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Abstract
Several studies have applied the Kolmogorov-Smirnov test (KS) to verify if a particular parametric distribution can be used to 
assess the probability of occurrence of a given agrometeorological variable. However, when this test is applied to the same data 
sample from which the distribution parameters have been estimated, it leads to a high probability of failure to reject a false null 
hypothesis. Although the Lilliefors test had been proposed to remedy this drawback, several studies still use the KS test even 
when the requirement of independence between the data and the estimated parameters is not met. Aiming at stimulating the 
use of the Lilliefors test, we revisited the critical values of the Lilliefors test for both gamma (gam) and normal distributions, 
provided easy-to-use procedures capable of calculating the Lilliefors test and evaluated the performance of these two tests in 
correctly accepting a hypothesized distribution. The Lilliefors test was calculated by using critical values previously presented 
in the scientific literature (KSLcrit) and those obtained from the procedures proposed in this study (NKSLcrit). Through Monte 
Carlo simulations we demonstrated that the frequency of occurrence of Type I (II) errors associated with the KSLcrit may be 
unacceptably low (high). By using the NKSLcrit we were able to meet the significance level in all Monte Carlo experiments. The 
NKSLcrit also led to the lowest rate of Type II errors. Finally, we also provided polynomial equations that eliminate the need to 
perform statistical simulations to calculate the Lilliefors test for both gam and normal distributions.
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Revisão dos valores críticos do teste Lilliefors: em direção ao correto uso 
agrometeorológico do algoritmo de Kolmogorov-Smirnov

Resumo
Diversos estudos têm aplicado o teste de Kolmogorov-Smirnov (KS) para verificar se determinada distribuição paramétrica 
pode ser utilizada para estimar a probabilidade de ocorrência de variáveis agrometeorológicas. Contudo, a probabilidade de 
não rejeição de uma falsa hipótese de nulidade (H0; erro tipo II) torna-se elevada quando o KS é aplicado à mesma amostra de 
dados utilizada para estimar os parâmetros da distribuição. Embora uma adaptação denominada Lilliefors tenha sido proposta 
para permitir o uso do algoritmo de Kolmogorov-Smirnov na condição anteriormente mencionada, o KS em sua forma original 
é ainda frequentemente utilizado. Objetivando estimular o correto uso do KS e de sua referida adaptação, este trabalho revisou 
os valores críticos do Lilliefors para as distribuições gama e normal, desenvolveu procedimentos computacionais capazes de 
calcular esses testes de aderência e comparou a habilidade do KS e do Lilliefors em aceitar corretamente uma H0. O teste de 
Lilliefors foi calculado utilizando-se tanto valores críticos previamente apresentados na literatura científica (KSLcrit) quanto novos 
valores propostos neste estudo (NKSLcrit). Por meio de simulações de Monte Carlo demonstrou-se que a frequência de ocorrência 
de erros tipo I (II) associada ao KSLcrit pode ser consideravelmente baixa (elevada). A frequência de erros tipo I associada ao 
NKSLcrit permaneceu próxima ao nível de significância adotado em todos os experimentos. O NKSLcrit também demonstra menor 
taxa de erros tipo II. Considerando-se as distribuições gama e normal, este trabalho também desenvolveu equações polinomiais 
que eliminam a necessidade de realizar simulações estatísticas para calcular o teste Lilliefors.

Palavras-chave: teste de aderência, distribuição gama, distribuição normal.
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Correct use of the Kolmogorov-Smirnov test

1. INTRODUCTION

Parametric distributions have been widely used to 
represent meteorological data. Although the use of these 
mathematical functions may be regarded as a theoretical 
idealization of the actual data, it is not free from empirical 
considerations (Wilks, 2011). In fact, before adopting a 
particular distribution to assess the probability of occurrence 
of a given data value one needs to check if the parametric 
function does provide a reasonable fit. The selection of an 
appropriate candidate distribution requires the use of actual 
data (Wilks, 2011) and it is frequently based on statistical 
methods called goodness-of-fit tests. The goodness-of-fit tests 
are usually computed to obtain evidences in favor of the 
null hypothesis (H0) that states that the data under analysis 
were drawn from a particular distribution (Wilks, 2011).

The one-sample Kolmogorov-Smirnov test (KS) is a 
widely used goodness-of-fit test (Wilks, 2011). It compares 
the empirical (edf ) and the cumulative distribution function 
(cdf ). And, for continuous data, the KS test tends to be 
more powerful than other tests that compare the data 
histogram with the probability density function (e.g. the 
chi-square test, Wilks, 2011). However, the original KS is 
applicable if, and only if, the parameters of the theoretical 
distribution have not been estimated from the same bunch 
of data used to apply this goodness-of-fit test. If this 
requirement is not fulfilled, the probability of accepting 
a false H0 becomes unacceptable high (Crutcher, 1975; 
Lilliefors, 1967; Steinskog et al., 2007; Vlček and Huth, 
2009; Wilks, 2011). Yet, the original KS test has still been 
frequently used when the requirement of independence 
between the data and the estimated parameters is not met 
(Steinskog et al., 2007; Vlček and Huth, 2009). Naturally, 
this statement suggests that further efforts are required to 
avoid this misuse of the original KS.

In situations where the parameters of the distribution 
have been estimated from all available data or from the 
same bunch of data used to calculate the goodness of fit, a 
modification of the original KS test must be adopted. This 
modification is frequently called Kolmogorov-Smirnov/
Lilliefors test or simply Lilliefors test (Lilliefors, 1967; 1969). 
In order to draw the attention of the scientific community to 
Lilliefors’ findings, Crutcher (1975) tabulated critical values 
for the Lilliefors test (KSLcrit) that can be used for several 
univariate distributions, such as the 2-parameter gamma 
(gam) and normal distributions (it is worth emphasizing 
that the chi-square and the exponential distributions may 
be regarded as particular cases of the gam distribution). The 
KSLcrit values provided by Crutcher (1975) have been widely 
used to evaluate the fit of meteorological data to the gam 

or to the normal distributions (Chen et al., 2013; Vlček 
and Huth, 2009; Wilks 2011). However, Vlček and Huth 
(2009) indicate that it may be difficult to use the KSLcrit 
values because they are tabulated only for integer values of 
the shape parameter of the gam distribution. Moreover, it is 
worth recalling that these critical values were obtained from 
a computer-based technique called Monte Carlo simulation. 
Thus, it becomes natural to suppose that the current capacity 
of the personal computers may provide better estimates for 
the critical values of the Lilliefors test (NKSLcrit).

Thus, the aims of this study are: to (i) review the critical 
values of the Lilliefors test for both gam and normal 
distributions, to (ii) provide easy-to-use procedures capable of 
calculating the Lilliefors test for these two distributions and 
to (iii) evaluate the performance of the KS and Lilliefors tests 
in correctly accepting or rejecting a candidate distribution 
to assess the probability of occurrence of a given variable. 
The Lilliefors test was calculated by using the critical values 
presented by Crutcher (1975) and those obtained from 
the easy-to-use procedures proposed in this study. We 
hope this study stimulates the use of the Lilliefors test in 
meteorological studies.

2. MATERIAL AND METHODS

Theoretical background

The null hypothesis (H0) of a hypothesis test defines 
a particular logical frame (Wilks, 2011) that allows us to 
generate the sample null distribution for the test statistic. 
As in other goodness-of-fit tests, the H0 of the KS test 
states that the data under analysis were drawn from the 
hypothesized distribution. Accordingly, if the calculated test 
statistic falls in the rejection region of the null distribution, 
the proposed H0 is rejected. Otherwise, the calculated test 
statistic is regarded as consistent with the null hypothesis 
(the H0 is not rejected). At this point, it is worth recalling 
that the rejection region of the null distribution is defined by 
the adopted significance level. Accordingly, the probability 
of a Type I error (rejecting a true H0) must be equal to the 
adopted significance level. By way of analogy, a Type II error 
occurs if a false H0 is not rejected. The alternative hypothesis 
(HA) is another fundamental element of a hypothesis test and 
is frequently defined as: the null hypothesis is not true (this 
definition was adopted in this study). Further information 
regarding the fundamental elements of any hypothesis test 
can be found in several studies such as Wilks (2011) which 
is recommended reading.
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The Kolmogorov-Smirnov and the Lilliefors 
tests

The KS test is based on the comparison between the 
theoretical [F’(x)] and the empirical cumulative distributions 
[F(x)] (equation 1).

D=max|F’(x)–F(x)	 (1)

The statistic D describes the largest discrepancy between 
[F’(x)] and [F(x)]. Naturally, sufficiently large D values lead 
to the rejection of H0. According to Stephens (1974) the 
critical values of the original KS test may be approximated by:

crit
KKS

n 0.12 0.11 / n
α=

+ + 	 (2)

Where n is the sample size. Kα is set to 1.358 (1.224) 
when the test is performed at the 5% (10%) significance level.

The KS test may be regarded as a distribution-free test 
because its null distribution does not depends upon the 
explicit form of the distribution under analysis. In other 
words, the critical values obtained from equation 2 are 
applicable to any distribution regardless the values of its 
parameters. As previously described, equation 2 can only 
be used if the parameters of the distribution have not been 
estimated from the same data sample used to calculate the 
KScrit value.

Although the Lilliefors test is also based on equation 2, 
it cannot be regarded as a distribution-free test because 
for distributions, such as the gam distribution, the sample 
distribution of D depends on the sample size and on the 
values of the shape parameter. Crutcher (1975) tabulated 
KSLcrit values for both gam and normal distributions 
(Table 1). The studies of Husak et al. (2007), Steingnov 
(2009), Blain (2011) and Wilks (2011) used these critical 
values to evaluate the suitability of the gam distribution in 
describing rainfall series.

In order to review the critical values tabulated by Crutcher 
(1975) we generated new critical values (NKSLcrit) for both 

gam and normal distributions. The Monte Carlo simulations 
used to approximate the NKSLcrit is described as follow:

The simulation procedure starts by generating a large 
number of samples from the hypothesized distribution. For 
the gam distribution, we generated Ns=500000 samples for 
each assumed shape and n value. For the normal distribution, 
we generated Ns=500000 data samples for each assumed 
n value. The parameters of the gam or normal distribution 
were then estimated from each synthetic data samples. F(x) 
and F’(x) were then estimated for each synthetic dataset 
generating 500000 D values for each shape and n values 
(gam) or for each n value (normal). At this point, it is 
worth emphasizing that the H0 is true for each D value. 
Accordingly, each collection of D values is, in fact, the 
null distribution of the hypothesis test. Thus, the NKSLcrit 
values were approximated as the (1-α) quantile of each null 
distribution (α is the adopted significance level). Further 
information regarding this procedure can be found in several 
studies such as Wilks (2011) and Shin et al. (2012). Note 
that this procedure can be used to derive NKSLcrit for any 
shape, sample size and significance level (α) of interest. The 
r-codes used to run these procedures are exemplified as follow.
### Lilliefors test for the 2-parameter gamma distribution
Ns=500000 # number of synthetic samples
n=50 # sample size (given by the user)
shape= 3 # shape parameter (given by the user)
beta=30 # scale parameter (given by the user)
x=matrix(NA,n,1)
lilliefors=matrix(NA,Ns,1)
probpar=matrix(NA,n,1)
pos=matrix(1: n, n, 1)/n
for (i in 1:Ns){

x[,1]=rgamma(n,shape,1/beta)
A=log(mean(x))-((sum(log(x)))/n)
alfali=(1/(4*A))*(1+sqrt(1+(4*A/3)))
betali=mean(x)/alfali
probpar[,1]=pgamma(sort(x), alfali, 1/betali, lower.tail = TRUE, 
log.p = FALSE)
Dmax=max(abs(pos- probpar))
lilliefors[i,1]=Dmax}

NKScrit5=quantile(lilliefors, probs=0.95) # 5% significance level
NKScrit10=quantile(lilliefors, probs=0.90) # 10% significance level
format(NKScrit5, digits=3)
format(NKScrit10, digits=3)
###Lilliefors test for the normal distribution
Ns=50000 # number of synthetic samples
n=50 # sample size (given by the user)
average=0 # (given by the user)
standard_deviation=2 # (given by the user)
lilliefors=matrix(NA,Ns,1)
probpar= matrix(NA,n,1)
x=matrix(NA,n,1)
lilliefors=matrix(NA,Ns,1)
probpar= matrix(NA,n,1)
pos=matrix(1: n, n, 1)/n
for (i in 1:Ns){

x[,1]=rnorm(n,average,standard_deviation)
xsd=data.frame(x)
averages=mean(x)

Table 1. Critical values for the Lilliefors test. Extracted from Crutcher 
(1975). α is the significance level, Shape is the shape parameter of the 
2-parameter gamma distribution and n is the sample size

  α = 10% α = 5%
Sample Size (n) Sample Size (n)

n = 30 n > 30 n = 30 n => 30
Shape 2-parameter gamma distribution

1 0.169 0.95/√n 0.184 1.05/√n
2 0.161 0.91/√n 0.175 0.97/√n
3 0.151 0.86/√n 0.165 0.94/√n
4 0.148 0.83/√n 0.163 0.91/√n
8 0.146 0.81/√n 0.161 0.89/√n

Normal distribution
0.144 0.805/√n 0.161 0.886/√n
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 standard_deviations=sapply(xsd,sd)
probpar[,1]=pnorm(sort(x), averages, standard_deviations, lower.
tail = TRUE, log.p = FALSE)
Dmaxs=max(abs(pos- probpar))
lilliefors[i,1]=Dmaxs}

NKScrit5=quantile(lilliefors, probs=0.95) # 5% significance level
NKScrit10=quantile(lilliefors, probs=0.90) # 10% significance 
level
format(NKScrit5, digits=3)
format(NKScrit10, digits=3)
####################

On the performance of the tests: type I and 
II errors

To evaluate the probability of a type I error associated 
with KScrit, KSLcrit and NKSLcrit we generated 50000 series 
from gam (normal) distributions with shape parameter equal 
to 1, 2 and 3 (with 0 mean and standard deviation equal to 
1) and sample sizes equal to 30, 40, 50, 60, 70, 80 and 90. 
The scale parameter was set to 40. We fitted the gam (normal) 
distribution to each simulated series. The agreement, for 
each simulated series, between F(x) and F’(x) were assessed 
by using the KScrit, KSLcrit and NKSLcrit. As one may note 
the H0 is true for all simulated series. Thus, the frequency 
of occurrence of type I errors is simply the ratio between 
the number of cases in which H0 was erroneously rejected 
and the number of simulated series (50000).

As previously described, a Type II error occurs when 
a false H0 is not rejected. To evaluate the frequency of 
occurrence of Type II errors obtained by using each of the 
three critical values we generated 50000 series from gam 
distributions with shape parameter equal to 1 and 2 and 
sample size equal to 30, 40, 50, 60, 70, 80 and 90. After 
that, we fitted a normal distribution to each series and 
assessed this fit by using the KScrit, KSLcrit and NKSLcrit. 
In this procedure, the H0 is false. Thus, the frequency of 
occurrence of type II errors is simply the ratio between 
the number of cases in which H0 was not rejected and the 
number of simulated series (50000).

As a case of study, the fit of monthly rainfall data, 
obtained from the weather station of Ribeirão Preto (State 
of São Paulo, Brazil; 1970-2010), to the gam distribution 
were evaluated by using the KScrit, KSLcrit and NKSLcrit tests. 
This weather station belongs to the Agronomic Institute 
of Campinas (Instituto Agronômico, IAC/APTA-SAA). 
These monthly series present no missing values and their 
consistency have already been verified in previous studies 
(Blain, 2011). The maximum likelihood estimates of the 
parameters of the gam distribution were calculated as 
described in Husak et al. (2007). The goodness-of-fit tests 
were performed at the 5% significance level (the r-code 
is described in appendix I). The quantil-quantil plot was 
used to evaluate the different conclusions indicated by the 
three tests. The QQ plots may be regarded as a qualitative 

method of goodness-of-fit (Wilks, 2011). It is capable of 
indicating where the parametric representation of the data 
is inadequate (Wilks, 2011).

Regression models

Theoretically the statistical simulation procedure described 
in section “The Kolmogorov-Smirnov and the Lilliefors tests”  
can be used to derive NKSLcrit values for any distribution 
at any significance level (Wilks, 2011). However, we are 
aware that many researchers around the world may not be 
familiar with statistical simulations techniques. This fact may 
be one of the reasons why the KS test has been erroneously 
used in several scientific papers. Accordingly, by following 
authors such as Shin et al. (2012) we provided the NKSLcrit 
as a function of shape parameter and sample size (gam) or 
as a function of sample size (normal) for two frequently 
used significance levels (5% and 10%). We applied the 
response function form described in Tolikas and Heravi 
(2008) to approximate the NKSLcrit values for the gam 
distribution (equation 3). We also verified that the rational 
model described by equation 4 is suited to approximate the 
NKSLcrit values for the normal distribution.

NKSLcrit = a + (b/n)+(c/n2)+d*shape+(e*shape2)	 (3)

NKSLcrit = (p1*n2 + p2*n + p3)/(n + q1)	 (4)

Where: n is the sample size; shape is the shape parameter 
of the 2-parameter gamma distribution; a, b, d, e, p1, p2, 
p3 and q1 are the parameters of the regression models.

The coefficient of determination (r2), the mean absolute 
error (MAE) and the square root of the mean square error 
(RMSE) were used to assess the agreement between the 
NKSLcrit generated from the Monte Carlo simulations 
(section 2.b) and the NKSLcrit calculated from the regression 
equations. We also performed an additional step to validate 
the above-mentioned regression models. NKSLcrit values were 
generated from another set of Monte Carlo simulations in 
which the shape parameter was set to vary from 0.8 to 6.3 
(by steps of 0.5) and the sample size was set to vary from 
35 to 170 (by steps of 10). The r2, MAE and RMSE were 
used to evaluate the agreement between the NKSLcrit values 
obtained from the Monte Carlo simulations and from 
the regression equations. It is worth mentioning that this 
additional step was based on NKSLcrit values that were not 
used to estimate the parameters of the regression models.

3. RESULTS AND DISCUSSION

Tables 2 and 3 presents NKSLcrit values obtained by using 
the r-codes described in section “The Kolmogorov-Smirnov 
and the Lilliefors tests” As can be noted, the shape parameter 
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of the gam distribution was set to vary from 0.50 to 8.0 by 
steps of 0.50. The scale parameter was set to 30 without 
loss of generality. By assuming these different values of the 
shape parameter the probability density function of the gam 
distribution varies from an exponential form to a bell-shaped 
form that tends to approach the normal distribution. These 

new critical values were also generated for several sample 
sizes (n) that vary from 30 (a climatological normal period) 
to 120 by steps of 10.

Surprisingly, the NKSLcrit values (Tables 2 and 3) are 
considerably lower than the KSLcrit presented by Crutcher 
(1975; Table 1). Accordingly, one may indicate that the 

Table 3. Critical values for the Lilliefors test obtained from the procedure described in section 2.b (10% significance level)

Shape

Sample size
30 40 50 60 70 80 90 100 110 120

2-parameter gamma distribution
Critical Values - 10% significant level

0.5 0.149 0.131 0.119 0.110 0.102 0.096 0.091 0.087 0.083 0.080
1.0 0.141 0.124 0.112 0.103 0.096 0.090 0.085 0.081 0.077 0.074
1.5 0.139 0.122 0.110 0.101 0.094 0.089 0.084 0.080 0.076 0.073
2.0 0.138 0.121 0.109 0.101 0.093 0.088 0.083 0.079 0.076 0.073
2.5 0.137 0.121 0.109 0.100 0.093 0.087 0.083 0.079 0.075 0.072
3.0 0.137 0.120 0.109 0.100 0.093 0.087 0.083 0.079 0.075 0.072
3.5 0.137 0.120 0.108 0.100 0.093 0.087 0.083 0.079 0.075 0.072
4.0 0.137 0.120 0.108 0.100 0.093 0.087 0.082 0.078 0.075 0.072
4.5 0.137 0.120 0.108 0.099 0.093 0.087 0.082 0.078 0.075 0.072
5.0 0.137 0.120 0.108 0.099 0.093 0.087 0.082 0.078 0.075 0.072
5.5 0.137 0.120 0.108 0.099 0.093 0.087 0.082 0.078 0.075 0.072
6.0 0.137 0.120 0.108 0.099 0.092 0.087 0.082 0.078 0.075 0.072
6.5 0.137 0.120 0.108 0.099 0.092 0.087 0.082 0.078 0.075 0.072
7.0 0.136 0.120 0.108 0.099 0.092 0.087 0.082 0.078 0.075 0.072
7.5 0.136 0.119 0.108 0.099 0.092 0.087 0.082 0.078 0.075 0.072
8.0 0.136 0.120 0.108 0.099 0.092 0.087 0.082 0.078 0.075 0.072

Normal distribution
0.135 0.119 0.107 0.099 0.092 0.086 0.082 0.078 0.074 0.071

Table 2. Critical values for the Lilliefors test obtained from the procedure described in section 2.b (5% significance level)

Sample size
Shape 30 40 50 60 70 80 90 100 110 120

2-parameter gamma distribution
Critical Values - 5% significant level

0.5 0.165 0.144 0.131 0.120 0.112 0.106 0.100 0.095 0.091 0.088
1.0 0.155 0.136 0.123 0.113 0.105 0.099 0.093 0.089 0.085 0.082
1.5 0.153 0.134 0.121 0.111 0.103 0.097 0.092 0.087 0.084 0.080
2.0 0.152 0.133 0.120 0.110 0.103 0.097 0.091 0.087 0.083 0.080
2.5 0.151 0.132 0.120 0.110 0.102 0.096 0.091 0.086 0.082 0.079
3.0 0.151 0.132 0.119 0.110 0.102 0.096 0.091 0.086 0.083 0.079
3.5 0.151 0.132 0.119 0.109 0.102 0.096 0.090 0.086 0.082 0.079
4.0 0.150 0.132 0.119 0.109 0.102 0.096 0.090 0.086 0.082 0.079
4.5 0.150 0.132 0.119 0.109 0.102 0.095 0.090 0.086 0.082 0.079
5.0 0.150 0.132 0.119 0.109 0.102 0.095 0.090 0.086 0.082 0.079
5.5 0.150 0.131 0.118 0.109 0.102 0.095 0.090 0.086 0.082 0.079
6.0 0.150 0.131 0.118 0.109 0.101 0.095 0.090 0.086 0.082 0.079
6.5 0.150 0.131 0.118 0.109 0.101 0.095 0.090 0.086 0.082 0.079
7.0 0.150 0.131 0.118 0.109 0.101 0.095 0.090 0.086 0.082 0.079
7.5 0.150 0.131 0.118 0.109 0.101 0.095 0.090 0.086 0.082 0.078
8.0 0.150 0.131 0.118 0.109 0.101 0.095 0.090 0.086 0.082 0.079

Normal distribution
0.148 0.130 0.118 0.108 0.101 0.095 0.089 0.085 0.081 0.078
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lower than the adopted significant level. Therefore, the 
results presented in table 4 indicate that the Lilliefors test 
calculated by using the KSLcrit values may be regarded as 
a conservative test with respect to the Type I errors. This 
statement holds for both gam and normal distributions. 
The rejection rates obtained from the NKSLcrit were capable 
of meeting the adopted significant level. The frequency of 
Type I errors associated with these latter critical values varied 
from 4.83% to 5.34% (5% significance level) and from 
9.45% to 10.53% (10% significance level). It is also worth 
emphasizing that the frequencies of occurrence of Type I 
errors, obtained from the NKSLcrit were little affected by 

Table 4. Frequency of Type I errors (%) associated with the use of the KScrit (equation 2), KSLcrit (Crutcher, 1975) and NKSLcrit (section 
The Kolmogorov-Smirnov and the Lilliefors tests)

Sample Size

30 40 50 60 70 80 90

5% significance level

shape= 1; scale = 40

KScrit 0.04 0.01 0.03 0.01 0.01 0.03 0.03

KSLcrit 0.80 0.75 0.71 0.68 0.82 0.92 0.83

NKSLcrit 4.86 5.07 5.00 5.11 5.05 5.18 4.81

shape= 2; scale = 40

KScrit 0.00 0.00 0.00 0.02 0.02 0.02 0.01

KSLcrit 1.31 1.27 1.38 1.52 1.64 1.67 1.68

NKSLcrit 4.98 5.10 4.81 5.12 5.34 5.12 4.95

shape= 3; scale = 40

KScrit 0.01 0.01 0.02 0.01 0.01 0.02 0.02

KSLcrit 2.36 1.60 1.88 2.03 2.10 2.21 2.29

NKSLcrit 4.97 4.83 5.18 4.90 5.02 5.14 4.80

10% significance level

shape= 1; scale = 40

KS 0.11 0.12 0.14 0.1 0.08 0.19 0.18

KSLcrit 2.2 1.78 2.13 2.15 2.54 2.53 2.75

NKSLcrit 10.53 9.45 9.51 9.75 10.36 10.35 10.36

shape= 2; scale = 40

KScrit 0.04 0.05 0.1 0.05 0.11 0.05 0.05

KSLcrit 3.16 2.33 2.62 2.74 3.02 3.16 3.14

NKSLcrit 10.24 10.07 9.99 10.44 10.52 9.95 10.02

shape= 3; scale = 40

KScrit 0.05 0.09 0.05 0.1 0.09 0.09 0.08

KSLcrut 4.69 3.83 4.08 4.38 4.79 4.53 4.18

NKSL 9.89 9.98 9.74 9.99 10.2 10.06 9.81

Normal distribution

5% significance level

KScrit 0.00 0.00 0.01 0.00 0.01 0.01 0.01

KSLcrit 2.61 2.72 2.80 2.85 3.26 3.30 3.43

NKSLcrit 4.97 5.16 4.81 4.89 4.85 4.82 5.23

10% significance level

KScrit 0.05 0.04 0.05 0.07 0.05 0.06 0.06

KSLcrit 6.49 5.79 6.38 6.65 6.94 7.23 7.45

NKSLcrit 10.22 9.53 9.94 9.55 9.71 10.13 9.56

probability of occurrence of Type I and II errors associated 
with the use of the KSLcrit and NKSLcrit will also differ from 
each other. This inference is further evaluated from the 
results presented in tables 3 and 5.

As expected (Crutcher, 1975; Lilliefors, 1967; 
Steinskog et al., 2007; Vlček and Huth, 2009; Wilks, 
2011), the frequency of occurrence of Type I errors associated 
with the use of the KScrit is much lower than the adopted 
significant levels (Tables 4). The rejection rates obtained 
by using the KScrit were always lower than 1% (at both 5 
and 10% significance level). The frequency of Type I errors 
obtained by using the KSLcrit values are higher than those 
associated with the KScrit. However, they are also considerably 
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the different shape parameters and/or sample sizes adopted 
in this study.

Regarding the probability of a Type II error, the results 
presented in table 5 indicate that the KScrit must not be 
used when the parameters of the distribution have been 
fitted from the same data set used to apply the KS test. In 
other words, when erroneously applied, the KScrit frequently 
leads to the conclusion that a given bunch of data was 
drawn from a parent distribution that may be considerably 
different from the process that has generated the data. For 
instance, when n was set to 30 the rate of type II errors 
were, approximately, 89% (α=0.05) and 75% (α=0.10). 
Different from what is observed for the Type I errors, the 
frequency of Type II errors, obtained from both KSLcrit and 
NKSLcrit, is a decreasing function of the sample size. In other 

Table 5. Frequency of Type II errors (%) associated with the use of the KScrit (equation 2), KSLcrit (Crutcher, 1975) and NKSLcrit (section 
“The Kolmogorov-Smirnov and the Lilliefors tests”)

30 40 50 60 70 80 90
5% significance level
shape= 1 scale =40

KS 88.93 77.99 65.12 51.01 37.76 26.00 16.79
KSLcrut 25.17 12.52 5.66 2.18 0.75 0.24 0.06
NKSL 16.26 7.14 1.46 0.52 0.15 0.05 0.01

shape= 2 scale =40
KS 97.74 95.25 91.83 87.80 82.61 77.01 70.74
KSLcrut 55.73 42.63 31.30 22.97 16.06 11.01 7.39
NKSL 43.69 31.21 13.99 10.31 7.36 4.57 3.26

10% significance level
shape= 1 scale =40

KS 75.41 59.24 43.55 29.87 18.56 11.04 5.79
KSLcrut 12.90 6.00 2.26 0.72 0.20 0.08 0.02
NKSL 8.44 3.32 1.16 0.40 0.09 0.03 0.00

shape= 2 scale =40
KS 92.87 87.42 80.91 73.64 65.76 57.98 50.22
KSLcrut 38.56 29.01 19.13 12.78 7.99 5.06 3.02
NKSL 29.73 20.89 13.15 9.14 5.61 3.43 1.28

Table 6. Monthly rainfall series of Ribeirão Preto, State of São Paulo, Brazil (1970-2010). Shape and Scale are the parameters of the gamma 
distribution, # zeroes is the number of zeroes in each monthly series and KSLcrit and NKSLcrit are the critical values for the Lilliefors test 
respectively obtained from Crutcher (1975) and from section “The Kolmogorov-Smirnov and the Lilliefors tests” of this study

Month Shape Scale Dmax # zeroes KSLcrit NKSLcrit

January 6.70 41.35 0.061 0 0.139 0.130
February 3.31 67.97 0.087 0 0.147 0.131
March 4.49 35.98 0.073 0 0.142 0.130
April 1.30 62.32 0.084 0 0.164 0.133
May 1.25 49.90 0.153 0 0.164 0.133
June 0.75 49.74 0.115 8 0.183 0.152
July 0.75 39.35 0.080 6 0.177 0.148
August 0.74 49.95 0.083 13 0.198 0.163
September 1.12 56.72 0.095 0 0.164 0.133
October 3.51 34.15 0.123 0 0.142 0.131
November 5.89 30.43 0.055 0 0.142 0.130
December 7.93 35.21 0.108 0 0.139 0.130

Figure 1. Quantile-quantile plot. Observed monthly rainfall data 
of the location of Ribeirão Preto, State of São Paulo, Brazil (1970-
2010) and quantile estimates obtained from a 2-parameter gamma 
distribution.
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Figure 2. Simple linear regression analysis between the NKSLcrit generated from the Monte Carlo simulations (section 2.b) and the NKSLcrit 
calculated from the regression equations. MAE is the mean absolute error and RMSE is the square root of the mean. Figures on the left are 
based on NKSLcrit values that were not used to estimate the parameters of thel regression models (equations 5 and 6).
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words, the smaller the sample size, the lower the power of 
the tests. The results presented in table 5 also indicate that 
when compared to the KSLcrit the NKSLcrit increases the 
power of the Lilliefors test. As can be noted, the frequency 
of Type II errors obtained from the NKLScrit values are 
lower than those obtained from the KSLcrit values for all 
simulations performed in this study. Thus, by considering 
the results presented in tables 4 and 5, we concluded that 
the NKSLcrit improves the capability of the lilliefors test in 
correctly reject a false H0.

As previously described, the KSLcrit are tabulated only 
for discrete values of the shape parameter. Authors such 
Vlček and Huth (2009) and Wilks (2011) deal with this 
difficulty by adopting the KSLcrit associated with the tabulated 
shape parameter closest to the estimated one. The same 
procedure was used in this study because the same difficult 
were observed when we used the KSLcrit to evaluate the fit 
of the monthly rainfall series of Ribeirão Preto to the gam 
distribution (table 6).

The NKSLcrit and KSLcrit lead to different conclusions 
only for the rainfall amounts observed during the month 
of May (Table 6). The KSLcrit values indicates that the gam 
distribution can be used to assess probability of the monthly 
rainfall amounts of weather station of Ribeirão Preto for any 
month (including the month of May). However, according 
to the NKSLcrit the gam distribution cannot be used to assess 
the probability of occurrence of the rainfall amounts observed 
during the months of May. At this point it becomes worth 
emphasizing that if the gam distribution is an appropriate 
model for representing the above-mentioned monthly 
rainfall amounts, the points of figure 1 (Q-Q plot) should 
lie close to the unit diagonal (Coles, 2001). However, the 
visual inspection of figure 1 reveals substantial departures 
from linearity. Thus, we concluded that the results depicted 
in figure 1 are more consistent with the conclusion reached 
by using the NKSLcrit. This last inference is also consistent 
with the results presented in tables 3, in the sense that the 
NKSLcrit improves the capability of the lilliefors test in 
correctly reject a false H0.

Regression equations

Although we claim that the r-code presented in this 
study may be regarded as an easy-to-use procedure, one may 
correctly argue that they require some level of knowledge 
of the r-software. Thus, by considering that the main goal 
of this study is to stimulate the use of the lilliefors test, we 
have also provided polynomial equations (equations 5 and 
6) capable of calculating the NKSLcrit for the range of shape 
parameters and sample sizes presented in tables 1 and 2. In 
this view, figure 2 depicts the linear regression between the 
NKSLcrit values obtained from the Monte Carlo simulations 
and the NKSLcrit values obtained from equations 5-6. The r2, 
MAE and RMSE indicate that the regression equations can 

be used to approximate the NKSLcrit values for the gam and 
normal distributions.

NKSLcrit(5%)= 0.04889+(4.601/n)+(-42.24/n2)-
0.001945shape+0.0001695shape2	 (5.1)

NKSLcrit(10%)= 0.04435+(4.201/n)+(-39.07/n2)- 
0.001639shape +0.0001416shape2	 (5.2)

NKSLcrit(5%) = (((-8.530*10-5)(n2))+ 
0.05645n+4.906)/(n+13.90)	 (6.1)

NKSLcrit(10%) = (((-8.225*10-5)(n2))+ 
0.05255n+4.422)/(n+13.83)	 (6.2)

4. SUMMARY

The Kolmogorov-Smirnov test is a frequently used 
goodness-of-fit test. However, in its original form this test 
requires that the parameters of the theoretical distribution 
have not been estimated from the same bunch of data used 
to apply this goodness-of-fit test. As described in several 
studies, if the original KS test is applied under this above-
mentioned situation the probability of accepting a false 
H0 becomes unacceptably high. The results obtained in 
this study are consistent with these previous studies. This 
study demonstrated that the use of the original KScrit leads 
to a frequency of occurrence of Type I errors much lower 
than the adopted significant level and to a high probability 
of failure to reject a false H0 (Type II error). The so-called 
Lilliefors test has been proposed to remedy this drawback. 
This latter test is capable of achieving a better balance 
between type I and II errors. In this sense, by using the critical 
values described in Crutcher (1975), for both 2-parameter 
gamma and normal distributions, one is capable of bringing 
the probability of a Type I error more close to the adopted 
significance level. However, this study also demonstrated 
that the frequency of occurrence of Type I errors associated 
with the above-mentioned values is still considerably lower 
than the adopted significance level. In addition, especially 
for small sample sizes, the probability of a Type II error 
associated with the critical values described in Crutcher 
(1975) may be unacceptably high. For instance, from the 
results presented in table 5, one may verify that when the 
sample size was set to 30 the frequency of occurrence of Type 
II errors, obtained by using these critical values (at the 5% 
significance level) were greater than 25%. From the above-
mentioned results, one may also note that the probability 
of a Type II error decreases as the sample size increases.

We revisited the critical values presented by Crutcher 
(1975). Based on sets of 500000 simulated series with 
different sample sizes we derived new critical values for 
the Lilliefors test that can be used to assess the fit of the 
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2-parameter gamma and normal distributions. By using 
these new critical values (or the r-code devised to calculate 
these critical values) we were able to meet the adopted 
significance level in all simulations carried out in this study. 
In addition, these new critical values also led to the lowest 
frequency of occurrence of Type II errors observed in this 
study. Finally, by assuming that many researchers around 
the world may not be familiar with statistical simulations 
techniques (or with the R-software), we have also provided 
polynomial equations that eliminate the need to use the 
r-codes to calculate the NKSLcrit values presented in this 
study. We hope this study stimulates the correct use of the 
Lilliefors test.
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APPENDIX I

################
# datamatrix is a matrix in which each column corresponds to each month
datamatrix= as.matrix(read.table(“datamatrix.txt”, head=T))
shape=matrix(NA,12,1)
scale=matrix(NA,12,1)
Dmax=matrix(NA,12,1)
NKSLcrit5=matrix(NA,12,1)
NKSLcrit10=matrix(NA,12,1)
pvalue=matrix(NA,12,1)
for (month in 1:12){
data=datamatrix[,month]
data1=data> 0
datap=data[data1] # the 2-parameter gamma is undefined for x ≤ 0
n=length(data)
np=length(datap)
nz=n-np
probzero=(n-nz)/n
Ns=50000
probacum=matrix(NA,np,1)
lilliefors=matrix(NA,Ns,1)
probpar= matrix(NA,np,1)
A=log(mean(datap))-((sum(log(datap)))/np)
shape[month,1]=(1/(4*A))*(1+sqrt(1+(4*A/3)))
scale[month,1]=mean(datap)/shape[month,1]
pos=matrix(1:np, np, 1)/np
probacum[,1]= (pgamma(sort(datap), shape[month,1], 1/scale[month,1], lower.tail = TRUE, log.p = FALSE))
Dmax[month,1]=max(abs(pos- probacum))
########Lilliefors
x=matrix(NA,np,1)
lilliefors=matrix(NA,Ns,1)
probpar=matrix(NA,np,1)
poss=matrix(1: np, np, 1)/np
for (i in 1:Ns){
x[,1]=rgamma(np,shape[month,1],1/scale[month,1])
As=log(mean(x))-((sum(log(x)))/np)
alfals=(1/(4*As))*(1+sqrt(1+(4*As/3)))
betals=mean(x)/alfals
probpar[,1]=pgamma(sort(x), alfals, 1/betals, lower.tail = TRUE, log.p = FALSE)
Dmaxs=max(abs(poss- probpar))
lilliefors[i,1]=Dmaxs}
NKSLcrit5[month,1]=quantile(lilliefors, probs=0.95)
NKSLcrit10[month,1]=quantile(lilliefors, probs=0.90)
m=lilliefors>Dmax[month,1]
pvalue[month,1]=(length(lilliefors[m]))/Ns}
Goodness=c(“shape”, shape, “scale”, scale, “Dmax”, Dmax, “NKSLcrit5%”, NKSLcrit5, “NKSLcrit10%”, NKSLcrit10, 
“p-value”, pvalue)
write.csv(Goodness, “GoodnessGamma.csv”)
##############
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