This substitution smoothes out the control discontinuity and
introduces a thin boundary layer, Sφ, in the neighborhood of
the switching surface

Sφ =

{

x̃ ∈ R
n
∣

∣ |s(x̃)| ≤ φ

}

where φ is a strictly positive constant that represents the
boundary layer thickness.

Thus, the resulting control law can be stated as follows

u = b̂−1
(

−f̂ − d̂+ x
(n)
d − Λ

T
u x̃

)

−K sat

(

s

φ

)

(14)

The proof of the boundedness of all closed-loop signals relies
on the following lemma:

Lemma 2 Let the boundary layer be defined as Sφ = {x̃ ∈
R

n | |s(x̃)| ≤ φ}, then for all trajectories starting inside
Sφ, the tracking error vector will exponentially converge to
a closed region Φ = {x̃ ∈ R

n | |x̃(i)| ≤ ζiλ
i−n+1φ, i =

0, 1, . . . , n− 1}, with ζi defined according to

ζi =

{

1 for i = 0

1 +
∑i−1

j=0

(

i

j

)

ζj for i = 1, 2, . . . , n− 1.

(15)

Proof: From the definition of s, equation (3), and consider-
ing that |s(x)| ≤ φmay be rewritten as −φ ≤ s(x) ≤ φ, one
has

−φ ≤ c0x̃
(n−1)+c1λx̃

(n−2)+· · ·+cn−2λ
n−2 ˙̃x+cn−1λ

n−1
x̃ ≤ φ

(16)

Multiplying (16) by eλt yields

−φeλt ≤ dn−1

dtn−1
(x̃eλt) ≤ φeλt (17)

Thus, integrating (17) n− 1 times between 0 and t gives
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−
φ

λn−1
e

λt +

„

dn−2

dtn−2
(x̃e

λt)
˛

˛

t=0
+

φ

λ

«

tn−2

(n − 2)!
+ · · ·+

+

„

x̃(0) +
φ

λn−1

«

≤ x̃e
λt

≤
φ

λn−1
e

λt+

+

„

dn−2

dtn−2
(x̃e

λt)
˛

˛

t=0
+

φ

λ

«

tn−2

(n − 2)!
+· · ·+

„

x̃(0) +
φ

λn−1

«

(18)

Furthermore, dividing (18) by eλt, it can be easily verified
that, for t→ ∞,

− φ

λn−1
≤ x̃(t) ≤ φ

λn−1
(19)

Considering the (n− 2)th integral of (17)

−
φ

λn−2
e

λt
−

„˛

˛

˛

˛

dn−2

dtn−2
(x̃e

λt)

˛

˛

˛

˛

t=0

+
φ

λ

«

tn−3

(n − 3)!
− · · ·

−

„

˛

˛ ˙̃x(0)
˛

˛ +
φ

λn−2

«

≤
d

dt
(x̃e

λt) ≤
φ

λn−2
e

λt+

„˛

˛

˛

˛

dn−2

dtn−2
(x̃e

λt)

˛

˛

˛

˛

t=0

+
φ

λ

«

tn−3

(n − 3)!
+· · ·+

„

˛

˛ ˙̃x(0)
˛

˛ +
φ

λn−2

«

(20)

and noting that d(x̃eλt)/dt = ˙̃xeλt + x̃λeλt, by imposing the
bounds (19) to (20) and dividing again by eλt, it follows that,
for t→ ∞,

−2
φ

λn−2
≤ ˙̃x(t) ≤ 2

φ

λn−2
(21)

Now, applying the bounds (19) and (21) to the (n − 3)th

integral of (17) and dividing once again by eλt, it follows
that, for t→ ∞,

−6
φ

λn−3
≤ ¨̃x(t) ≤ 6

φ

λn−3
(22)

The same procedure can be successively repeated until the
bounds for x̃(n−1) are achieved:

−
(

1 +

n−2
∑

i=0

(

n− 1

i

)

ζi

)

φ ≤ x̃(n−1) ≤
(

1 +
n−2
∑

i=0

(

n− 1

i

)

ζi

)

φ (23)

where the coefficients ζi (i = 0, 1, . . . , n − 2) are related
to the previously obtained bounds of each x̃(i) and can be
summarized as in (15).

In this way, by inspection of the integrals of (17), as well as
(19), (21), (22), (23) and the other omitted bounds, it follows
that the tracking error vector will exponentially converge to
a closed region Φ = {x̃ ∈ R

n | |x̃(i)| ≤ ζiλ
i−n+1φ, i =

0, 1, . . . , n− 1}. 2

Remark 2 Lemma 2 corrects a minor error in (Slotine,
1984). Slotine proposed that the bounds for x̃(i) could be
summarized as |x̃(i)| ≤ 2iλi−n+1φ, i = 0, 1, . . . , n− 1. Al-
though both results lead to same bounds for x̃ and ˙̃x, they
start to differ from each other when the order of the derivative
is higher than one, i > 1. For example, according to Slotine
the bounds for the second derivative would be | ¨̃x| ≤ 4φλ3−n

and not |¨̃x| ≤ 6φλ3−n, as demonstrated in Lemma 2.

The mistake in Slotine’s work concerns the numeric coeffi-
cient in the tracking error bounds. Slotine (1984) did not con-
sidered the numeric value of the previously obtained bounds
to compute the bounds of x̃(i). For example, if the coefficient
2 in | ˙̃x| ≤ 2φ/λn−2 was not take into account to estimate the
bounds of ¨̃x, Lemma 2 would also lead to same erroneous re-
sult. In (Slotine, 1984) this error also occurs with the bounds
of every derivative whose order is higher than one, i > 1. Al-
though the bounds proposed by Slotine (1984) are incorrect,
they are until now widely evoked to establish the bounded-
ness and convergence properties of many control schemes
(Sharaf-Eldin et al., 1999; Zhang and Panda, 1999; Liang
and Su, 2003; Wang et al., 2004; Chen et al., 2005; Wang
and Su, 2006; Zhang and Yi, 2007).

Finally, the boundedness and convergence properties of the
tracking error are established in Theorem 3.

Theorem 3 Consider the uncertain nonlinear system (1)
and assumptions 1–5. Then, the controller defined by (14),
(8), (10) and (11) ensures the finite-time convergence of
tracking error vector the to the boundary layer and its ex-
ponential convergence to the closed region Φ = {x̃ ∈
R

n | |x̃(i)| ≤ ζiλ
i−n+1φ, i = 0, 1, . . . , n− 1}.

Proof: Let a positive-definite Lyapunov function candidate
V2 be defined as

V2(t) =
1

2
s2φ

where sφ is a measure of the distance of the current state to
the boundary layer, and can be computed as follows
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sφ = s− φ sat

(

s

φ

)

Noting that sφ = 0 inside the boundary layer and ṡφ = ṡ, we
get V̇2(t) = 0 inside Sφ, and outside

V̇2(t) = sφṡφ = sφṡ = (x(n) − x
(n)
d + Λ

T
u x̃)sφ

=
(

f + bu+ d− x
(n)
d + Λ

T
u x̃

)

sφ

It can be easily verified that outside the boundary layer the
control law (14) takes the following form:

u = b̂−1
(

−f̂ − d̂+ x
(n)
d − Λ

T
u x̃

)

−K sgn(sφ)

Thus, the time derivative V̇2 can be written as

V̇2(t) =
[

f+bb̂−1(−f̂− d̂+x
(n)
d −Λ

T
u x̃)−bK sgn(sφ)+

+ d− (x
(n)
d − Λ

T
u x̃)

]

sφ

Recalling that û = b̂−1(−f̂ − d̂+ x
(n)
d − Λ

T
u x̃), and noting

that f = f̂ − (f̂ − f) and d = d̂− (d̂− d), one has

V̇2(t) = −
[

(f̂ − f) + (d̂− d) + b̂û− bû+ bK sgn(sφ)
]

sφ

So, considering Assumptions 1–3 and defining K according
to (8), V̇2 becomes:

V̇2(t) ≤ −η|sφ|

which implies V2(t) ≤ V2(0) and that sφ is bounded. From
the definition of sφ, it can be easily verified that s is bounded.
Considering that s(x̃) = Λ

T
x̃, it can be verified that x̃ is also

bounded. Hence, equation (5) and Assumption 5 implies that
ṡ is also bounded.

The finite-time convergence of the states to the boundary
layer can be shown by recalling that

V̇2(t) =
1

2

d

dt
s2φ = sφṡφ ≤ −η|sφ|

Then, dividing by |sφ| and integrating both sides over the
interval 0 ≤ t ≤ tφ, where tφ is the time required to hit Sφ,
gives

∫ tφ

0

sφ

|sφ|
ṡφ dt ≤ −

∫ tφ

0

η dt

|sφ(t = tφ)| − |sφ(t = 0)| ≤ −η tφ

In this way, noting that |sφ(t = tφ)| = 0, one has

tφ ≤ |sφ(t = 0)|
η

which guarantees the attractiveness of the boundary layer.
Thus, it follows from Lemma 2 that, for t ≥ 0, states will
exponentially converge to the closed region Φ. This ensures
the boundedness of all closed-loop signals and completes the
proof. 2

3 ILLUSTRATIVE EXAMPLE

To demonstrate the improved performance of the adaptive
fuzzy sliding mode controller (AFSMC) over the conven-
tional sliding mode controller (SMC), consider a damped
Duffing equation subjected to an external disturbance d

ẍ+ 0.2ẋ+ x3 − x = u+ d

According to the previously described scheme, the control
law should be chosen as follows

u = 0.2ẋ+ x3 − x− d̂+ ẍd − λ ˙̃x−K sat

(

s

φ

)

with K = η + δ + |d̂| and, for a second order system, s =
˙̃x+ λx̃.

The simulation studies were performed with an implementa-
tion in C, with sampling rates of 500 Hz for control system
and 1 kHz for the Duffing oscillator. The differential equa-
tions of the dynamic model were numerically solved with a
fourth order Runge-Kutta method. The disturbance was cho-
sen as d = 0.3 sin(0.4πt) and the other used parameters were
δ = 0.3, η = 0.1, λ = 0.6, φ = 0.02 and γ = 40. Concern-
ing the fuzzy system, triangular and trapezoidal membership
functions were adopted for Sr, with the central values de-
fined as shown in Fig. 1. It is also important to emphasize,
that the vector of adjustable parameters was initialized with
zero values, D̂ = 0, and updated at each iteration step ac-
cording to the adaptation law, equation (11).
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Figure 1: Adopted fuzzy membership functions.
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Figure 2: Tracking of xd = sin(0.1πt) with x̃(0) = 0.

In order to evaluate the control system performance, two dif-
ferent numerical simulations were performed. In the first
case, it was considered that the initial state coincides with
the initial desired state, x̃(0) = [x̃(0), ˙̃x(0)] = 0. Fig. 2
gives the corresponding results for the tracking of xd =
sin(0.1πt).

As observed in Fig. 2, even in the presence of external distur-
bances, the adaptive fuzzy sliding mode controller (AFSMC)
is capable to provide the trajectory tracking with a small as-
sociated error and no chattering at all. It can be also verified
that the proposed control law provides a smaller tracking er-
ror when compared with the conventional sliding mode con-
troller (SMC), Fig. 2(c). The improved performance of AF-
SMC over SMC is due to its ability to recognize and com-
pensate the external disturbances, Fig. 2(d). For purpose of
simulation, the AFSMC can be easily converted to the clas-
sical SMC by setting the adaptation rate to zero, ϕ = 0.

In the second simulation study, the initial state and initial de-
sired state are not equal, x̃(0) = [−0.7,−0.1]. The chosen
parameters, as well as the disturbance and the desired tra-
jectory, were defined as before. Fig. 3 shows the obtained
results.
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Figure 3: Tracking of xd = sin(0.1πt) with x̃(0) =
[−0.7,−0.1].

Despite the external disturbance and the initial error, the AF-
SMC allows the Duffing oscillator to track the desired trajec-
tory, and, as before, the undesirable chattering effect was not
observed, Fig. 3(b).

The phase portrait associated with the last simulation is
shown in Fig. 4(a). For comparison purposes, the phase
portrait obtained with the conventional sliding modes is also
presented, Fig. 4(b). Note that in both situations the steady-
state tracking error remains on the convergence region Φ, but
the improved performance of the AFSMC can be easily ob-
served.

4 CONCLUDING REMARKS

In this paper, an adaptive fuzzy sliding mode controller was
developed to deal with uncertain single-input–single-output
nonlinear systems. To enhance the tracking performance in-
side the boundary layer, the adopted strategy embedded an
adaptive fuzzy algorithm within the sliding mode controller
for uncertainty/disturbance compensation. The adoption of
the switching variable s in the premise of the rules, instead
of the state variables, led to a smaller number of fuzzy sets
and rules. Using Lyapunov’s direct method and Barbalat’s
lemma, the boundedness of all closed-loop signals and other
convergence properties were analytically proven. This result
corrected flawed conclusions previously reached in the liter-
ature. To evaluate the control system performance, the pro-
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Figure 4: Phase portrait of the trajectory tracking with x̃(0) =
[−0.7,−0.1].
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posed scheme was applied to the damped Duffing equation.
Through numerical simulations, the improved performance
over the conventional sliding mode controller was demon-
strated.
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