Acessibilidade / Reportar erro

Um simulador dinâmico do crescimento de uma cultura de cana-de-açúcar

A dynamic simulator of the sugarcane crop growth

Resumos

Este trabalho descreve a primeira versão de um simulador matemático-fisiológico do crescimento diário de uma cultura de cana-de-açúcar (SIMCANA) em resposta às condições do ambiente durante a estação de crescimento. SIMCANA resume a maior parte das informações disponíveis concernentes aos processos fisiológicos da cultura de cana-de-açúcar. Esta sua versão não incluí os processos degerminação e florescimento, havendo necessidade de especificar as condições da cultura no primeiro dia de simulação. Em função das condições diárias de radiação solar global, temperatura máxima e mínima, umidade relativa do ar, SIMCANA calcula as taxas de fotossíntese, respiração e crescimento da cultura, as taxas de senescência das folhas e raízes, a massa seca das folhas, colmos e raízes, e o índice de área foliar. Embora várias relações empíricas tenham sido usadas, SIMCANA parece ser capaz de simular o crescimento da cultura de cana-de-açúcar.

simulação; modelo matemático-fisiológico; fotossíntese; taxa; respiração; taxa; crescimento; taxa; área foliar; índice; cana-de-açúcar


The first version of a mathematical-physiological simulator of the daily growth of a sugarcane crop (SIMCANA) as a function of the environmental conditions during the growing season is described. SIMCANA summarizes most of the available information regarding to the physiological processes of the sugarcane crop. This version does not include the germination and flowering processes, therefore it is necessary to specify the crop conditions at the first day of simulation. Given the daily conditions of global solar radiation, maximum and minimum temperature, and the relative humidity, SIMCANA computes the rates of crop photosynthesis, respiration, and growth, the senescence rates for leaves and roots, the dry mass of leaves, stems, and roots, and the leaf area index. Although several empirical relations have been used, SIMCANA seems to be able to simulate the sugarcane crop growth.

simulation; mathematical-physiological model; photosynthesis rate; respiration rate; growth rate; leaf area index; sugarcane


ARTIGOS

Um simulador dinâmico do crescimento de uma cultura de cana-de-açúcar

A dynamic simulator of the sugarcane crop growth

Antonio Roberto PereiraI; Eduardo Caruso MachadoII, * * Com bolsa de suplementação do CNPq.

ISeção de Climatologia Agrícola, Instituto Agronômico (IAC), Caixa Postal 28, 13001 Campinas, SP

IISeção de Fisiologia, IAC

RESUMO

Este trabalho descreve a primeira versão de um simulador matemático-fisiológico do crescimento diário de uma cultura de cana-de-açúcar (SIMCANA) em resposta às condições do ambiente durante a estação de crescimento. SIMCANA resume a maior parte das informações disponíveis concernentes aos processos fisiológicos da cultura de cana-de-açúcar. Esta sua versão não incluí os processos degerminação e florescimento, havendo necessidade de especificar as condições da cultura no primeiro dia de simulação. Em função das condições diárias de radiação solar global, temperatura máxima e mínima, umidade relativa do ar, SIMCANA calcula as taxas de fotossíntese, respiração e crescimento da cultura, as taxas de senescência das folhas e raízes, a massa seca das folhas, colmos e raízes, e o índice de área foliar. Embora várias relações empíricas tenham sido usadas, SIMCANA parece ser capaz de simular o crescimento da cultura de cana-de-açúcar.

Termos de indexação: simulação; modelo matemático-fisiológico; fotossíntese, taxa; respiração, taxa; crescimento, taxa; área foliar, índice; cana-de-açúcar.

SUMMARY

The first version of a mathematical-physiological simulator of the daily growth of a sugarcane crop (SIMCANA) as a function of the environmental conditions during the growing season is described. SIMCANA summarizes most of the available information regarding to the physiological processes of the sugarcane crop. This version does not include the germination and flowering processes, therefore it is necessary to specify the crop conditions at the first day of simulation. Given the daily conditions of global solar radiation, maximum and minimum temperature, and the relative humidity, SIMCANA computes the rates of crop photosynthesis, respiration, and growth, the senescence rates for leaves and roots, the dry mass of leaves, stems, and roots, and the leaf area index. Although several empirical relations have been used, SIMCANA seems to be able to simulate the sugarcane crop growth.

Index terms: simulation, mathematical-physiological model, photosynthesis rate, respiration rate, growth rate, leaf area index, sugarcane.

Texto completo disponível apenas em PDF.

Full text available only in PDF format.

Recebido para publicação em 25 de maio de 1985.

  • ACOCK, B.; CHARLES-EDWARDS, D.A. & SAWYER, S. Growth response of a chrysanthemum crop to the environment. III - Effects of radiation and temperature on dry matter partitioning and photosynthesis. Annals of Botany, 44:289-300,1979.
  • BAKER, D.N.; HESKETH, J.D. & DUNCAN, W.G. Simulation of growth and yield in cotton: I. Gross photosynthesis, respiration, and growth. Crop Science, 12:431-435, 1972.
  • BIRD, I.F.; CORNELIUS, M.J. & KEYS, A.J. Effects of temperature on photosynthesis by maize and wheat. Journal of Experimental Botany, 28:519-524,1977.
  • BULL, T.A. The C4 pathway related to growth rates in sugarcane. In: HATCH, M.D.; OSMOND, C.B. & SLATYER, R.O., eds. Photosynthesis and photorespiration. Canberra, John Wiley, 1971. p.68-75.
  • __________ Photosynthesis efficiencies and photorespiration in Calvin cycle and C4-dicarboxylic acid plants. Crop Science, 9:726-729,1969.
  • __________ & TOVEY, D.A. Aspects of modelling sugarcane growth by computer simulation. Proceedings of the International Society of Sugar Cane Technologists, 15:1021-1032,1974.
  • DENMEAD, O.T. & SHAW, R.H. Availability of soil water to plants as affected by soil moisture content and meteorological conditions. Agronomy Journal, 45:385-390, 1962.
  • DOWNTON, W.J.S. Adaptive and evolutionary aspects of C4 photosynthesis. In: HATCH, M.D.; OSMOND, C.B. & SLATYER, R.O., eds. Photosynthesis and photorespiration. Canberra, John Wiley, 1971. p.3-17.
  • EL-SHARKAWY, M. & HESKETH, J.D. Effects of temperature and water deficit on leaf photosynthesis rates of different species. Crop Science, 4:514-518,1964.
  • EVANS, L.T. Beyond photosynthesis - the role of respiration, translocation and growth potential in determining productivity. In: COOPER, J.P., ed. Photosynthesis and productivity in different environments. London, Cambridge Univ. Press, 1975. p.501-507.
  • GLOVER, J. The dark respiration of sugar-cane and the loss of photosynthate during the growth of a crop. Annals of Botany, 37:845-852,1973.
  • __________ The rate of apparent photosynthesis of whole sugarcane plants. Annals of Botany, 38:909-920,1974.
  • GOSNELL, J.M. Some effects of increasing age on sugarcane growth. Proceedings of the International Society of Sugar Cane Technologists, 13:499-513,1968.
  • GOUDRIAAN, J. & LAAR, H.H. van. Calculation of daily totals of the gross C02 assimilation of leaf canopies. Netherlands Journal of Agricultural Science, 26:373-382,1978.
  • HARTT, C.E. & BURR, G.O. Factors affecting photosynthesis in sugar cane. Proceedings of the International Society of Sugar Cane Technologists, 12:590-609,1965.
  • HESKETH, J.D.; BAKER, D.N. & DUNCAN, W.G. Simulation of growth and yield in cotton: respiration and carbon balance. Crop Science, 11:394-398,1971.
  • HODGES, T.; KANEMASU, E.T. & TEARE, I.D. Modeling dry matter accumulation and yield of grain sorghum. Canadian Journal of Plant Science, 59:803-818,1979.
  • HOFSTRA, G. & HESKETH, J.D. Effects of temperature on the gas exchange of leaves in the light and dark. Planta, 85:288- 297,1969.
  • HOLT, D.A.; BULA, RJ.; MILES, G.E.; SCHREIBER, M.M. & PEART, R.M. Environmental, physiology, modelling and simulations of alfalfa growth. I - Conceptual development of SIMED. West Lafayette, Ind., Purdue University, Agricultural Experiment Station, 1975. (Res. Bull. 905)
  • HUNT, W.F. & LOOMIS, R.S. Respiration modelling and hypothesis testing with a dynamic model of sugar beet growth. Annals of Botany, 44:5-17, 1979.
  • IRVINE, J. Sugarcane. In: SYMPOSIUM ON POTENTIAL PRODUCTIVITY OF FIELD CROPS UNDER DIFFERENT ENVIRONMENTS. Los Baños, Philippines, IRRI, 1983. p.361-381.
  • JAGER, J.M. 'PUTU' a dynamic seasonal maize crop growth model. In: GUELPH Project, Final Report, Ontario, Univ. Guelph, 1974. p.306-320.
  • __________ & KING, K.M. Calculation of photosynthesis rate of a maize crop from environmental variables. In: GUELPH Project, Final Report, Ontario, Univ. Guelph, 1974. p.321-340.
  • KORTSCHAK, H.P. & FORBES, A. The effects of shade and age on the photosynthesis rate of sugarcane. In: METZNER, H., ed. Progress in photosynthesis research. Tübingen, 1969. v.1, p.383-387.
  • LAAR, H.H. van & PENNING de VRIES, F.W.T. CO2-assimilation light response curves of leaves; some experimental data. Wageningen, Versl Inst. Biol. Scheik Onderz. LandbGewassem 62,1972.
  • LOPES, N.F. Respiration related to growth and maintenance in radish (Raphanus sativus L.)plants. Davis, University of California, 1979. 151p. Thesis.(Ph.D.)
  • MACHADO, E.C.; PEREIRA, A.R.; FAHL, J.I.; ARRUDA, H.V. & CIONE, J. índices biométricos de duas variedades de cana-de-açúcar. Pesquisa Agropecuária Brasileira, Brasília, 17:1323-1329,1982.
  • __________; __________; __________ & CAMARGO, M.B.P. Relações radiométricas de uma cultura de cana-de-açúcar. Bragantia, Campinas, 44(1):229-238,1985.
  • McCREE, K.J. An equation for the rate of respiration of white clover plants grown under controlled conditions. In: PREDICTION and measurement of photosynthetic productivity. Wageningen, PUDOC, 1970. p.221-229.
  • __________ Equations for the rate of dark respiration of white clover and grain sorghum, as functions of dry weight, photosynthetic rate, and temperature. Crop Science, 14:509-514,1974.
  • McCREE, K.J. & KRESOVICH, S. Growth and maintenance requirements of white clover as a function of daylength. Crop Science, 18:22-25, 1978.
  • __________ & SILSBURY, J.H. Growth and maintenance requirements of subterranean clover. Crop Science, 18:13-18, 1978.
  • McLEAN, F.G.; McDAVID, C.R. & SINGH, Y. Preliminary results of net assimilation rate studies in sugarcane. Proceedings of the International Society of Sugar Cane Technologists, 13:849-858, 1968.
  • MEDINA, E.; SAN JOSÉ, J.J. & SEQUERA, P.E. Análisis de la productividad en caña de azúcar. III - Respiración en la obscuridad de hojas y tallos de cinco variedades de cana de azúcar y pérdidas nocturnas de materia seca. Turrialba, 20:302-306, 1970.
  • PENNING de VRIES, F.W.T. The cost of maintenance processes in plant cells. Annals of Botany, 39:77-92, 1975b.
  • __________ Use of assimilates in higher plants. In: COOPER, J.P., ed. Photosynthesis and productivity in different environment. London, Cambridge Univ. Press, 1975a. p.459-480.
  • __________; WITLAGE, J.M. & KREMER, D. Rates of respiration and of increase in structural dry matter in young wheat, ryegrass and maize plants in relation to temperature, to water stress and to their sugar content. Annals of Botany, 44:595-609, 1979.
  • PEREIRA, A.R.; BARBIERI, V. & VILLA NOVA, N.A. Climatic conditioning of flowering in sugarcane. Agricultural Meteorology, 29:103-110, 1983.
  • RYLE, G.J.A.; COBBY, J.M. & POWELL, C.E. Synthetic and maintenance respiratory losses of 14CO2 in uniculm barley and maize. Annals of Botany, 40:571-586, 1976.
  • SINGH, B.N. & LAL, K.N. Limitations of Blackman's law of limiting factors and Harder's concept of relative minimum as applied to photosynthesis. Plant Physiology, 10:245-268, 1935.
  • TAZAKI, T.; ISHIHARA, K. & USHIJIMA, T. Influence of water stress on the photosynthesis and productivity of plants in humid areas. In: TURNER, N.C. & KRAMER, P.J., eds. Adaptation of plants to water and high temperature stress. New York, Wiley-Interscience, 1980. p.309-321.
  • THORNLEY, J.H.M. Mathematical models in plant physiology: a quantitative approach to problems in plant and crop physiology.London,Academic Press, 1976.318p.
  • __________Respiration, growth and maintenance in plants. Nature, 227:304-305,1970.
  • __________ & HESKETH, J.D. Growth and respiration in cotton bolls. Journal of Applied Ecology, 9:315-317, 1972.
  • VALSECHI, O. & OLIVEIRA, E.N. A cana-de-açúcar como matéria-prima. In: CULTURA e adubação da cana-de-açúcar. São Paulo, Instituto Brasileiro de Potassa, 1964. p.319-368.
  • WALDRON, J.C.; GLASZIOU, K.T. & BULL, T.A. The physiology of sugar cane. IX -Factors affecting photosynthesis and sugar storage. Australian Journal of Biological Sciences, 20:1043-1052, 1967.
  • WILSON, D.R.; BAVEL, C.H.M. van & McCREE, K.J. Carbon balance of water-deficient grain sorghum plants. Crop Science, 20:153-159, 1980.
  • WHIT, C.T. de; LAAR, H.H. van & KEULEN, H. van. Physiological potential of crop production. In: SNEEP, J. & HENDRIKSEN, A.J.T., eds. Plant breeding perspective. Wageningen, PUDOC, 1979. p.47-82.
  • *
    Com bolsa de suplementação do CNPq.
  • Datas de Publicação

    • Publicação nesta coleção
      11 Dez 2007
    • Data do Fascículo
      1986

    Histórico

    • Recebido
      25 Maio 1985
    Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
    E-mail: bragantia@iac.sp.gov.br