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Abstract
The efficiency of artificial neural networks (ANN) to model complex problems may enable the prediction of characteristics that 
are hard to measure, providing better results than the traditional indirect selection. Thus, this study aimed to investigate the 
potential of using artificial neural networks (ANN) for indirect selection against early flowering in lettuce, identify the influence of 
genotype by environment interaction in this strategy and compare your results with the traditional indirect selection. The number 
of days to anthesis were used as the desired output and the information of six characteristics (fresh weight of shoots, mass 
of marketable fresh matter of shoots, commercial dry matter of shoots, average diameter of the head, head circumference 
and leaf number) as input file for the training of the ANN-MLP (Perceptron Multi-Layer). The use of ANN has great potential 
adjustment for indirect selection for genetic improvement of lettuce against early flowering. The selection based on the predicted 
values by network provided estimates of gain selection largest that traditional indirect selection. The ANN trained with data 
from an experiment have low power extrapolation to another experiment, due to effect of interaction genotype by environment. 
The ANNs trained simultaneously with data from different experiments presented greater predictive power and extrapolation.
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1. INTRODUCTION

The artificial neural networks (ANN) are non-parametric 
models of the human brain that recognizes patterns and 
regularities in the data presented to it. The use of ANN 
has the advantages of being non-parametric, does not 
require detailed information about the physical processes 
to be modeled and to tolerate data loss.

Due to their natural characteristics and the internal 
parallelism inherent to its architecture, ANNs are able to 
solve problems of great complexity. In agricultural sciences 
ANNs have been applied to different purposes, involving the 
prediction of time series (Oliveira et al., 2010), grouping of 
individuals by their genetic similarity (Barbosa et al., 2011), 
regression studies (Sállago et al., 2012), image classification 
(França, 2010; Tiger & Verma, 2013) and prediction of 
genetic value (Silva et al., 2014; Ventura et al., 2012).

In genetic improvement of features that are difficult 
to measure, identify and/or low heritability are usually 
improved by indirect selection using other correlated 
traits, with high heritability and simple evaluation 
(Cruz et al., 2012). However, the efficiency of artificial 
neural networks (ANN) to model complex problems 
may enable the prediction of measures of characteristics 
are hard to measure, providing better results than the 
traditional indirect selection.

According to Azevedo et al. (2014) the evaluation of the 
number of days to anthesis in lettuce (Lactuca sativa) may 
require a large time of evaluation for the identification of 
early flowering, and features strongly associated with early 
flowering can be used for indirect selection, reducing the 
time needed in the selection of superior genotypes process. 
Early flowering is one of the biggest obstacles to the crop 
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cultivation, especially in regions where the temperature exceeds 
22 °C (Mota et al., 2003), which is very common in certain 
periods and regions of Brazil. The result of early flowering 
is the stem elongation, reduced leaf number, changes in 
commercial head formation and stimulation of production 
of latex, which makes the taste of bitter and unsuitable for 
consumption (Azevedo  et  al.,  2014; Cock  et  al., 2002; 
Souza et al., 2008). Despite major advances achieved through 
plant breeding, with the generation of lettuce cultivars better 
adapted to tropical conditions, many problems remain, so 
a constant search for more competitive genotypes is needed 
(Carvalho et al., 2011), mainly for high tolerance to early 
flowering. For the development of these genotypes with 
good adaptability and stability is necessary to evaluate the 
cultivars in various locations and times, because the lettuce is 
affected by genotype by environment (Gualberto et al., 2009; 
Luz et al., 2009; Queiroz et al., 2014; Santos et al., 2009).

Thus, this study aimed to investigate the potential of 
using artificial neural networks (ANN) for indirect selection, 
identify the influence of genotype by environment interaction 
in this strategy and compare your results with the traditional 
indirect selection using as an example a case where there is a 
need to practice selection against early flowering in lettuce.

2. MATERIAL AND METHODS

Two experiments were conducted from 16 April to 
12 July, 2010 (experiment 1) and 15 November 2010 to 
23 March 2011 (experiment 2), in the division of vegetable 
crops, located on the campus in the Universidade Federal dos 
Vales do Jequitinhonha e Mucuri (UFVJM) in Diamantina 
(MG), Brazil. The elevation is 1,387 m and coordinates 
18º12’01’’S and 43º34’20’’W. In both experiments eleven 
lettuce cultivars were evaluated: Winslow, Regina 500, 
Branca Boston, Quatro Estações, Vitória de Santo Antão, 
Atração, Lívia, Grand Rapids, Lollo Rossa, Romana Balão 
and Aurélia.

Seeds were sown in polystyrene trays with 128 cells, 
using the commercial substrate in the greenhouse under 
50% shading of sunlight. The area was prepared for planting 
two months before transplanting by plowing and disking, 
forming the beds manually with a hoe. Fertilization planting, 
hedging and other cultural practices were done according 
to the recommendations for the crop (Filgueira, 2008).

Transplanting was done 30 days after sowing in beds 
with width of approximately 1.20 m by 0.30 m in height 
under unheated greenhouse construction, using a spacing of 
0.30×0.30 m. The experimental design was in randomized 
block, with four replications and with twelve plants per 
plot. Irrigation was by drip and micro-sprinkler irrigation 
interval following as recommended by Filgueira (2008), 
during the morning and afternoon.

At 45 days after transplanting, when all plants showed 
standard commercial, agronomic assessments were 
conducted at six plants in each plot. The fresh weight of 
shoots (FWS) and the mass of marketable fresh matter of 
shoots (MFMS) were expressed as g plant–1 by weighing on 
a precision balance. The commercial dry matter of shoots 
(CDMS) was obtained by weighing on a precision balance 
after drying the plants in an oven at 65 °C with forced air 
until constant weight, and the results expressed as g plant–1. 
To obtain commercial heads were removed the leaves 
inappropriate for consumption (senescent and damaged). 
The average diameter (cm) of the head (HD) was obtained 
on an average of two perpendicular measurements of the 
head. The head circumference (HC) was measured with a 
graduated tape at the perimeter delimited by the edges of 
the leaves and expressed in cm. The leaf number (LN) was 
obtained by counting excluding senescent and damaged 
leaves. The other six plants of the plot were used to assess 
the average number of days from transplanting to anthesis 
(DA), having monitored daily plant development until the 
issuance of the flower stem and opening of the first flower.

Analysis of variance was done on the model yij= μ + gi + bj + eij 
where: yij= observation of the ith genotype in the jth repetition; 
μ = overall mean; gi= effect of the ith genotype, bj = effect 
of the jth block and eij = effect of experimental error. 
For each experiment, the estimates of heritability and 
phenotypic, genetic, and residual matrices of covariance 
and correlation were obtained. To test the significance of 
genotype-environment interaction was made an analysis 
with the model Yijk = m + gi + b/ajk + aj + gaij + eijk where: 
yijk= observation of the ith genotype in the jth environment 
and kth repetition; μ = overall mean; gi= effect of the 
ith genotype, b/ajk = effect of the kth block inside of jth 
environment, aj = effect of jth environment, gaij = effect 
of genotype-environment interaction, and eij = effect of 
experimental error. All these estimates were obtained with 
genetic statistical software Genes and statistical expressions 
are presented in Cruz et al. (2012).

For the study of RNAs a large data set to the training 
process is required, thus a strategy for the best network 
training is the simulation data sets with several treatments 
and with the same structure genetic-statistical experiment 
that originated. From the first experiment simulated a data 
set called “Simulated Data 1”. From the second experiment 
also simulated a set of data called “simulated data 2”. Each of 
these two sets of simulated data consisted of 1,000 treatments 
(1,000 lettuce genotypes with the same genetic-statistical 
properties of the experiments that originated them.) and 
10 repetitions, totaling 10,000 values ​​for each of the seven 
study traits.

In order to obtain the simulated data sets with the same 
statistical properties and genetic experiments that gave 
rise, the following steps were performed: A) Simulation 
of seven vectors (corresponding to characteristics studied) 
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having in each 1,000 values ​​(corresponding to the effects 
genotypes) with mean 0 and variance 1. B) Simulation of 
seven vectors with 10 values ​​(corresponding to the effects 
of repetition) with mean 0 and variance 1. C) Simulation of 
seven vectors having ​​in each 10,000 values (corresponding 
to the effects of the residue) with mean 0 and variance 1. 
D) The vectors (with traits values ​​of each) obtained in steps 
A, B and C were pooled, yielding three arrays (one with 
the treatments effects, other with repetitions effects and the 
third with residual effects). To ensure average 0, variance 
1 and zero covariance among the vectors, the scores of 
the principal components of each matrix were obtained. 
E) From the scores of the principal components, was made 
the spectral decomposition using the covariance matrix of 
genotype (matrix obtained in A step), the covariance matrix 
for the block matrix from the matrix B and for the residual 
covariance matrix obtained in procedure C. This caused the 
simulated effects to have the same covariance / correlations 
that the effects obtained in the experiments. F) Finally, it 
was done the sum of the experimental overall average of 
each characteristic with the simulated effects of genotype, 
block and residual. Thus, new sets of experimental data 
simulated with many observations and with the same genetic 
properties (covariance and correlation phenotypic, genotypic 
and residual) of the experiments that had originated them.

For the development of ANNs of MLP type (Multi-Layer 
Perceptron), we used the Neural Network Toolbox of Matlab 
software (version 8.1.0.604) with back propagation algorithm 
and Levemberg-Marquardt optimization. Trainings were 
conducted using the “Simulate Data1” for “Network 1” and 
“Simulated Data2” to “Network 2”. For training “Network 
3” 50% of the simulated data 1 and 50% of the simulated 
second data were used simultaneously. A reduction of 50% of 
the simulated data sets for “Network 3” was done to prevent 
this network could have better results due to the greater 
amount of information in the training process. As input file 
for the three processes of training (Network 1, Network 2 
and Network 3), for each of the simulated treatment were 
considered five information (from repetitions): the lowest 
value of repetition, the average repetitions, the maximum 
value of the repetitions, the variance of repetitions and Pi 
statistic of the repetitions. The Pi statistic was obtained 
by the equation wherein: Pii is the statistical Pi value for 
the ith genotype simulated, r refers to the rth repetition 
ranging from 1 to n, n is the number of repetitions (10), 
Valuer is the value of the i-th treatment in the j-th repetition, 
MaxValue is highest value observed for the ith treatment. 
The objective of using these 5 information for each trait in 
each treatment is increase the experimental information in 
the training process in order to improve network efficiency. 
Thus, it was obtained for each set of simulated data a matrix 
with 1,000 rows (treatments) and 30 columns relating to 
five information for each treatment in six characteristics 
(HD, HC, FWS, MFMS, CDMS and LN) used in training. 

As desired output file used the average of each treatment to 
the number of days to flowering.

To input files and desired output file the information of  
700 treatments (70%) was used for training, 150 treatments 
(15%) for cross-validation – early stopping and 150 treatments 
(15%) were designed to calculate mean square error and 
coefficient of determination (for selection of the best trained 
network). To ensure that each input parameter received 
equal attention during training, both the inputs as the 
output were standardized to the range between 0 and 1 by 
the following equation: in which is the value normalized; 
the value observed, is the minimum value of the sample 
andis the maximum sample result.

The maximum number of epochs of training was defined 
as 1,000, the MSE (mean square error) minimum to stop the 
training was established as 1,0×10–7 and the largest number 
of successive failures in validation (early stopping) was set to 
6. All possible combinations of network considering one, two 
and three hidden layers and two, four and six neurons per layer 
were tested, consisting in 39 configurations. Knowing that 
early in training the free parameters are randomly generated 
and that these initial values can influence the final result 
of the training (Soares et al., 2014), each configuration of 
ANN was trained 100 times. A selection of the best trained 
network was made considering the lowest MSE found to 
all the trainings conducted. The activation function for the 
neurons of the hidden layer(s) was the hyperbolic tangent, 
as for the output layer was used the linear function.

After training of the three networks (Network 1, 2 and 
3) predicted genetic values of the number of days to anthesis 
were obtained in both experiments for ANN. Subsequently, 
the selection gain obtained were estimated by the expression 
GS(%)=100*[(s-o)*h2]/ o, where o the average for the number 
of days until the anthesis, h2 is the heritability of the number 
of days to anthesis and s is the average number of days to 
anthesis of selected individuals based on: values observed in 
the number of days to anthesis (direct selection gain), rank of 
the observed values of the other traits (gain indirect selection) 
and rank the values predicted by the ANN (gain selection 
based in ANN output).

3. RESULTS AND DISCUSSION

Values close to the lowest mean square error (MSEmin) 
were found among the configurations (Table  1), so the 
efficiency of training for the various settings has not 
improved according to the increase many hidden layers 
and neurons, similar results were observed by Soares et al. 
(2014). For training the “Network 1”, “Network 2” and 
“Network 3” met better fit for the settings 6:2:4:1, 2:2:2:1 
and 4:2:6:1 with the determination coefficients of 0.9301, 
0.9443 and 0.9223, respectively.
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Table 1. Smallest mean square error (MSE) and the respective coefficient of determination (R2) in 100 trainings for each network configuration

Network Network 1 Network 2 Network 3
configuration MSE R2 MSE R2 MSE R2

2:1 0.0024 0.9386 0.0032 0.9387 0.003 0.9289
4:1 0.0029 0.9106 0.0032 0.9436 0.0032 0.9308
6:1 0.0029 0.9344 0.0032 0.936 0.0035 0.921
2:2:1 0.0027 0.9463 0.0032 0.9413 0.0032 0.9341
2:4:1 0.0026 0.9277 0.0031 0.943 0.0031 0.9461
2:6:1 0.0028 0.9364 0.003 0.9526 0.0028 0.9396
4:2:1 0.0027 0.9404 0.0033 0.9477 0.0035 0.9287
4:4:1 0.0028 0.9347 0.0029 0.9492 0.003 0.9426
4:6:1 0.0027 0.9361 0.003 0.9503 0.0034 0.9245
6:2:1 0.0027 0.9321 0.0031 0.9443 0.0032 0.922
6:4:1 0.0029 0.9228 0.0031 0.9395 0.0035 0.9172
6:6:1 0.0029 0.9164 0.0033 0.9517 0.0038 0.9243
2:2:2:1 0.0028 0.9405 0.0028 0.9443 0.0032 0.9284
2:2:4:1 0.0026 0.9238 0.0032 0.9493 0.0031 0.9315
2:2:6:1 0.0024 0.9369 0.003 0.9438 0.003 0.9252
2:4:2:1 0.0026 0.9331 0.0029 0.9503 0.003 0.9255
2:4:4:1 0.0027 0.9219 0.0029 0.9364 0.003 0.9422
2:4:6:1 0.0029 0.9184 0.0031 0.9406 0.0035 0.9279
2:6:2:1 0.0027 0.9214 0.003 0.9534 0.0033 0.9165
2:6:4:1 0.0026 0.9234 0.0034 0.943 0.0032 0.9231
2:6:6:1 0.0026 0.9294 0.0032 0.9453 0.0031 0.9229
4:2:2:1 0.0028 0.9311 0.0034 0.9413 0.0033 0.9315
4:2:4:1 0.0028 0.9222 0.0032 0.9406 0.0031 0.9385
4:2:6:1 0.0024 0.9449 0.0033 0.9375 0.0028 0.9223
4:4:2:1 0.0028 0.9282 0.0033 0.9393 0.0031 0.9433
4:4:4:1 0.0029 0.9284 0.0033 0.9447 0.0034 0.9284
4:4:6:1 0.0027 0.926 0.0033 0.9429 0.0033 0.9418
4:6:2:1 0.0025 0.9422 0.0034 0.9283 0.0034 0.9341
4:6:4:1 0.0028 0.9267 0.003 0.9439 0.0032 0.927
4:6:6:1 0.0029 0.9199 0.0036 0.9337 0.0035 0.9355
6:2:2:1 0.0028 0.9189 0.0033 0.9484 0.0034 0.9347
6:2:4:1 0.0026 0.9301 0.0032 0.9454 0.0037 0.9427
6:2:6:1 0.0029 0.9303 0.0034 0.9276 0.0036 0.9259
6:4:2:1 0.0029 0.9372 0.0034 0.9386 0.0036 0.9387
6:4:4:1 0.0028 0.9282 0.0033 0.9483 0.0039 0.9172
6:4:6:1 0.0029 0.9273 0.0033 0.9329 0.0037 0.9223
6:6:2:1 0.003 0.9263 0.0033 0.9337 0.0035 0.9357
6:6:4:1 0.0029 0.9178 0.0032 0.9414 0.0039 0.9171
6:6:6:1 0.0029 0.9346 0.0033 0.9389 0.0037 0.9231

Network 1: MLP trained with simulated data from Experiment 1 (simulated data 1); Network 2: MLP trained with simulated data from Experiment 2 (simulated data 2); 
Network 3: MLP trained using the simulated data from two experiments (simulated data 1 and 2).

It was found in table  2 correlations ranging from 
0.498 to 0.827 in Experiment 1 among the number of 
days until anthesis (DA) and other traits. The predictive 
power of ANNs is due to its ability to identify existing 
patterns among the information presented as desired 
output (number of days to anthesis) and information from 
the input layer (other parameters) (Pandolfi et al., 2009). 
Thus, the presence of features strongly correlated with the 
characteristic being predicted can provide greater efficiency 
in the use of ANNs. Souza et al. (2008) also found positive 
and significant estimates of correlation among flowering and 

the other parameters. In the experiment 2 these estimates 
ranged from –0.132 to 0.494.

The differences found for the correlation estimates 
in Experiment 1 and 2 can be explained by genotype by 
environment interaction, since the experiment was first 
cultivated in winter and second in summer experiment. 
The genotype-environment interaction has not been verified 
by the F test at 5% significance only for the traits head 
diameter and head circumference. According to Santos et al. 
(2009) both photoperiod as the temperature can influence 
the lettuce crop, changing its architecture, weight, quality 
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and production. Gualberto et al. (2009) also observed the 
effect of genotype by environment interaction evaluating 
lettuce cultivars in nine trials and three growing seasons.

Considering a selection index of 30% increase in the 
number of days to flowering, estimates gain direct selection of 
10.54% and 8.97% for Experiment 1 and 2, respectively were 
obtained (Table 3). To gain estimates of indirect selection for 
DA met for the first experiment higher estimates when using 
the variable diameter and head circumference (8.75%). As for 
the second experiment the highest estimate for the indirect 
selection gain was 5.39% from the fresh matter of shoots. 
According Caierão et al. (2006) the use of indirect selection 
is dependent on the effects of environment, justifying the 
difference in selection gain obtained in both experiments.

For indirect selection using the values DA predicted by 
“Network 1” the gains indirect selection were of 8.78% and 
5.40% for Experiment 1 and 2, respectively, values close to 
the estimates of indirect selection were estimated using the 
traits head diameter and fresh weight of shoots. Indirect 
selection using the values DA predicted by “Network 2” a 
low estimate of gain selection for the Experiment 1 (4.91%) 
was obtained showing that this trained by simulated data 
from Experiment 2 has no power extrapolation to the 
Experiment 1, and that indirect selection in this situation 
would be unfavorable for improvement. The estimated 
gain of indirect selection for Experiment 2 using the values 
predicted by the “Network 2” indirect selection was 6.36%, 
higher than the estimated gain of indirect selection using 
the fresh weight of shoots (5.39%) value, showing that in 
this situation the use of the RNAs would be favorable.

The fact of the Network 1 provide greater predicted 
gain selection in experiment 1, and Network 2 provide 
greater gain selection in experiment 2 is also a indicative of 
genotype by environment interaction in the use of artificial 
neural networks. The genotype by environment interaction 
is a major complicating factor for genetic improvement 
and must be considered for obtaining genotypes with high 
adaptability and stability (Cruz et al., 2012).

For “Network 3” trained with simulated data from 
experiments 1 and 2 simultaneously, there were estimates 
of gains from indirect selection of 9.30 and 7.08% using 
the values ​​predicted by the network in Experiments 
1 and 2, respectively. These estimates are higher than those 
obtained using indirect selection for agronomic traits and 
values ​​predicted by using the “Network 1” and “Network 
2”. This information is important, showing that training 
the ANN using information from different experiments 
increased the power of prediction and extrapolation of the 
network, enabling higher earnings estimates for indirect 
selection. Therefore, for breeding companies the use of 
data from previous experiments may provide good results 
for the network training. If there is no data from previous 
experiments to train the network, an alternative may be the 
use of information sufficiently small samples representative 
of populations in improvement (in terms of variance and 
covariance between traits). And then, play selection in the 
rest of the population (not sampled plants in respect to 
difficult measurement) using the results predicted by network 
(trained with the information of the samples).

Table 2. Phenotypic correlations of Experiment 1 (above the main diagonal), Experiment 2 (the bottom of the main diagonal) and correlations 
between the network output and the desired output (days to flowering) in three trained networks

Phenotypic correlations between traits in both experiments
Carac.1 HD HC FWS MFMS CDMS LN DA

HD - 0.803 0.813 0.809 0.828 0.57 0.718
HC 0.537 - 0.587 0.559 0.556 0.45 0.528

FWS 0.761 0.425 - 0.989 0.942 0.79 0.827
MFMS 0.767 0.407 0.986 - 0.952 0.805 0.756
CDMS 0.782 0.434 0.867 0.868 - 0.695 0.708

LN 0.009 0.707 0.135 0.112 0.008 - 0.498
DA 0.22 –0.132 0.494 0.388 0.21 -0.027 -

P-value(%) of effects by F test
FV HD HC FWS MFMS CDMS LN DA

Genotype (G) 1.212 9.505 11.288 10.302 42.425 5.251 3.146
Environment (E) 55.545 63.347 52.810 51.324 0.000 53.750 0.000

G x E 100.000 29.504 0.031 0.170 0.097 0.000 0.066
Correlation between the output of the network2 and the number of days to anthesis

Dados Network 1 Network 2 Network 3
Simulated data 1 0.844 0.625 0.881
Simulated data 2 0.542 0.895 0.896

1Head diameter (HD), head circumference (HC), fresh weight of shoot (FWS), marketable fresh matter of shoots (MFMS), commercial dry matter of shoots (CDMS), leaf 
number (LN) and days to anthesis (DA). 2Network 1: MLP trained with simulated data from Experiment 1 (simulated data 1); Network 2: MLP trained with simulated data 
from Experiment 2 (simulated data 2); Network 3: MLP trained using the simulated data from two experiments (simulated data 1 and 2).
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ANN presents advantages over the conventional statistical 
procedures, because traditionally the mean is the main 
parameter needed to judge the superiority between genotypes 
(Cruz  et  al., 2012), and in cases of low heritability, the 
selection process has lower reliability. However, a more detailed 
analysis may be performed by taking into consideration not 
only the mean genotype, but also other relevant statistics 
and those of high practical aspect, although these make the 
decision-making process more complex for the data analyst. 
In the biometrics approach this additional information is 
neglected, but when utilizing the computational intelligence 
approach such information is indispensable and make up 
relevant inputs to be considered in the training process of 
the ANN (Silva et al., 2014).

The average number of days until anthesis in Experiment 
1 and Experiment 2 was 106 and 71 days after transplanting, 
respectively (data not shown), since the other characteristics 
were assessed at 45 days after transplanting. Thus, the 
possibility of indirect selection against early flowering is an 
important strategy (Azevedo et al., 2014), especially if indirect 
selection based on values ​​predicted by the ANN is used.

4. CONCLUSION

The use of ANN has great employment potential for 
indirect selection for genetic improvement of lettuce against 
early flowering. Selection is based on the values ​​predicted 
by the network provided estimates of gain greater than 
selection based on more strongly correlated trait selection. 
ANNs trained with data from an experiment have low 
power extrapolation to another experiment, due to the effect 
of genotype by environment interaction. ANNs trained 
simultaneously with data from different experiments showed 
greater predictive and extrapolation power.
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