
ABSTRACT: Most studies on genomic selection in plant breeding compare different statistical methods of univariate approach. However, 

multi-trait methodologies should be considered since they allow the simultaneous selection of superior genotypes in several economic 

traits. Here, the aims were to compare the selection accuracy and efficiency of the multivariate partial least square (MPLS) method compared 

with random regression best linear unbiased predictor (rrBLUP), Bayesian Lasso (Blasso) and univariate partial least square (UPLS) and to 

develop genomic selection indexes efficient for superior genotypes identification in plant breeding. Ten F2 populations with 800 individuals 

were simulated, considering four traits with different heritabilities. Genomic selection analyses using rrBLUP, Blasso, UPLS, and MPLS 

were conducted. Four genomic selection indexes were elaborated by the sum of the marker effects obtained for each trait, weighted by 

the respective residual variance. Multi-trait indexes were developed based on the assumptions of each methodology mentioned (rrBLUP, 

Blasso, UPLS, and MPLS), and were denominated I-rrBLUP, I-Blasso, I-UPLS, and I-MPLS. Processing time, selective accuracy, selection 

gains, and selection coincidence were used to compare the methods and the selection indexes proposed. The MPLS method had similar 

results compared to UPLS method for the low heritability traits and was less efficient than the rrBLUP and Blasso. The genome selection 

indexes provided the highest total genetic gains. The I-rrBLUP and I-MPLS indexes stood out for high efficiency in selecting superior 

genotypes in the shortest processing time. Results suggest that the genomic selection indexes proposed in this study may be promising 

for plant breeding programs.
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INTRODUCTION

Genomic selection (Meuwissen et al. 2001) is based on the prediction of the genomic estimated breeding value (GEBV) 
from the relationship between the individuals’ phenotype and thousands of molecular markers widely distributed in the 
genome. This high density of markers increases the probability of each quantitative trait loci (QTL) of the target trait to be 
in linkage disequilibrium with at least one marker. It allows for better selection accuracy and early direct selection without 
limiting the number of QTL that control the expression of a quantitative trait (Bernardo and Yu 2007; Meuwissen et al. 
2001; Xu et al. 2017).

Genomic selection has been currently described by several authors and has provided promising results in several areas 
of genetics and plant breeding (Peixoto et al. 2017; Persa et al. 2020; Silva et al. 2017). Many statistical methods can be 
applied to genomic selection (Crossa et al. 2017), and the choice and efficiency of application of these methods depend 
mainly on the genetic architecture of the quantitative trait under study (Daetwyler et al. 2013; de los Campos et al. 2013).

The multi-trait selection is relevant, hence superior varieties combine optimal attributes for several traits simultaneously. 
In addition, it can impact positively decreasing the cycle time in plant breeding programs, especially using genomic selection 
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(Covarrubias-Pazaran et al. 2018; Watson et al. 2019). However, combining multi-traits in an efficient structure of selection 
indexes is often a complex and difficult task, once there is reduction in selection gains and correlation between traits as the 
number of traits assessed increases (Cruz et al. 2012). Moreover, univariate approaches are most used in genomic selection 
(Sant’Anna et al. 2019). Thus, studies proposing and testing the efficiency of multi-trait genomic selection in plant breeding 
programs should be developed.

The regression method via partial least square (PLS) can be an efficient alternative for allowing the multi-trait selection 
(Azevedo et al. 2013). The general purpose of PLS is the formation of components that capture the highest amount of 
information possible from the explanatory variables to predict the principal dependent variable (Boulesteix and Strimmer 
2007). Moreover, this method is efficient to solve the problems of multicollinearity and high dimensionality caused by the 
high number of markers in relation to the number of individuals genotyped (Azevedo et al. 2013).

Breeders and biometricians have advocated the use of selection indexes. This strategy consists in establishing a 
new trait from a linear combination of all the target traits, considering that the weight coefficients are estimated to 
maximize the correlation between the index and the true genetic values of the genotypes to be selected. Several studies 
have addressed the application of selection indexes to plant breeding, leading to gains in a set of traits simultaneously 
(França et al. 2016; Junqueira et al. 2016; Kumar et al. 2016; Silva et al. 2016). Thus, the interest for studying the 
methodology efficiency in genomic selection has increased (Ceron-Rojas et al. 2015; Covarrubias-Pazaran et al. 2018; 
Fernandes et al. 2018).

Therefore, this study aimed to: (i) compare the selection accuracy and efficiency of the multivariate partial least square 
(MPLS) method with univariate genomic selection methods as random regression best linear unbiased predictor (rrBLUP), 
Bayesian Lasso (Blasso), and univariate partial least square (UPLS); and, (ii) develop genomic selection indexes efficient 
in the identification of superior genotypes in different traits, simultaneously, to be applied in plant breeding programs.

MATERIAL AND METHODS

Simulation of phenotypic and genotypic data

The phenotypic and genotypic data used in the application of genomic selection statistical methods were simulated 
using the Genes software (Cruz 2013). First, the genome was simulated considering ten linkage groups, similar to a 
diploid species 2n = 2x = 20. Each linkage group was simulated with 100 cM, comprising 100 codominant molecular 
markers, spaced equidistantly (1 cM), totaling 1000 markers. The number of markers used in the simulation is considered 
adequate for the study purpose and is similar with other simulations studies (Oliveira et al. 2021; Peixoto et al. 2016, 
Sant’Anna et al. 2019, 2021).

Afterward, contrasting homozygous parents were simulated. For each locus, one parent was designated as A1A1 
homozygote, and the other was designated as A2A2 contrasting homozygote. Thus, the cross between parent 1 and  
parent 2 generated the F1 population, with all the markers being heterozygous (A1A2).

Using the genome and the parents obtained from the selfing of individuals of the F1 population, ten F2 mapping populations 
were simulated, each one containing 800 individuals. Each individual from the F1 population produced 5,000 gametes, and 
the random combination of two of these gametes generated the F2 population. This procedure was repeated until forming  
all the individuals in each population. The simulated F2 populations were coded with 0, 1, and 2, where 0 and 2 corresponded 
to homozygous individuals (A1A1 or A2A2) and 1 referred to heterozygote individuals (A1A2), for a given locus.

Then, the phenotypes, i.e., the quantitative traits, were simulated considering the binomial distribution, the additive 
gene action, and the absence of dominance among the alleles (additive model). Four quantitative traits, controlled by 200 
loci each, were simulated. Traits were simulated with heritability values of 20, 40, 60, and 80 (hereafter C1, C2, C3, and 
C4, respectively). Two alleles per locus without the presence of QTL with major effects were considered. Thus, the effect of 
each QTL was defined by A1A1 = μ + a; A1A2 = μ; A2A2 = μ – a, in which a expresses the additive effect of each gene in the 
F2 population. Therefore, the phenotypes of the individuals (Yi) were generated according to the model in Eq. 1:
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where μ is the overall mean of the trait; αj is the genetic effect in each locus; and εi is the environmental effect.

Cross-validation

For all genomic selection methodologies evaluated, cross-validation was performed considering five folds with 50 
replications. Thus, each F2 population with 800 individuals was divided into five equal groups containing 160 individuals 
each and used as a validation population. The training populations were composed of 640 individuals and used to estimate 
the marker effects. The agreement between the genetic values predicted through estimates from the training population 
was validated in each group considered as a validation population.

Genomic selection methods used

The rrBLUP (Meuwissen et al. 2001) uses best linear unbiased prediction (BLUP), considering that all markers have 
the same variance (absence of major effect genes). The rrBLUP was analyzed using the mixed.solve function of the rrBLUP 
package (Endelman 2011).

The Blasso method (Park and Casella 2008) considers a variance for each marker. This method was analyzed using 
the Bayesian generalized linear regression (BGLR) function of the BGLR package (Pérez-Rodriguez and de los Campos 
2011). A total of 20,000 burn-ins, 10 thin, and 100,000 saved iterations, as obtained from the Markov chain Monte Carlo 
(MCMC) method, was used.

The UPLS and MPLS methods were analyzed in the R software (R Development Core Team 2020), using the PLS package 
and the partial least square regression (plsr) function. For these methods, the optimal number of components that explained 
80% of the total variation of the markers was used (variable X). Thus, approximately 30 components were considered in the 
analysis for the different simulated populations.

Elaboration of genomic selection indexes

The principal of the genomic selection index proposed in this study is the estimation of the final effect for each marker, 
using the sum of the effects of this marker for each trait, which are weighted by their respective residual variance, as shown 
in Eq. 2:
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where Efm is the final effect of marker m weighted by the four traits evaluated, considering m = 1, 2, ..., 1000 markers;  
Mmi is the estimated effect for marker m for trait i ( i= 1, 2, 3, 4); and σi

2 is the residual variance obtained for trait i.
Following this principle, four genomic selection indexes were developed, one for each evaluated method: rrBLUP 

selection index (I-rrBLUP); Blasso selection index (I-Blasso); UPLS selection index (I-UPLS); and MPLS selection index 
(I-MPLS). Thus, the final effects of the markers (Ef1, Ef2,..., Ef1000) estimated by the genomic selection index proposed for 
each method were considered in the estimation of the GEBVs.

Comparison between methods and indexes of genomic selection

The phenotypic (acf) and genotypic (acg) selective accuracy were calculated, as in Eqs. 3 and 4:
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where h2 is the heritability value of the trait; PV is the phenotypic value; GV is the true genetic value; and GEBV is the 
genomic estimated breeding value.

The processing time of each method was computed in seconds. An AxB factor analysis was performed in a completely 
randomized design (CRD). The selection accuracy (A factor) and time of each genomic selection method (B factor) were 
compared by Tukey’s test at the 5% probability, considering each evaluated trait.

Afterward, 80 individuals (10%) with the highest phenotypic values and true genetic values were selected, and the selection 
gains (SG) were estimated by the direct (selection of individuals with superior performance in a trait and estimation of the 
gain with selection is calculated in the same trait) and indirect selection (selection of individuals with superior performance 
in a trait and gain with selection is calculated in the other traits) methods, using Eq. 5:

				    𝑆𝑆𝑆𝑆	(%) = 	
𝑆𝑆𝑆𝑆 × ℎ+ × 100

𝑋𝑋/0
 � (5)

where SD is the selection differential, which was estimated by: 𝑆𝑆𝑆𝑆	 = 	𝑋𝑋&' − 𝑋𝑋&) , where 𝑆𝑆𝑆𝑆	 = 	𝑋𝑋&' − 𝑋𝑋&)  is the mean of the selected 
individuals, and 𝑆𝑆𝑆𝑆	 = 	𝑋𝑋&' − 𝑋𝑋&)  is the mean of the initial population.

Similarly, 80 individuals with the highest GEBVs, estimated from each genomic selection method and genomic selection 
index, were selected. By the individuals ranked from the highest GEBVs, the respective SG was calculated, using the 
phenotypic values and true genetic values.

The calculation of the SG using the true genetic values simulated for each trait considered a heritability value of 100%, 
i.e., h2 = 1. Conversely, the calculation of the SG using the phenotypic values considered simulated heritability values of 
20, 40, 60 and 80% for traits C1, C2, C3 and C4, respectively. The selection efficiency of the methodologies evaluated was 
estimated through the selection coincidence (SC), for 10% of superior individuals, identified for the true genetic value, 
phenotypic value and each genomic selection method or index. Thus, the SC was estimated as in Eq. 6:

					     SC %	=
NS
NT  × 100  � (6)

where NS is the number of individuals selected on both methods in contrast and NT is the total number of 
individuals selected.

All measures used to compare the different methodologies evaluated in this study were estimated considering the mean 
of the ten populations simulated for the four traits with different heritability values.

RESULTS

Table 1 shows that the analysis of processing time for the Blasso method was significantly greater than that of the other 
genomic selection methods, evaluated by Tukey’s test at 5% probability level, regardless of the heritability value of the trait. 
Thus, considering the lower computational demand (shorter processing time), these results suggest that the rrBLUP, UPLS, 
and MPLS methods were more advantageous.
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Table 1. Comparison between the genomic selection methods random regression best linear unbiased predictor (rrBLUP), Bayesian Lasso 
(Blasso), univariate partial least square (UPLS) and multivariate partial least square (MPLS) regarding the processing time (in seconds) 
analysis for the four traits with different heritability values.

Methods C1 C2 C3 C4

Blasso 304.27a 295.89a 273.24a 253.57a

rrBLUP 2.31b 2.62b 2.63b 2.30b

UPLS 0.47b 0.46b 0.53c 0.53b

MPLS 0.72b 0.98bc 0.86bc 0.94b

Note. Means followed by the same letter in the column do not differ statistically at the 5% probability level by Tukey’s test. Simulated traits C1, C2, C3, and C4, 
with heritability values of 20, 40, 60 and 80%, respectively.

Tukey’s test revealed significant differences for selection accuracy for the genomic selection methods, considering the four 
traits with different heritability values from the phenotypic value and true genetic value (Table 2). No significant differences 
were observed between rrBLUP and Blasso methods, in any of the selection accuracy evaluations. The selection accuracy 
of the UPLS method was inferior compared with other genomic selection methods, considering the low heritability traits. 
However, for the trait of higher heritability value, results obtained by the UPLS method were statistically equal to those of 
the rrBLUP and Blasso methods (Tables 2).

Table 2. Comparison between the genomic selection methods random regression best linear unbiased predictor (rrBLUP), Bayesian Lasso 
(Blasso), univariate partial least square (UPLS) and multivariate partial least square (MPLS) regarding the genotypic and phenotypic selection 
accuracy for the four traits evaluated.

Methods
C1 C2 C3 C4

Genotypic accuracy

Blasso 0.91a 0.94a 0.96a 0.98a

rrBLUP 0.91a 0.94a 0.96a 0.98a

UPLS 0.46b 0.65b 0.79b 0.90ab

MPLS 0.79a 0.84a 0.78b 0.84b

Phenotypic accuracy

Blasso 0.89a 0.94a 0.96a 0.98a

rrBLUP 0.89a 0.94a 0.96a 0.97a

UPLS 0.46b 0.64b 0.79b 0.90ab

MPLS 0.80a 0.84a 0.79b 0.82b

Note. Means followed by the same letter in the column do not differ statistically at the 5% probability level by Tukey’s test. Simulated traits C1, C2, C3 and C4, 
with heritability values of 20, 40, 60 and 80%, respectively.

Unlike the other methods, the selection accuracy results for the MPLS method did not increase with the increase in 
the heritability value of the trait (Table 2). The selection accuracy results obtained for the MPLS method were statistically 
equal to those detected for the rrBLUP and Blasso methods for the low heritability traits. However, for the high heritability 
traits, the results of the MPLS were lower than those from rrBLUP and Blasso methods.

Table 3 shows the estimates of direct and indirect selection gains, considering the 80 individuals selected from the 
highest phenotypic values and true genetic values for the four traits evaluated. The greatest gains were obtained by direct 
selection. As expected, the direct gains in each trait obtained from the true genetic values were greater than those based 
on the phenotypic values.

For phenotypic values, high heritability traits (C3 and C4) had the greatest total selection gains, 5.52 and 5.92% (Table 3). These 
values correspond to only 50.41 and 54.31%, respectively, of the maximum total gains that can be achieved when considering 
the true genetic values for these traits (10.95 and 10.59%). Total gains obtained for the low heritability traits, considering the 
phenotypic values (3.96 and 4.55%), were far from the maximum total gain that can be achieved with the true genetic values (10.75 
and 10.34%) (Table 3). This fact confirms that phenotypic selection is less efficient for low heritability traits.
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Table 3. Direct and indirect selection gains, based on the individuals selected from the phenotypic values and true genetic values, for the 
four traits evaluated with different heritability values.

Indirect response
Direct selection

C1 C2 C3 C4
Total

Phenotypic value

C1 1.68 0.47 0.74 1.07 3.96

C2 0.30 2.36 0.85 1.04 4.55

C3 0.35 0.68 2.89 1.60 5.52

C4 0.49 0.69 1.36 3.38 5.92

True genetic value

C1 3.79 2.25 2.33 2.38 10.75

C2 2.26 3.70 2.34 2.04 10.34

C3 2.34 2.36 3.73 2.53 10.95

C4 2.35 2.00 2.47 3.78 10.59

Note. Simulated traits C1, C2, C3 and C4 with heritability values of 20, 40, 60 and 80%, respectively.

Table 4 shows the direct and indirect selection gains estimated in the true genetic values, based on the 80 individuals 
ranked by the GEBVs, obtained in each genomic selection method. Direct and indirect gains, as well as total gains provided 
by the rrBLUP and Blasso methods, were remarkably like each other (Table 4). These results were as expected when 
considering the maximum gains that could be achieved via true genetic values (Table 3). These methods stood out due to 
higher total gains obtained in the selection for the low heritability traits (C1 and C2), showing superiority when compared 
with the selection based only on the phenotypes of the individuals (Table 3).

Table 4. Direct and indirect selection gains estimated in the true genetic values based on the individuals ranked in descending order of 
GEBVs, obtained by the genome-wide selection methods, for the simulated traits C1, C2, C3 and C4, with heritability values of 20, 40, 60 and 
80%, respectively.

Indirect response
Direct selection

Traits

TotalC1 C2 C3 C4

rrBLUP

C1 3.46 2.27 2.39 2.53 10.65

C2 2.30 3.51 2.26 2.07 10.15

C3 2.47 2.44 3.59 2.59 11.09

C4 2.43 2.06 2.45 3.70 10.63

Blasso

C1 3.46 2.29 2.40 2.54 10.69

C2 2.30 3.51 2.26 2.08 10.15

C3 2.45 2.43 3.60 2.58 11.05

C4 2.45 2.06 2.46 3.70 10.67

UPLS

C1 1.94 1.17 1.26 1.44 5.82

C2 1.51 2.51 1.52 1.44 6.99

C3 1.94 1.91 3.04 2.10 8.99

C4 2.17 1.85 2.26 3.45 9.73

MPLS

C1 1.98 1.24 1.31 1.35 5.88

C2 1.97 3.18 1.94 1.77 8.87

C3 2.38 2.37 3.56 2.52 10.82

C4 2.37 2.05 2.47 3.67 10.57

Note. rrBLUP: random regression best linear unbiased predictor; Blasso: Bayesian Lasso; UPLS: univariate partial least square; MPLS: multivariate partial least square.
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The UPLS and MPLS methods exhibited the lowest direct gains for the four traits evaluated when compared with the 
rrBLUP and Blasso methodologies (Table 4). Furthermore, these methods were efficient only for the high heritability traits 
since the total selection gains tend to be close to the gains obtained with the phenotypic selection for the low heritability 
traits (Table 3). The total gains obtained from the true genetic values when applying any genomic selection index proposed in 
this study (Table 5) are greater than those obtained by direct and indirect selection in any methodology presented previously 
(Tables 3 and 4). These results suggested the superiority of the selection indexes in relation to both the multi-trait method 
MPLS and the univariate methods rrBLUP, Blasso and UPLS.

Table 5. Gains with selection estimated in phenotypic values and true genetic values, based on individuals ranked in descending order of GEBVs, 
obtained by genomic selection indexes, for the simulated traits C1, C2, C3 and C4, with heritability values of 20, 40, 60 and 80%, respectively.

Index
C1 C2 C3 C4

Total
Phenotypic value

I-Blasso 0.60 1.05 1.90 2.88 6.43

I-rrBLUP 0.60 1.05 1.90 2.88 6.43

I-UPLS 0.65 1.09 1.94 2.95 6.63

I-MPLS 0.66 1.09 1.94 2.82 6.51

True genetic value

I-Blasso 2.73 2.55 3.06 3.57 11.90

I-rrBLUP 2.73 2.55 3.05 3.57 11.90

I-UPLS 2.52 2.38 2.88 3.36 11.15

I-MPLS 2.72 2.60 3.10 3.50 11.92

Note. I-rrBLUP: rrBLUP selection index; I-Blasso: Blasso selection index; I-UPLS: UPLS selection index; and I-MPLS: MPLS selection index.

The total gain for the phenotypic selection did not exceed 6% in the best case (Table 3), while with the use of the indexes 
the total gain was above 6.5% (Table 5), with a better distribution of gains among the four traits. As expected, the selection 
indexes can achieve higher total gains, but the gains obtained for each trait are lesser than the maximum gains that could 
be achieved in the direct selection of each trait based on the true genetic values (Table 3). Among the selection indexes, the 
I-UPLS had the least total gain when selecting the individuals based on the true genetic values. Conversely, it presented 
the highest total selection gain when considering the phenotypic values (Table 5).

The selection coincidence of 80 individuals, between the methods genomic selection, genome selection indexes, 
phenotypic values, and true genetic values for the low (C1 and C2) and high (C3 and C4) heritability traits are shown in 
Tables 6 and 7, respectively.

The selection coincidence estimated among the individuals selected from the phenotypic values and true genetic values 
ranged from 30.75 to 65.13%, from the lowest to the highest heritability value (Tables 6 and 7). The rrBLUP and Blasso methods 
were more efficient in the selection of superior genotypes based on the phenotypic values, mainly for the low heritability traits. 
This fact is evidenced in Table 6, which shows that the selection coincidences of the individuals selected by the GEBVs obtained 
by the rrBLUP and Blasso methods, considering that the true genetic value for C1 was twice (70% for both methods) when 
compared with the selection coincidence between the phenotypic value and the true genetic value (30.75%).

Also, the selection coincidence obtained between the rrBLUP and Blasso methods in the selection of 80 individuals 
were higher than 98%, regardless of the heritability of the trait (Tables 6 and 7). These results confirm once again that the 
rrBLUP and Blasso methods, despite the different approaches, showed similar behavior and results are equally efficient in 
the identification and selection of genetically superior individuals.

Conversely, for C1 trait (Table 6), the selection coincidences obtained by the individuals selected based on the GEBVs, 
estimated by the UPLS and MPLS methods, and the true genetic values were 32.25 and 33.75%, respectively. These values 
are remarkably similar to that obtained by the individuals selected via phenotypic value and true genetic value (30.75%). 
Therefore, the MPLS and UPLS methods had the same efficiency as the phenotypic selection for the low heritability traits, 
not justifying the application of these methodologies in these cases.
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Table 6. Comparison between genomic selection methods and indexes, by the selection coincidence analysis, for the simulated traits C1 
(h2 = 20%), above the main diagonal, and C2 (h2 = 40%), below the main diagonal.

GV PV Blasso rrBLUP UPLS MPLS I-Blasso I-rrBLUP I-UPLS I-MPLS

GV 30.75 70.00 70.00 32.25 33.75 48.00 47.88 43.50 47.63

PV 42.25 34.00 34.38 56.50 54.50 26.00 26.25 27.38 29.00

Blasso 76.38 44.25 99.13 36.88 38.13 50.88 50.75 46.25 50.00

rrBLUP 76.50 44.38 99.50 36.63 37.63 50.75 50.75 46.38 49.88

UPLS 45.50 62.13 50.13 50.00 58.25 26.13 26.25 28.88 28.75

MPLS 63.00 46.88 69.50 69.63 50.38 26.88 26.88 27.88 29.63

I-Blasso 45.75 29.25 48.13 47.88 32.50 40.25 99.25 76.25 88.00

I-rrBLUP 45.88 29.38 48.25 48.00 32.75 40.25 99.25 76.38 88.25

I-UPLS 42.25 31.13 43.50 43.25 35.38 37.13 76.25 76.38 72.38

I-MPLS 47.00 30.50 48.88 48.88 34.00 42.75 88.00 88.25 72.38

Note. GV: true genetic value; PV: phenotypic value; rrBLUP: random regression best linear unbiased predictor; Blasso: Bayesian Lasso; UPLS: univariate partial 
least square; MPLS: multivariate partial least square; I-rrBLUP: rrBLUP selection index; I-Blasso: Blasso selection index; I-UPLS: UPLS selection index; and I-MPLS: 
MPLS selection index.

It was seen that the indexes produce a ranking that generates a greater gain in all the traits. Comparing the selection 
through phenotypic value and selection through I-Blasso index, both for C3 trait (Table 7), the I-Blasso index has a 57.37% 
higher efficiency than the ranking from the phenotypic value for the trait C3. In most scenarios, the selection coincidences 
between the individuals selected by the genomic selection indexes and the true genetic values, regardless of the heritability 
of the trait, were higher when compared with those obtained between the individuals selected by phenotypic values and 
true genetic values.

Table 7. Comparison between genomic selection methods and indexes by the selection coincidence analysis for the simulated traits:  
C3 (h2 = 60%), above the main diagonal, and C4 (h2 = 80%), below the main diagonal.

GV PV Blasso rrBLUP UPLS MPLS I-Blasso I-rrBLUP I-UPLS I-MPLS

GV 54.38 81.25 80.63 58.63 78.88 58.00 57.88 53.75 58.38

PV 65.13 56.00 56.13 69.38 53.13 42.63 42.75 44.88 43.88

Blasso 85.13 68.50 98.75 61.63 85.00 60.75 60.50 56.13 60.63

rrBLUP 85.00 68.50 98.63 61.75 84.75 61.00 60.75 56.38 60.88

UPLS 70.00 78.75 74.75 75.63 57.13 45.75 45.88 51.63 45.75

MPLS 82.38 63.88 87.75 88.13 70.13 57.75 57.88 53.13 59.50

I-Blasso 75.50 61.50 80.38 80.13 67.63 77.63 99.25 76.25 88.00

I-rrBLUP 75.50 61.38 80.63 80.38 67.75 77.75 99.25 76.38 88.25

I-UPLS 66.38 66.50 70.25 70.25 73.75 66.38 76.25 76.38 72.38

I-MPLS 73.00 58.50 74.63 74.38 62.00 76.25 88.00 88.25 72.38

Note. GV: true genetic value; PV: phenotypic value; rrBLUP: random regression best linear unbiased predictor; Blasso: Bayesian Lasso; UPLS: univariate partial 
least square; MPLS: multivariate partial least square; I-rrBLUP: rrBLUP selection index; I-Blasso: Blasso selection index; I-UPLS: UPLS selection index; and I-MPLS: 
MPLS selection index.

Among the proposed indexes, the highest selection coincidence of the superior individuals was observed between the 
indexes I-Blasso and I-rrBLUP (99.25%) for C4 trait, which selected practically the same individuals. Despite the low to 
moderate efficiency revealed by the MPLS method in the selection of superior genotypes for the low heritability traits (C1 
and C2), the I-MPLS was indicated as more efficient in some scenarios (Table 6). Conversely, the individuals selected by the 
I-UPLS resulted in the lowest selection coincidence with the individuals selected via true genetic values when compared with 
the other indexes. Moreover, for some traits, this selection coincidence was lower than or equal to the selection coincidence 
between the phenotypic value and the true genetic value (Tables 6 and 7).
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DISCUSSION

Phenotypic selection in plant breeding is difficult since most of the traits of interest are of quantitative nature, i.e., they 
are controlled by several genes, have low heritability value, and are consequently strongly influenced by the environment 
(Falconer and Mackay 1996). This fact is evidenced by the present results since the phenotypic selection showed less efficiency 
in the selection coincidence with the superior genotypes, especially for the low heritability traits (Tables 6 and 7). In addition, 
the direct and indirect selection gains through phenotypic values were lower compared with the maximum genetic gains 
that can be achieved with the selection (Table 3), resulting in lower gains in relation to what could be achieved with the use 
of more accurate selection methods, such as genomic selection (Spindel et al. 2015; Zhang et al. 2016).

The UPLS and MPLS methods allowed a high dimensionality reduction (97%), which resulted in a shorter analysis 
processing time, being more advantageous than Blasso (Table 1). Methodologies based on partial least squares regression 
allow large amounts of data to be quickly analyzed; they have high statistical efficiency and computational speed to obtain 
the GEBVs estimates of the individuals (Boulesteix and Strimmer 2007; Solberg et al. 2009). However, these methods did 
not show greater computational advantages over the rrBLUP method, considering the evaluation of 800 individuals and 
1000 markers (Table 1).

The number of markers used in this study was low, however was considered adequate for the purpose and agree in other 
similar studies (Oliveira et al. 2021; Sant’Anna et al. 2019, 2021). Bhering et al. (2015) and Spindel et al. (2015) showed that 
a small number of markers can be used for high precision genomic selection for many traits. Peixoto et al. (2016), in a study 
with simulated data, concluded that a genomic selection model that uses 300–800 markers is sufficient to capture all the 
genetic variance, and to decrease the residual variance, to obtain the maximum prediction precision of an F2 population.

In general, the UPLS method provided low selection accuracy for the low heritability traits (Table 2). Solberg et al. (2009), 
based on simulated data, compared different genomic selection methodologies to be applied in animal breeding and verified 
the superiority of the selection accuracy of a Bayesian method (Bayes B) in relation to the UPLS method. These authors 
demonstrated that the selection accuracy of the UPLS method decreased for the low heritability traits. Azevedo et al. (2014) 
reported low predictive capacity for the UPLS method, indicating the inferior performance of this method in relation to rrBLUP.

The UPLS method was very similar to the phenotypic selection, mainly for the low heritability traits, resulting in low total 
gains (Tables 3 and 4). This fact reveals the high selection coincidence of the superior individuals by the UPLS method and 
the phenotypic selection. This selection coincidence was higher than that obtained when considering the true genetic values 
of the individuals (Tables 6 and 7). Thus, these results suggest that the UPLS method was inefficient in the identification 
and accurate selection of genetically superior individuals. The prediction inefficiency of this method was also reported by 
Azevedo et al. (2014) in a comparative analysis of six genomic selection methodologies applied to animal breeding.

The selection accuracy obtained by the MPLS method was greater than or equal to UPLS method (Table 2). Azevedo 
et al. (2013) reported higher accuracy for the MPLS method and inferred that this methodology is more appropriate for 
genomic selection than the UPLS method, since the MPLS realistically captures the nature of the traits, considering the 
correlations between them. However, the present study revealed that, for traits of lower heritability values, considering 
the selection gains (Table 4) and the selection coincidences in the selection of the genetically superior individuals 
(Tables 6 and 7), the MPLS had similar behavior compared to UPLS, resulting in low total gains and low efficiency in 
the identification and selection of genetically superior individuals. These results indicate that, for the low heritability 
traits, the MPLS approach is similar to the phenotypic selection and is recommended for genomic selection only for 
traits with 60% heritability.

In this study, 200 QTL were simulated for each quantitative trait, distributed randomly in the genome, without the 
presence of QTLs of major effects, which resulted in similarity between the Blasso and rrBLUP methods. Considering the 
normal distribution of QTL throughout the genome, methods based on mixed models are equally efficient to Bayesian 
methods. Bhering et al. (2015), comparing rrBLUP and Blasso, verified no significant difference between the methods of 
the selection accuracy. Therefore, results of the present study indicate that the rrBLUP method was the most efficient, since 
it presented high values of selection accuracy, high gains, and selection coincidence of superior genotypes in the shortest 
processing time.
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The selection indexes proposed in this study were more efficient and provided the highest total selection gains 
when compared with the other univariates (Blasso, rrBLUP, and UPLS) and multi-trait (MPLS) methods (Tables 4 
and 5). According to Dekkers (2007), the application of the index theory in genomic selection is promising and can 
significantly increase selection gains, especially for the low heritability traits, which was evidenced in this study by 
the results.

However, the direct gains estimated through selection indexes for each trait were lesser than those obtained by the 
other genomic selection methods (Tables 4 and 5). These results are in agreement with the theory of selection indexes, 
which provide relatively higher total gains, causing reduced gains in each individual trait, compensating for this reduction  
by the better distribution of favorable gains in the other traits (Resende et al. 2016). In this sense, in relation to the GEBVs, 
the selection coincidences obtained for the selection indexes were always lesser than those obtained via the Blasso and 
rrBLUP methods (Tables 6 and 7). However, the individuals selected by the indexes have higher performance in all the 
traits, simultaneously, unlike those selected by the genomic selection methods, which consider the improvement in one 
trait at a time.

The I-MPLS led to high total genetic gains and high efficiency in the selection and identification of the superior 
individuals, showing results similar to those observed for I-Blasso and I-rrBLUP (Table 5). Covarrubias-Pazaran et al. 
(2018) demonstrated that the use of multi-trait models could increase selection accuracy and consequently result in more 
powerful and reliable selection indexes. To obtain the proposed genomic selection indexes, first, data should be analyzed 
by genomic selection methods, aiming to estimate markers effects. Thus, considering the low efficiency demonstrated  
by the UPLS, the lowest selection coincidences between the indexes in the selection of superior individuals are in relation to 
the I-UPLS (Tables 6 and 7). This index had the lowest efficiency in the identification and selection of superior genotypes, 
resulting in the lowest selection gains and coincidences when considering the true genetic value, being the least indicated 
for application in breeding programs.

On the other hand, the I-rrBLUP, I-Blasso and I-MPLS indexes properly identified the best genotypes, allowing gains 
in all traits simultaneously. Genomic selection indexes are a promising tool to be applied in plant breeding programs, since 
they allow the direct early selection by the information of molecular markers, as well as the selection of superior individuals 
in a set of traits of economic interest, in a shorter processing time (Ceron-Rojas et al. 2015). The results showed that the 
I-rrBLUP and I-MPLS indexes are the most indicated since they were highly efficient in the identification and selection of 
superior genotypes, in a shorter time, and with less computational demand. The genomic selection indexes developed in 
this study were efficient in the identification of superior genotypes in different traits, simultaneously, and are suitable for 
plant breeding programs.

CONCLUSION

The rrBLUP is the most recommended method for selecting superior genotypes based on selection accuracy, selection 
coincidence, selection gain and processing time. However, from the selection indexes proposed, I-rrBLUP and I-MPLS 
indexes were the most advantageous due to the higher efficiency in the selection of superior genotypes in shorter processing 
time. The indexes proposed here overcome the results from the univariate models, regardless the heritability, being its use 
largely indicated genomic selection in any breeding program aiming the improvement of several traits, simultaneously.
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